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Data Poisoning Attack Defense and Evolutionary Domain Adaptation for
Federated Medical Image Segmentation
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Abstract

Federated learning has significant demonstrated po-
tential in medical image segmentation to protect
data privacy by retaining local data. However, its
application is still hindered by two critical chal-
lenges: 1) the retained data poisoning attacks that
severely compromise the accuracy of the global
segmentation model and 2) domain gaps among
clients, undermining its generalizability. To ad-
dress these issues, we propose AdaShield-FL, a
data poisoning attack defense and evolutionary do-
main adaptation for federated medical image seg-
mentation. AdaShield-FL incorporates a disentan-
gled reconstruction and segmentation module that
purifies data in the k-space domain to mitigate the
effects of adversarial attacks iteratively. More-
over, it introduces a data poisoning attack detec-
tion mechanism that analyzes abnormal patterns
in training loss sequences to identify malicious
clients. This method also aligns local and global
covariance matrices via evolutionary optimization
to minimize the domain gap efficiently. The exper-
imental validation on cardiac magnetic resonance
imaging datasets demonstrates the robustness and
superior performance of AdaShield-FL compared
with other federated learning methods.

1 Introduction
Medical image segmentation [Liang et al., 2024; Song et al.,
2024; Shi et al., 2024] is a foundation of modern health-
care, enabling precise diagnosis, optimized treatment plan-
ning, and effective disease monitoring. These capabilities
are essential for improving patient outcomes and optimiz-
ing medical workflows. However, data privacy concerns of-
ten constrain the broad application of segmentation methods.
Federated learning (FL) [McMahan et al., 2017] has emerged
as an approach to address data privacy by enabling decen-
tralized training across multiple clinical centres [Guan et al.,
2024]. In addition, FL facilitates collaboration for medical
applications, as various clinical centres can jointly train a

∗Corresponding author

global model [Jiang et al., 2023].Despite its potential, fed-
erated medical image segmentation encounters two critical
challenges: vulnerability to data poisoning attacks on each
client’s retained data and domain gaps derived from different
institutions and vendors. These hurdles undermine the accu-
racy and reliability of FL-based models, limiting their practi-
cal deployment in healthcare scenarios.

As illustrated in Fig. 1(a), an external attacker can disrupt
segmentation regions by injecting adversarial perturbations
into magnetic resonance imaging (MRI) data [Kaviani et al.,
2022; Ozbulak et al., 2019]. When perturbed by an adversar-
ial attack [Goodfellow et al., 2014], the cardiac image seg-
mentation model fails to predict the segmentation maps accu-
rately in “hypertrophic cardiomyopathy.” External attackers
can inject adversarial perturbations into the training dataset of
target clients to degrade the overall model performance. This
degradation poses significant problems in clinical systems,
which could be perturbed by adversarial examples when em-
ploying deep learning for diagnosis, decision-making, or re-
imbursement [Finlayson et al., 2018].

Furthermore, as depicted in Fig. 1(b), FL-based medical
approaches often encounter varying data distributions among
clients in clinical centres due to varying MRI equipment ven-
dors, such as Siemens, Philips, GE, and Canon. This ap-
proaches also face varying distributions due to differences
in specific details regarding scanner vendors, such as the in-
plane resolution and number of slices collected during MRI
acquisition [Campello et al., 2021]. This variation in the data
distribution leads to a domain gap in FL [Li et al., 2020b],
reducing the generalization performance of segmentation.

To address these challenges of data poisoning attack and
domain gap, we propose AdaShield-FL, a data poisoning
attack defense and evolutionary domain adaptation (DA)
for federated medical image segmentation, as illustrated in
Fig. 1(c). Each client in AdaShield-FL applies its own MRI
data to train a local segmentation model and uploads the
model weights, data covariance matrix, and training loss se-
quence to the central server. On the server, attack detec-
tion is employed to identify malicious clients. Based on the
attack status, AdaShield-FL excludes malicious clients dur-
ing global model and covariance aggregation. Each client
downloads the aggregated global segmentation model, co-
variance, and attack status. If a client is identified as ma-
licious, AdaShield-FL iteratively purifies the perturbed data
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Figure 1: (a) Visualization of the predicted segmentation maps in a patient with “hypertrophic cardiomyopathy” from clean and perturbed
data using the FGSM [Goodfellow et al., 2014]. (b) Domain gap scenario in multiple centres with various MRI equipment. (c) Abstracted
diagram of the proposed model: detecting malicious clients, purifying, and segmenting regions of interest while aligning the domain gap.

using disentangled reconstruction and segmentation (DRS),
and the segmentation model is trained on the purified data
with evolutionary DA. For benign clients, the segmentation
model is trained on the original data through evolutionary
DA. Our source code and appendix are available at https://
github.com/alsgur0720/AdaShield. We summarized the con-
tributions below:

• Federated Purification Framework: To our knowl-
edge, we are the first to propose an FL framework with a
purification method for malicious client’s training data,
allowing collaboration between different medical cen-
tres. It enhances patient data diversity and adversarial
robustness in federated medical image segmentation.

• Disentangled Reconstruction and Segmentation: We
observe that the k-space effectively supports the disen-
tanglement of reconstruction and segmentation features
and then propose a purification approach that isolates
robust reconstruction features in the k-space, iteratively
refines these features, and generates segmentation maps
from the purified MRI data.

• Differential Loss-based Attack Detection: We observe
that the training loss sequence often displays anomalous
patterns under adversarial perturbations and then pro-
pose a detection of malicious clients by analyzing the
loss gradient and curvature, representing abnormal con-
vergence speeds and oscillations, respectively.

• Evolutionary Domain Adaptation: We propose an
evolutionary adaptive approach that aligns local and
global domains by matching covariance matrices and
dynamically adjusts the balance between DA and seg-
mentation, enabling automatic and rapid optimization
from nonconvex loss functions.

2 Related Works
2.1 Medical Image Segmentation
Medical image segmentation [Liang et al., 2024; Campello
et al., 2021; Song et al., 2024; Shi et al., 2024; Sadegheih
et al., 2024; Zhou et al., 2021] is essential task in health-
care applications, facilitating accurate diagnosis, treatment
planning, and disease monitoring. Specifically, designed ex-
plicitly for biomedical image analysis, U-Net introduced an

encoder-decoder structure with skip connections, establish-
ing a benchmark for segmentation accuracy. Despite these
advances, current methods remain susceptible to data privacy
vulnerabilities, underscoring the need for secure and robust
segmentation frameworks.

2.2 Federated Learning in Segmentation
Using decentralized data, FL builds a global model focusing
on privacy, which has been increasingly adopted for medical
image segmentation [Guan et al., 2024; Linardos et al., 2022;
Qi et al., 2022; Qiu et al., 2023]. However, these models
are susceptible to adversarial attacks that compromise model
performance. To overcome this limitation, we propose a
purification-based FL framework for malicious clients that re-
fines perturbed patient data.

2.3 Domain Adaptation
In federated medical image segmentation, DA [Zhang et al.,
2023; Jiang et al., 2024; Pei et al., 2021] is crucial for miti-
gating domain gaps arising from heterogeneous data distribu-
tions due to variations in clinical centres and MRI equipment.
Existing approaches include supervised DA using labeled tar-
get domain data with adversarial training and unsupervised
methods focusing on translating data between domains, al-
though these methods face challenges, such as high computa-
tional costs and instability in convergence. To overcome these
obstacles, we propose an evolutionary DA that aligns local
and global covariance matrices, enabling rapid optimization
and stable convergence from non-convex loss functions.

2.4 Data Poisoning Attack
Adversarial attacks exploit subtle perturbations to undermine
neural network robustness. Common attack methods in-
clude the fast gradient sign method (FGSM) [Goodfellow
et al., 2014], which injects perturbations using the gradi-
ent of the loss function. In addition, projected gradient de-
scent (PGD) [Madry et al., 2017] is an extension of the
FGSM, that produces stronger attacks by constraining pertur-
bations in a defined boundary. The Carlini and Wagner attack
(C&W) [Carlini and Wagner, 2017] also generates adversar-
ial examples as an optimization problem. In this study, we
adopt these attacks to demonstrate the adversarial robustness
of FL methods designed to defend against such attacks.
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Figure 2: Overall architecture of the AdaShield-FL network.

2.5 Attack Robustness in Federated Learning

A data poisoning attack involves inserting malicious data into
training, significantly undermining model accuracy and pos-
ing a serious challenge to FL [Kumar et al., 2023]. Recent
advancements have introduced adversarial robustness [Er-
rami and Bergou, 2024; Yi et al., 2024; Sun et al., 2024;
Cho et al., 2024; Yin et al., 2018; Zhang et al., 2022;
Wu et al., 2023b; Li et al., 2020a; Hong et al., 2023]. Specifi-
cally, Yi et al. [2024] proposed an aggregation method for dis-
tributed learning using outlier-resistant one-center and one-
mean clustering. In addition, VFLIP [Cho et al., 2024] pro-
posed identification and purification that operate at the infer-
ence stage, handling vertically partitioned data on FL partici-
pants. However, these approaches are inadequate in handling
unseen attacks due to the constraints of adversarial training,
or they face reduced patient data diversity by excluding ma-
licious clients during training. To lessen these limitations,
AdaShield-FL employs a preemptive strategy that identifies
and incorporates purified malicious clients during training.

3 Threat Model

The attacker’s goal is to degrade the overall model perfor-
mance via an untargeted attack, resulting in a decreased Dice
score across cardiac regions. To achieve this, the attacker
uses adversarial examples to disrupt the training process and
is assumed to have prior knowledge of the training data and
model architecture in a white-box scenario [Nowroozi et al.,
2025]. This scenario allows attackers unauthorized access to
training data and model parameters and assumes that the at-
tacker can compromise more than 25% of the client popula-
tion. This access occurs independently of the FL mechanism,
which is designed to safeguard data privacy by ensuring that
raw data is not transmitted. In this study, benign clients are
uncompromised, and malicious clients are altered by the ex-
ternal attacker. The external attacker who takes control of
the local client gains access to local data and can manipulate
them [Haffar et al., 2023; Kairouz et al., 2021]. Appendix D
provides more details on the adversarial scenario.

4 Method
4.1 Overview
As presented in Fig. 2, the Ada-Shield-FL framework main-
tains patient data diversity and enhances adversarial robust-
ness in federated medical image segmentation. In this frame-
work, each of the N clients trains the local model using
its own MRI dataset, whereas a central server performs
global model aggregation over R rounds. In the first round,
AdaShield-FL trains the DRS, comprising reconstruction and
segmentation components, and uploads the trained segmenta-
tion model weights θ11,2,...,N to the server. The server also re-
ceives training Dice loss sequences L1

1,2,...,N and covariance
matrices C1

1,2,...,N from clients. Malicious clients are iden-
tified using differential loss-based detection with L1

1,2,...,N ,
resulting in a binary malicious status λ1

1,2,...,N .
According to the status, the attack-aware global model

and covariance aggregations calculate global model weights
θ1global and global covariance matrix C1

global, respectively, by
excluding malicious clients. This global weight and matrix
are transmitted to clients for the next round. If a malicious
status is benign, the client initializes the segmentation model
with θ1global and trains it with evolutionary DA, minimizing
the imbalance between segmentation and DA. In contrast, for
malicious clients, their local data undergo iterative refinement
via the malicious client purification process and are processed
via the training process in the same way as benign clients.
This overall process iterates across R rounds to enhance ad-
versarial robustness while reducing the domain gap, resulting
in a final global segmentation model once all rounds are com-
pleted. Appendix A provides overall, malicious client purifi-
cation, attack detection, and evolutionary DA algorithms.

4.2 Disentangled Reconstruction and
Segmentation

Based on class-specific disentangling methods [Yang et al.,
2021], we extend this approach to MRI data purification and
consider that adversarial attacks primarily disrupt specific
tasks. Unlike existing adversarial robustness methods that
exclude malicious clients, the proposed purification approach
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Figure 3: Distributions of the segmentation feature (fS) and re-
construction feature (fR) before and after the FGSM attack on the
ACDC dataset: (a) fS extracted from clean data, (b) fS extracted
from perturbed data, (c) fR extracted from clean data, and (d) fR
extracted from perturbed data.

retains their data to enhance patient data diversity. Specif-
ically, we separate the features for reconstruction and seg-
mentation in the k-space [Sarty et al., 2001], exclude adver-
sarially vulnerable segmentation features, and decode adver-
sarially robust reconstruction features to purify the data for
segmentation.

The preliminary study investigated the effect of adversarial
attacks targeting segmentation on task-specific disentangled
representations in the k-space. To this end, we first extract in-
formative features for reconstruction and segmentation tasks
from the k-space by applying the fast Fourier transform (FFT)
to the MRI image, as follows:

s(kx(T ), ky(T )) =

∞∫
−∞

∞∫
−∞

I(x, y)e−i2π(xkx(T )+yky(T ))dx dy,

(1)

kx(T ) =
γ

2π

∫ T

0

Gx(τ) dτ, ky(T ) =
γ

2π

∫ T

0

Gy(τ) dτ,

(2)
where I(x, y) represents the MRI image at position (x, y) and
s(kx(T ), ky(T )) denotes the signal value obtained in the k-
space coordinate (kx(T ), ky(T )) at a time T , corresponding
to the point in time during the MRI acquisition. Moreover,
kx(T ) and ky(T ) are proportional to the time integral of the
applied magnetic gradient fields, Gx(τ) and Gy(τ). The term
γ denotes the ratio of the magnetic moment to its angular mo-
mentum. The frequency domain is concentrated in the cen-
tral low-frequencies, whereas high-frequency regions have a
sparse distribution [Yang et al., 2014]. Based on this phe-
nomenon, we observed that the sparse k-space, which has the
same properties as the frequency domain, is an ideal structure
for efficiently disentangling specific tasks.

As depicted in Fig. 3, we use disentangled reconstruction
features and segmentation features extracted by a disentan-
gling encoder in the k-space domain and evaluate two types
of features under adversarial attack: (1) segmentation features
(fS), and (2) reconstruction features (fR). Figure 3(a and b)
presents the effect of before and after applying the FGSM
on the feature distributions of fS , and Figure 3(c and d) de-
picts the effect of before and after applying the FGSM on the
feature distributions of fR. Moreover, Figure 3 reveals that
perturbations cause a significant shift in the fS distribution,
making it susceptible to attacks, whereas fR maintains a sta-
ble distribution regardless of perturbations.

According to this observation, as displayed in Fig. 4, the
proposed approach disentangles fS and fR via an encoder

Figure 4: Architecture of disentangled reconstruction and segmen-
tation.

trained to minimize the correlation between the two features.
In the two distinct feature sets, fR is optimized for recon-
struction using the mean absolute error Lrec between the re-
constructed and input MRI data for training reconstruction
decoder, and fS is optimized for segmentation using the Dice
loss Ldice for training of segmentation decoder. To enforce
independence between fR and fS , we introduce an indepen-
dence loss Lind, is designed to minimize correlation between
fR and fS for training of disentangling encoder as follows:

Lind =
1

h2

h∑
k=1

h∑
l=1

(Cov(fR, fS)k,l)
2

σfR,k
· σfS,l

+ ϵ
, (3)

where Cov(fR, fS)k,l denotes the (k, l)-th element of the co-
variance matrix between fR and fS . The terms σfR,k

and
σfS,l

denote the standard deviations of fR and fS in the k-
and l-th dimensions, respectively. The term h indicates the
dimension of the vectors fR and fS , and ϵ denotes the stabil-
ity constant (set to 10−9). This formulation penalizes the cor-
relation between fR and fS , promoting their independence.
The features fR and fS are transformed via the inverse FFT
(IFFT), resulting in f

′

R and f
′

S , respectively.
In the malicious process, f

′

R is iteratively purified using
the reconstruction decoder for L iterations to generate the
segmentation map using the purified data and segmentation
decoder. For the benign process, f

′

S is directly input into
the segmentation decoder to generate a segmentation map.
Appendix B provides the detailed architecture of the disen-
tangling encoder and decoders, as well as visualizations of
fR and fS . The trained segmentation weights and covari-
ance matrix obtained using the disentangled feature fS are
uploaded to the central server to aggregate the global model
and covariance. Moreover, the training Dice loss sequence is
uploaded to the server to detect malicious clients.

4.3 Differential Loss-based Attack Detection and
Aggregation

To protect FL systems from data poisoning attacks, we pro-
pose a differential loss-based attack detection method ana-
lyzes anomalous patterns in training Dice loss sequences. As
depicted in Fig. 5, the uploaded training loss sequence of ma-
licious clients typically has a lower convergence speed and
more oscillations than benign clients.
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Figure 5: Architecture for the differential loss-based attack detec-
tion.

Two feature extractors were designed to compute the
first and second derivatives and detect anomalies using a
multi layer perceptron with three layers to detect malicious
clients based on abnormal patterns. The gradient latent
code ∆Lr

1,2,...,N , representing convergence speed, is ex-
tracted using the first-order derivative extractor in the r-th
round. The second-order derivative extractor creates the cur-
vature latent code ∆2Lr

1,2,...,N , representing the loss oscilla-
tion. The two resulting differential loss patterns, ∆Lr

1,2,....,N

and ∆2Lr
1,2,...,N , are concatenated to serve as input for the

anomaly detection model, outputting the malicious status.
If the i-th client is detected as malicious in the r-th round,

λr
i = 1; otherwise, λr

i = 0. The server aggregates the model
weights of clients using attack-aware global model aggrega-
tion (Fig. 2) as follows:

θr+1 ← θr − η
1

N −
∑N

i=1 λ
r
i

×
N∑
i=1

gri · (1− λr
i )√

Gr + ϵ
, (4)

where θr denotes the weights of the global segmentation
model on the r-th round, and gri represents the gradient of
the local model in the i-th client of the r-th round. Further-
more, Gr indicates the cumulative sum of squares of the gra-
dient (momentum) Gr = Gr−1 +

∑N
i=1(g

r
i )

2, and η denotes
the learning rate (set to 0.01). In Eq. (4), malicious clients
(λr

i = 1) are excluded from the aggregation.
In addition, global covariance aggregation excludes mali-

cious clients using λr
1,··· ,N to calculate the covariance ma-

trices of exclusively benign clients. The attack-aware global
covariance aggregation is formulated as follows:

Cr
global =

1∑N
i=1 ρi(1− λr

i )

[ N∑
i=1

ρiC
r
i (1− λr

i )+

N∑
i=1

ρi(µ
r
i − µr)(µr

i − µr)T (1− λr
i )

]
, (5)

where Cr
i represents the covariance matrix of the i-th client

in the r-th round obtained by calculating the mean and co-
variance based on the disentangled segmentation feature fs
extracted by the disentangling encoder. Moreover, µr

i and ρi
represent the mean and number of samples for the i-th client
in the r-th round, respectively, and µr represents the mean for
all clients in the r-th round.

Figure 6: Architecture for the evolutionary domain adaptation.

In addition, the server transmits λr
1,··· ,N to clients to notify

them of the attack status, Cr
global to align global and local

covariances, and θr to initialize the segmentation model for
the next training round.

4.4 Evolutionary Domain Adaptation
In Fig. 1(b), data from various equipment across clinical cen-
tres create a domain gap in FL due to variations in scanner
types, in-plane resolution, and slice thickness. Existing DA
methods use complete data, including features irrelevant to
segmentation; hence, they tend not to guarantee the ideal
alignment for the optimal segmentation performance. This
work focuses on the primary segmentation task by employing
disentangled segmentation features fS instead of full data in
covariance matrix matching loss Lcm, as illustrated in Fig. 6.

Specifically, Lcm minimizes the data heterogeneity be-
tween clients by applying the covariance matching from dis-
entangled segmentation features fs, as follows:

Lcm =

∥∥∥∥Cr+1
i

ρi
−

Cr
global

ρ

∥∥∥∥2
F

, (6)

where Cr
global denotes the global covariance matrix in the

r-th round, ∥·∥2F represents the Frobenius norm and ρ indi-
cates the number of samples for all clients. The loss function
minimizes heterogeneity by matching between the local and
global covariance matrices. In this approach, because the co-
variance matrix does not include personal information, it is
suitable for FL, which is crucial for preserving privacy.

In addition, when conventional DA is integrated with the
target task, the balancing parameters of the loss function are
typically determined empirically. Thus, finding the optimal
balancing parameters for each client is labor-intensive, as it
needs to be performed individually for every client. The fol-
lowing evolutionary DA approach is applied to optimize the
balance automatically by dynamically combining Lcm and
the segmentation Dice loss Ldice to address this problem:

Ltotal = (1− βt)Ldice + βtLcm, (7)

where βt denotes the dynamic balancing parameter for prior-
itizing Ldice and Lcm, with t representing the training itera-
tion. We adaptively prioritizes the two tasks by dynamically
adjusting βt, extending the covariance matrix adaptation-
evolution strategy (CMA-ES) [Hansen et al., 2003] to its new
application to DA. The balancing parameter βt is iteratively
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Model
Dice Score (%)

FGSM PGD C&W Benign
(No Attack)

FedAvg [McMahan et al., 2017] 69.3 68.8 68.1 86.4
Yi et al. [2024] 71.3 70.9 71.0 86.4

IOS [Wu et al., 2023b] 71.4 70.7 71.5 86.9
Karimireddy et al. [2021] 71.0 71.4 70.9 87.0

Li et al. [2020a] 73.2 72.9 72.1 86.8
FedRBN [Hong et al., 2023] 72.6 72.3 72.5 87.5

AdaShield-FL 82.7 82.9 82.9 88.4

Table 1: Comparison with prior methods on the M&Ms validation
set in terms of the Dice score. Each federated learning method is
trained on the perturbed data generated by each adversarial attack.

Model
Dice Score (%)

FGSM PGD C&W Benign
(No Attack)

FedAvg [McMahan et al., 2017] 67.3 67.0 67.1 85.9
Yi et al. [2024] 70.3 71.8 70.6 86.1

IOS [Wu et al., 2023b] 69.8 69.2 69.3 86.3
Karimireddy et al. [2021] 69.3 69.6 69.4 86.0

Li et al. [2020a] 70.0 70.5 70.2 85.9
FedRBN [Hong et al., 2023] 70.7 71.7 70.3 86.3

AdaShield-FL 81.0 82.6 81.7 87.3

Table 2: Comparison with prior methods on the ACDC validation
set in terms of the Dice score. Each federated learning method is
trained on the perturbed data generated by each adversarial attack.

optimized over (g + 1) generations for each t-th iteration. In
dynamic prioritizing, the candidate solutions xg+1

1,...,20 for each
generation over g are sampled as follows:

xg+1
k = mg + σg · N (0,Σg), k = 1, ..., 20, (8)

whereN (0,Σg) represents a multivariate normal distribution
with a zero mean and covariance matrix Σg , in the g-th gen-
eration. In Fig. 6, the lengths of the major and minor axes of
the ellipse are proportional to the eigenvalues of the covari-
ance, and their orientations are determined by eigenvectors
of the covariance. Moreover, mg denotes the mean value in
the g-th generation and σg indicates the step size in the g-th
generation. The mean value mg+1 for the next generation is
updated as follows:

mg+1 =
10∑
i=1

wix
g+1
i,top, (9)

where wi denotes the standard proportional weight-
ing [Hansen et al., 2003], and xg+1

i,top denotes the top 10-
ranked population determined based on Eq. (7), with lower
values assigned to top positions in the ranking. Furthermore,
the balancing parameter βt is set to mg+1 if the update mag-
nitude of mg+1 is less than ϵcma (set to 10−5), according to
the following condition:

βt = mg+1, if ∥mg+1 −mg∥ ≤ ϵcma, (10)

Unless the condition in Eq. (10) is met, dynamic prioritiz-
ing continues as in Eqs. (8) and (9). This automatic balance
enables Ltotal to achieve efficient optimization and conver-
gence by adaptively prioritizing segmentation and DA.

5 Experiments
5.1 Dataset
The experiments employed a dataset created by combining
M&Ms [Campello et al., 2021], a multi-vendor dataset, in-
cluding Siemens, Philips, GE, and Canon, established from
375 participants, and ACDC [Bernard et al., 2018], a single-
vendor (Canon) dataset, established from 150 participants.
Both datasets consist of cardiac MRI sequences, with each
patient having 21 frames. Moreover, each dataset comprises
data from six centres and includes four disease labels: “di-
lated cardiomyopathy”, “hypertrophic cardiomyopathy”, “ab-
normal right ventricle”, and “normal”. It also provides three
target labels for segmentation: “left ventricle”, “right ven-
tricle”, and “myocardium”. Additionally, AdaShield-FL is
trained for eight clients (N = 8), with four clients using the
M&Ms dataset and the other using the ACDC dataset.

5.2 Implementation Details
The experiments follow a standard federated-by-dataset sce-
nario [McMahan et al., 2017], where each client constructs
their own dataset and collaborates in FL with a central server.
All experiments were conducted in PyTorch with two Nvidia
H100 GPUs. This study employs stochastic gradient descent
optimization with a momentum of 0.9 and a learning rate of
0.001 for training. AdaShield-FL was trained for 500 global
rounds (R = 500), setting L to 3 in the malicious client pu-
rification. Appendix B provides quantitative and qualitative
experimental results for the hyperparameter L.

5.3 Results and Analysis
This work compares AdaShield-FL with existing FL methods
designed for adversarial robustness, including methods by Yi
et al. [2024], Karimireddy et al. [2021], Li et al. [2020a],
IOS [Wu et al., 2023b], and FedRBN [Hong et al., 2023] on
the M&Ms and ACDC datasets, as listed in Tables 1 and 2.
This study adopts widely used adversarial attacks for the im-
age segmentation task, such as FGSM, PGD, and C&W.

In addition, the backbone network for the widely used seg-
mentation proposed by Zhou et al. [2021] was employed. For
each experiment, two malicious clients were randomly se-
lected. Appendix B provides the comparison results when
more clients are perturbed. These models were trained and
evaluated from scratch, following the experimental settings
outlined by the authors, using their provided open-source
codes. In all tables, the best scores are in bold.

In Tables 1 and 2, AdaShield-FL demonstrates superior
segmentation performance in terms of the average Dice score
coefficient compared to other adversarial robustness-based
FL methods. It is attributed to purifying and incorporating
malicious clients’ data into the training process, enhancing
model robustness and patient data diversity. Furthermore,
outperforming other FL methods when trained with benign
data demonstrates the effectiveness of evolutionary DA.

In addition, Table 3 compares the accuracy of attack
detection methods for identifying benign and malicious
clients. Compared to existing approaches, such as IOS, Yi
et al., Karimireddy et al., and Li et al., AdaShield-FL consis-
tently provides more reliable performance in terms of recall
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Method Metric M&Ms ACDC
FGSM PGD C&W FGSM PGD C&W

Yi et al. Recall 0.85 0.87 0.85 0.81 0.80 0.83
Precision 0.79 0.80 0.78 0.75 0.77 0.80

IOS Recall 0.82 0.80 0.81 0.79 0.77 0.79
Precision 0.74 0.71 0.70 0.69 0.68 0.72

Karimireddy et al. Recall 0.84 0.88 0.85 0.81 0.78 0.77
Precision 0.84 0.83 0.81 0.79 0.80 0.76

Li et al. Recall 0.73 0.71 0.74 0.72 0.73 0.69
Precision 0.69 0.73 0.70 0.67 0.71 0.70

AdaShield-FL Recall 0.95 0.96 0.94 0.91 0.91 0.92
Precision 0.98 0.99 0.98 0.95 0.94 0.97

Table 3: Detection performance in terms of recall and pre-cision for
detecting malicious clients on the M&Ms and ACDC datasets.

Metric Dice Score
DA method FL Method FGSM PGD C&W

IPLC [Wu et al., 2023a] Karimireddy et al. 72.3 72.6 72.5
UPL-SFDA [Zhang et al., 2024] IOS 74.9 73.4 74.2
UPL-SFDA [Zhang et al., 2024] Karimireddy et al. 74.0 73.9 74.1

IPLC [Wu et al., 2023a] IOS 72.1 72.8 72.0
AdaShield-FL 82.7 82.9 82.9

Table 4: Performance of FL methods with DA models for perturbed
data generated by each adversarial attack on the M&Ms dataset.

and precision, demonstrating its robustness against data poi-
soning attacks and effectiveness of Dice loss sequence.

Furthermore, Table 4 reveals the performance of FL adver-
sarial robustness models integrated with DA methods. This
experiments employs IPLC [Wu et al., 2023a] and UPL-
SFDA [Zhang et al., 2024] for DA. Further, it employs the
model by Karimireddy et al. and IOS, byzantine aggregation
methods that can be integrated with DA models for feder-
ated medical image segmentation. As a results, the proposed
model consistently outperforms Karimireddy et al. and IOS
combined with DA methods. These results highlight the ef-
fectiveness of covariance matrix matching loss via fS and
evolutionary DA in enhancing segmentation performance.

Table 5 compares FL methods regarding floating-point op-
erations per second (FLOPs), Params, convergence rounds,
and training time, with eights clients. In these methods, the
common segmentation model [Zhou et al., 2021] with 42
GFLOPs and 1.8M Params is used for each client. Since
the disentangling encoder in AdaSheild-FL operates in the
k-space, which is inherently sparse, the FLOPs are reduced
to 33 GFLOPs compared to the original segmentation en-
coder. Although AdaShield-FL introduces additional param-
eters due to its reconstruction decoder (0.9M Params for each
client) and attack detection (0.3M Params for central server),
it achieves the fastest convergence (470 rounds), the short-
est total training time (7.8 h), and the fewest total operat-
ing points (326 GFLOPs). This improved computational ef-
ficiency is attributed to the use of evolutionary DA, which
enables automatic and rapid optimization from non-convex
loss functions and the disentangling encoder in the k-space.
Moreover, Appendix C offers visual qualitative segmentation
results and Appendix E presents limitations and future work.

5.4 Ablation Study
This section analyzes the performance of each component in
AdaShield-FL. In Table 6, the checkmark (✓) indicates that a
module was activated. The first row shows the performance

Model FLOPs
(G)

Params
(M)

Convergence
Round

Training
Time (hours)

FedAvg 336 14.4 554 9.2
Yi et al. 336 14.4 539 8.9

Karimireddy et al. 336 14.4 527 8.7
Li et al. 336 15.3 521 8.6

AdaShield-FL 326 21.9 470 7.8

Table 5: Computational complexity of FL methods on the M&Ms
dataset.

Differential Loss-based
Attack Detection

Evolutionary
DA

Malicious Client
Purification

Dice
Score

✓ ✓ ✓ 82.9
✓ ✓ 75.4
✓ ✓ 80.7

✓ 72.2
✓ 74.8

68.8

Table 6: Ablation study for AdaShield-FL on the M&Ms dataset
perturbed by PGD attack in terms of the Dice score.

Dice Score

β = 0.4 β = 0.5 β = 0.6 Evolutionary
Strategy (βt)

81.2 80.0 81.1 82.7

Table 7: Effect of the balancing parameter (β) on Dice score in DRS
on the M&Ms dataset under the FGSM attack.

of AdaShield-FL, incorporating all modules. The second and
third rows report the results when malicious client purifica-
tion and evolutionary DA are excluded, respectively. The
fourth and fifth rows report the results when only evolutionary
DA and differential loss-based attack detection are included,
respectively. Last, the final row displays the backbone perfor-
mance. Comparing the first and remaining rows reveal that
each proposed module improves performance.

Furthermore, Table 7 illustrates the influence of β in the
evolutionary DA on the Dice score. The balancing parame-
ter β controls the priority between the Dice and DA loss. In
Table 7, the evolutionary strategy outperforms several fixed
values of β. This is attributed to the ability of the evolution-
ary DA to dynamically adjust β during training, ensuring an
optimal balance between segmentation and DA. Appendix B
includes additional ablation studies, experiments that high-
light the effectiveness of Lind, and experiments on another
modality, the computed tomography (CT) dataset.

6 Conclusion
This paper addresses the critical challenges posed by the re-
tained data poisoning attacks and data heterogeneity in fed-
erated medical image segmentation. We propose AdaShield-
FL, a comprehensive framework that integrates k-space dis-
entangled purification, attack detection, and evolutionary DA
to address these problems. AdaShield-FL identifies malicious
clients, purifies malicious clients, and matches data distribu-
tions to improve segmentation accuracy in the FL framework.
The experimental results demonstrate that AdaShield-FL out-
performs existing FL methods, achieving state-of-the-art per-
formance on the M&Ms and ACDC datasets while achieving
computational efficiency and rapid convergence.
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