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Abstract

Deep neural networks (DNNs) face substan-
tial challenges in Long-Tail Visual Recognition
(LTVR) due to the inherent class imbalances in
real-world data distributions. The Mixture of Ex-
perts (MoE) framework has emerged as a promis-
ing approach to addressing these issues. However,
in MoE systems, experts are typically trained to op-
timize a collective objective, often neglecting the
individual optimality of each expert. This indi-
vidual optimality usually contributes to the overall
performance, as the goals of different experts are
not mutually exclusive. We propose the Indepen-
dent and Collaborative Learning (ICL) framework
to optimize each expert independently while ensur-
ing global optimality. First, Diverse Optimization
Learning (DOL) is introduced to enhance expert di-
versity and individual performance. Then, we con-
ceptualize experts as parallel circuit branches and
introduce Competition and Collaboration Learning
(CoL). Competition Learning amplifies the gradi-
ents of better-performing experts to preserve in-
dividual optimality, and Collaboration Learning
encourages collaboration through mutual distilla-
tion to enhance optimal knowledge sharing. ICL
achieves state-of-the-art accuracy in experiments
on CIFAR-100/10-LT, ImageNet-LT, and iNatural-
ist 2018, respectively. Our code is available at
https://github.com/PolarisLight/ICL.

1 Introduction

Deep neural networks (DNNs) have achieved significant ad-
vancements, largely driven by the availability of large-scale
datasets, elegant model architectures, and efficient optimiza-
tion algorithms. These developments have established DNN's
as a foundation for key computer vision tasks, including ob-
ject detection, semantic segmentation, and image classifica-
tion. The robust performance of DNNs often relies on train-
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Figure 1: Gradient contributions of individual experts in existing
MoE models (e.g., with three experts).

ing with balanced datasets such as ImageNet [Liu er al.,
2019], MS COCO [Lin et al., 2014], and Places [Zhou et
al., 2018]. However, data often exhibits an unexpected long-
tailed distribution in real-world scenarios, with significant
variation in the number of samples per class. Under such con-
ditions, DNNs are prone to overfitting to head classes, result-
ing in poor performance on tail classes, which frequently hold
greater practical importance. To address these challenges,
Long-Tail Visual Recognition (LTVR) has emerged as a piv-
otal research area in computer vision, which seeks to enhance
the model’s performance on tail classes while preserving ac-
curacy on head classes, thus improving their generalization
and practical applicability.

To overcome the challenge of imbalanced data distribution,
initial studies have attempted to correct this imbalance by em-
ploying strategies such as resampling [Wang et al., 2020] and
reweighting [Ren et al., 2020; Park ef al., 2021]. The funda-
mental objective of these methods is to allocate greater em-
phasis on the tail categories, to enhance their performance
by augmenting the weight or number of samples in these
categories. However, this approach has been observed to
harm the performance of the head category to a certain ex-
tent. Existing research indicates that over-sampling the tail
category, particularly when the tail category possesses a lim-
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ited number of samples, can result in significant overfitting
issues. To mitigate these limitations, recent efforts in LTVR
have focused on utilizing the Mixture of Experts (MOE). This
approach’s fundamental premise involves promoting diver-
sity among experts and integrating their predictions to en-
sure the generation of more confident and reliable final de-
cisions. Early MoE approaches tended to have each expert
model focus on a different subset of data [Cai et al., 2021;
Cui et al., 2023; Li et al., 2022a], avoiding individual ex-
perts from facing categories with too much variation in the
amount of data. In contrast, recent research [Jin et al., 2023;
Tan et al., 2024] has adopted a shift towards a unified training
approach, where all experts are exposed to the same data, to
mitigate the uncertainty in model predictions.

However, existing MoE approaches emphasize the need
for the experts’ overall optimal performance to ensure robust
model performance, ignoring the fact that each expert’s goals
are not mutually exclusive. We conducted a quick experi-
ment to reveal different expert contributions during multi-
expert model training. The mainstream ResNet-32 network
with shared shallow and 3 experts’ independent deep feature
extractors was used to train 180 epochs using cross-entropy,
and the average gradient share of the last convolution layer
of each branch was used as the contribution of that branch,
as shown in Figure 1. The final individual accuracies of the
experts were 45.23%, 44.68%, and 45.36%, with the overall
system accuracy reaching 47.56%. This indicates a positive
correlation between gradient contribution and learning out-
comes. During training, Expert 3 consistently dominated and
contributed the most. However, this imbalance caused the
stronger expert’s optimization to stagnate prematurely, ulti-
mately limiting the overall system performance, which de-
pends on the joint optimization of all components. On this
basis, we ask the following questions: 1) How to drive indi-
vidual experts to achieve optimization? and 2) How to ensure
that the overall effect of the MoE system is improved under
the premise of individual optimization of the experts?

For this purpose, we propose an Independent and Collab-
orative Learning (ICL) framework that incorporates Diverse
Optimization Learning (DOL) and Competition and Collab-
oration Learning (CoL). In response to the first question,
DOL employs Adaptive Diversity (AD) to enhance the di-
versity of the experts. This ensures that each expert be-
comes proficient at capturing unique and complementary fea-
tures, thereby strengthening the overall diversity. At the same
time, to optimize the respective domains of the experts, DOL
adopts Confusion Contrastive Learning (CCL), which treats
the most confusing categories as negative samples and uses
contrastive learning to enhance the discriminative capability
of each expert. For the second question, CoL treats experts as
parallel branches of a circuit, each offering a unique perspec-
tive on the input data to aid learning. It introduces parallel
loss to minimize the impact of branches with larger losses,
allowing those with smaller losses to influence overall opti-
mization, thus preserving individual optimality. Mutual dis-
tillation is introduced to enhance collaboration and prevent
dominant experts from falling into local optima. Minimizing
the Kullback-Leibler (KL) divergence among experts’ predic-
tions fosters consistency and knowledge sharing. Our contri-

butions can be summarized as follows:

* We propose Diverse Optimization Learning (DOL),
which encourages experts to personalize optimization in
unique domains from different perspectives through rep-
resentation learning.

We introduce Competition and Collaboration Learning
(CoL), which allows experts to dynamically adjust their
contributions to training among themselves to maintain
individual strengths, while encouraging knowledge shar-
ing to drive overall optimization.

We demonstrate the effectiveness of our method on
CIFAR-100/10-LT, ImageNet-LT, and iNaturalist 2018
datasets, showcasing its superior performance in LTVR
task.

2 Related Work

2.1 Long-Tail Visual Recognition

LTVR seeks to improve tail class accuracy without harm-
ing head class performance. Early methods addressed class
imbalance using re-sampling and re-weighting strategies, re-
sampling methods [Kang er al., 2020; Zang et al., 2021]
balance the distribution by oversampling tail classes or un-
dersampling head classes, while re-weighting methods [Ren
et al., 2020; Park er al., 2021] adjust class-specific loss
weights to focus on fewer classes during training. In ad-
dition, data augmentation techniques [Zhang et al., 2018;
Verma et al., 2019] transfer information from head to tail
classes or generate synthetic tail class samples. Logit adjust-
ment methods [Li ef al., 2022¢; Li et al., 2023] post-process
logits to enhance inter-class variation. However, these meth-
ods often improve tail class accuracy at the cost of head class
performance.

Recently, MoE-based models have gained attention in
LTVR due to their ability to integrate multiple experts, each
focusing on different subsets of data or features. For instance,
BBN [Zhou et al., 2020] uses a two-branch network to handle
long-tailed and balanced distributions. ACE [Cai et al., 2021]
and ResLT [Cui er al., 2023] enhance diversity and perfor-
mance by specializing experts for different parts of the long-
tailed distribution. RIDE [Wang et al., 2021] and TLC [Li
et al., 2022a] reduce model variance by combining predic-
tions from independently learned experts. SHIKE [Jin et al.,
2023] increases diversity by transferring shallow knowledge
into deep feature extractors, while NCL [Li et al., 2022b;
Tan et al., 2024] improves expert effectiveness by enforc-
ing intra-expert consistency through output standardization.
Despite these advancements, challenges remain in optimiz-
ing both individual and collective expert performance.

2.2 Knowledge distillation

Knowledge Distillation (KD) [Hinton er al, 2015] is a
technique for optimizing model performance by transferring
knowledge from a large model to a small model. Self-
Distillation (SD) [Zhang et al., 2021], a variant of KD, al-
lows the model itself to transfer knowledge through multi-
level feature representation, which improves the optimization
efficiency and performance of the model. In recent years,
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Figure 2: The proposed ICL contains two modules: DOL and CoL. Each expert in the MoE performs diversity optimization and confusion
contrastive learning in the feature space and then applies competition and collaboration learning at the logits level for better model optimiza-

tion from the individual to the overall.

distillation among experts has been introduced into MoE sys-
tems [Jin et al., 2023; Tan et al., 2024] to facilitate knowledge
sharing and collaborative learning among experts by mini-
mizing the KL dispersion among different experts. These
methods improve both the performance of individual experts
and the overall performance of the entire model.

2.3 Contrastive Learning

Contrastive Learning (CL) [Chen er al., 2020], an effective
representation learning method, improves the discriminative
properties of features by maximizing the similarity of posi-
tive sample pairs and minimizing the similarity of negative
sample pairs. CL is widely used in LTVR [Cui er al., 2021;
Hou et al., 2023] to enhance the discriminative properties of
features and improve the performance of the model. Proto-
typical Contrastive Learning (PCL) [Snell ef al., 2017] fur-
ther enhances the aggregation of samples of the same class
and the separation of samples of different classes by intro-
ducing category prototypes. This method has been shown
to further improve the discriminative properties of features
and the model’s performance by enhancing the aggregation
of samples of the same class and the separation of samples of
different classes [Zhu et al., 2022].

3 Methodology

Figure 2 depicts the architecture of ICL, which consists of
two main modules: 1) Diverse Optimization Learning (DOL),
and 2) Competition and Collaboration Learning (CoL). DOL
enables experts to achieve diverse individual optimizations
through representation learning, while CoL preserves their
strengths and guides the MoE system toward global optimal.

3.1 Preliminaries

We denote the training dataset as {(z;,v;)},, where each
data point x; has a corresponding label y; € {1,...,C}. The

total number of samples in the training setis N = Z 1 Mes
where n. represents the number of samples belonging to class
c. In the long-tailed scenarios, for clarity, we set the number
of samples to decrease as the class indices increase, i.e., n; >
Ng > -+ > Ng.

Consistent with prior mainstream research, our MoE model
adopts the structure where experts share a shallow feature ex-
tractor f and each expert possesses an individual deep feature
extractor U along with a classifier ¢, where m denotes the
m-th expert out of a total of M experts. Given an input z, the
exclusive feature of expert m is obtained:

h™ = &™(f(x)) (1
where h™ is the encoded feature representation derived by
the m-th expert, and the logits are calculated by its classifier:

Typically, the class associated with the maximum logits value

is chosen as the predicted class for each expert, and the final
prediction is obtained by averaging the outputs of all experts.

3.2 Diverse Optimization Learning

We propose Diverse Optimization Learning (DOL) to en-
hance expert diversity and achieve individual optimization in
the MoE framework. Unlike existing methods that rely on
predefined strategies to increase expert diversity, We propose
an Adaptive Diversity (AD) strategy to capture features from
different classes dynamically. The AD loss is to encourage
experts to learn non-overlapping features:

hm
£10=3" 3 Lo e ©

m=1m'=1

where h™ and h™ denote feature representations from any
two experts. I represents the indicator function, which is 1
when m # m’ and 0 otherwise.
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Building upon this, we further propose Confusion Con-
trastive Learning (CCL) to optimize the feature representa-
tions of each expert. Specifically, Each expert m maintains
a confusion matrix C™ € RE*Y, where each element CT",
represents the frequency with which class ¢ is misclassified
as class ¢’ for expert m. In each batch, C"%,, is updated using
a momentum-based method, which ensures a smooth and sta-
ble estimate of class misclassification frequencies over time.

Cl =aCl, + (1 — a)Count(c — ¢') “4)

where « is the momentum coefficient, and Count(c — ')
denotes the function that counts the number of samples from
class ¢ misclassified as class ¢’. Meanwhile, a zero-initialized
class prototypes p.* for each class ¢, which is updated as fol-

lows:

P = Ap. + (1 - Bk )
where [ is the momentum coefficient and h}* is the mean
feature vector of class c in the current batch for expert m.
Then, for each sample 7 belonging to the class ¢, the CCL
loss for expert m is defined as:

exp (P2

o () 5y oo ()

(6)
where T is the temperature parameter, and A (c) denotes the
top k£ most confused classes for class c. This loss function en-
courages the sample features to move closer to their respec-
tive class prototypes while distancing them from the proto-
types of the most confused negative classes, thereby enhanc-
ing feature discrimination. We denote the DOL loss as:

Lccr, = —log

M
LpoL = Liciyp Lap + Lister Z LecL @)

m=1

where ¢ is the training epoch. We have found experimentally
that these two losses yield better performance when applied
at specific stages of training, rather than throughout the entire
training process. Therefore, we introduce two variables, ¢ 4p
and tcor. By integrating AD and CCL, DOL not only pro-
motes expert diversity but also optimizes each expert’s feature
representation within its domain, thereby enhancing general-
ization and performance, particularly for LTVR tasks.

3.3 Competition and Collaboration Learning

In multi-branch neural networks, each branch contributes to
the overall learning process by providing diverse perspec-
tives on the input data. Simply summing the losses from all
branches may lead to an imbalance, as branches with larger
losses dominate the optimization. To address this issue, we
propose Competition and Collaboration Learning (CoL),
aiming at balancing the gradient contributions among experts
through an optimized loss function to achieve the goal of
maintaining individual dominance while reinforcing the over-
all effect. Competition Learning is implemented by utiliz-
ing a parallel loss to allow superior branches to have a greater
influence on the overall optimization. This is inspired by the
parallel resistances in electrical circuits, analogous to how the

effective resistance in parallel circuits is dominated by the
smallest resistance. Specifically, for the cross-entropy losses
of M expert L = [Lq, Lo, ..., Ly, the parallel loss is de-

fined as:
Mo -1
Lparallel = (Z L. +6> (8)

i=1
where ¢ > 0 is a small constant added to ensure numerical
stability when L,, is small or zero. Its gradient of L, of
expert 7 is:

aLparallel _ 1 (9)

2
o (Shik) @2

Lparaitel €nsures that the gradient contribution of each expert
is inversely proportional to the square of its loss, meaning that
experts with better performance contribute more. This mech-
anism helps to ensure that high-performing experts main-
tain their influence as the percentage of lost value declines,
thereby guiding overall optimization more effectively.

Collaboration Learning is achieved by introducing mu-
tual distillation [Hinton et al., 2015], which involves min-
imizing KL divergence between the logits of different ex-
perts, encouraging them to align their predictions and facil-
itate knowledge sharing, thereby enhancing the collaborative
effect among experts.

Listinn =

> KLE™ [ 2™)  (10)

m<m/

2
MM —1)

where z™ and z™ are the predicted probability distributions
of experts m and m/’, respectively. Hence, Lo is the combi-
nation of the parallel and mutual distillation loss:

Lcor. = Lparattel + Laistin (1D)

CoL loss allows the model to harness the strengths of high-
performing branches in driving the optimization process
while ensuring consistent and complementary learning across
all experts through knowledge sharing.

3.4 Opverall Training Objective

Our training framework consists of two phases: feature ex-
tractor training and classifier fine-tuning. During the feature
extractor training phase, the total loss comprises CoL loss and
DOL loss:

»Ctotal = ECoL + »CDOL (12)
In the classifier fine-tuning phase, we freeze the shared fea-
ture extractor ¢ and the expert-specific deep feature extrac-
tors WU, retraining the classification layers . Hence, the opti-
mization is to minimize the Logit Adjustment (LA) [Menon
etal.,2021] loss:

ny exp (z)

M
Lra=— log (13)
o mZZI (ch—l neexp (z7") >

Since the feature extractor is frozen, the DOL loss is not ap-
plicable. Additionally, CoL is not utilized at this stage be-
cause the classifiers are focused on learning the optimal clas-
sification from their respective branches, rather than engaging
in collaboration.




Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Category Method CIFAR-100-LT CIFAR-10-LT
100 50 10 100 50 10

Baseline Cross Entropy 383 439 557 704 748 864
Focal loss [Lin et al., 2017] 38.7 46.2 - 746 793 -

. TSC [Li et al., 2022d] 43.8 474 595 79.7 829 88.7
Eepre.se“tauon BCL [Zhu et al., 2022] 519 566 649 843 872 911
e SBCL [Hou et al., 2023] 449 487 579 - - -

WD [Alshammari et al., 2022] 524 574 67.9 - - -
Re-balance GCL [Li et al., 2022c¢] 48.7 53.6 - 82.7 855 -
KPS [Li et al., 2023) 450 492 - 812 846 -
Data RISDA [Chen et al., 2022] 502 538 624 799 842 894
. H2T [Li et al., 2024] 514 555 - - - -
Augmentation  p 0 Vi [Baik eral., 20241 510 549 650 83.5 868 90.9
RIDE (3E) [Wang et al., 20211 49.1 - - - - -
ACE (3E) [Cai et al., 2021] 496 519 - 814 849 -
TLC (4E) [Li et al., 2022al 498 - - 804 - -
MoE ResLT (3E) [Cui eral., 2023] 497 545 637 - - -
NCL (3E) [Li et al., 2022b] 542 582 - 855 873 -
SHIKE (3E) [Jin et al., 2023] 563 598 - - - -
NCL++ (2E) [Tan et al., 2024] 563 59.8 - 872 888 -
Ours (2E) 563 597 69.0 864 885 91.3
Ours (3E) 576 613 693 879 89.7 919

Table 1: Comparison results on CIFAR-100-LT and CIFAR-10-LT with imbalance factors of 100, 50, and 10.

4 Experiments

4.1 Datasets

In this study, we used CIFAR-100/10-LT [Cui et al., 2019],
ImageNet-LT [Liu er al., 2019] and iNaturalist 2018 [Horn et
al., 2018], to assess the performance of the model in address-
ing class imbalance problems. CIFAR-100/10-LT is derived
from the original CIFAR-100 and CIFAR-10 datasets, con-
structed with imbalance factors of 100, 50, and 10. These
factors indicate that the largest class contains 100, 50, and
10 times more samples than the smallest class, respectively.
ImageNet-LT (Img-LT) is based on the original ImageNet
dataset and follows a Pareto distribution with an imbalance
factor of 256 across 1,000 classes. The training set includes
115.8K samples, while the test set consists of S0K samples.
iNaturalist 2018 (iNat-LT) is a large-scale real-world dataset
with 437.5K samples distributed in 8,142 categories, show-
ing highly imbalanced distribution characteristics suitable for
simulating real-world data imbalance scenarios.

4.2 Implementation Details

The CIFAR-100-LT and CIFAR-10-LT dataset uses ResNet-
32 [He et al., 2016] as the base network, followed by
the application of AutoAugment [Cubuk et al., 2019] and
Cutout [Devries and Taylor, 2017] techniques. In contrast, the
Img-LT and iNat-LT datasets employ the ResNet-50 model
and utilize RandAugment [Cubuk et al., 2020] for data aug-
mentation following NCL [Li et al., 2022b].

The learning rates for these four datasets were 0.05, 0.01,
0.2, and 0.025, and all models were trained for 180 epochs.

The classifiers were then retrained based on £, 4 with an ad-
ditional 20 epochs, with the feature extractor frozen. All ex-
periments utilized the SGD optimizer with a momentum of
0.9, a cosine learning rate scheduler that decays to zero, and
a weight decay factor of 5e-4. During the classifier training
phase, we restarted the cosine learning rate scheduler. Mo-
mentum coefficients o and [ are set to 0.1 empirically. The
specific settings of t4p and tcy will be discussed in Sec-
tion 4.4.

4.3 Main Results

Analysis on CIFAR-LT

The comparison results on CIFAR-100/10-LT with imbalance
factors of 100, 50, and 10 are presented in Table 1. All
methods are trained using ResNet-32 [He er al., 2016] to en-
sure a fair comparison. We show the results when the num-
ber of experts is 2 and 3. Overall, ICL achieves the high-
est accuracy under all imbalance ratios on the CIFAR100-LT
and CIFAR10-LT datasets, outperforming existing methods.
Specifically, ICL sets new benchmarks of 57.6%, 61.3%, and
69.3% for the imbalance rates of CIFAR100-LT. This result
significantly outperforms all classes of methods. Notably, at
imbalance factors of 100 and 50, the SHIKE and NCL++
boost compared to the currently most effective MoE methods
are 1.3% and 1.5%, respectively. Similarly, on CIFAR10-LT,
ICL maintains excellent performance with 87.9%, 89.7%, and
91.9%. This suggests that ICL’s ability to address class im-
balance in CIFAR-10 is particularly effective at maintaining
high accuracy under more extreme class distribution imbal-
ance.
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Method Img-LT iNat-LT
Single Model

Cross Entropy 41.6 66.9
WD [Alshammari et al., 2022] 53.3 70.0
BCL [Zhu et al., 2022] 56.0 -
SBCL [Hou et al., 2023] 57.1 70.8
GCL [Li et al., 2022c] 54.9 -
GLMC [Du et al., 2023] 56.3 -
H2T [Li et al., 2024] 56.9 72.0
DBN-Mix [Baik er al., 2024] 56.6 74.7
MoE-based Method

RIDE [Wang et al., 2021] 55.4 71.7
ACE [Cai et al., 2021] 55.1 72.9
TLC [Li et al., 2022a] 55.1 -
ResLT [Cui et al., 2023] 55.1 72.9
NCL [Li et al., 2022b] 59.5 74.9
SHIKE [Jin et al., 2023] 59.7 75.4
NCL++ [Tan et al., 2024] 59.6 75.2
Ours(2 experts) 59.5 75.3
Ours(3 experts) 60.2 75.9

Table 2: Comparison on Img-LT and iNat-LT.

Analysis on Img-LT and iNat-LT

We report the overall Top-1 accuracy of Img-LT and iNat-
LT in Table 2. ICL achieves a performance of 60.2 and
75.9, respectively, outperforming all competing methods, es-
pecially the state-of-the-art MoE-based methods SHIKE and
NCL++. We further report the accuracy of the three divi-
sions on the iNat dataset, i.e., the many-shot class (>100
training samples), the medium-shot class (20 ~ 100 training
samples), and the few-shot class (<20 training samples), in
Table 3. ICL performed well in all category divisions, achiev-
ing the best results in both the medium-shot (75.9%) and few-
shot (76.1%) categories, and ranked second in the many-shot
(74.9%) categories. This result demonstrates ICL’s superior
performance on large-scale real-world long-tail datasets.

4.4 Ablation Study and Further Analysis

This section presents extensive ablation studies to analyze the
effectiveness of each component in our proposed ICL frame-
work. All experiments are conducted on the CIFAR-100-LT
datasets with an imbalance factor of 100 if not stated.

Influence of Key Modules in ICL

We report the results of the ICL module ablation experiments
in Table 4. Since the CoL is an extension of cross-entropy,
we use each expert’s sum of cross-entropy when the CoL is
not used to ensure the basic learning objective. It can be seen
that all of our proposed modules improve the overall perfor-
mance of the model. When applying the MoE architecture,
the accuracy is improved by 4.12% compared to the 50.34%
of the single-expert model, validating the effectiveness of ex-
pert integration for long-tail learning. Based on the MoE ar-
chitecture, CoL and DOL are improved by 2.08% and 2.14%,
respectively. Ultimately, after combining CoL and DOL, the

Method iNat-LT
Many Med. Few

Single Model

Cross Entropy 76.1 69.0 624

TSC [Li et al., 2022d] 70.6  67.8 67.8

SBCL [Hou et al., 2023] 73.3 71.9 68.6

WB [Alshammari et al., 2022]  71.0 703 694
DBN-Mix [Baik et al., 2024] 73.0 75.6 74.7

MoE-based Method

RIDE [Wang et al., 2021] 68.3 726 T71.8
ResLT [Cui et al., 2023] 73.0 72.6  73.1
NCL [Li et al., 2022b] 72.7 75.6 745
NCL++ [Tan et al., 2024] 72.2 753 757
Ours(2 experts) 73.1 75,5 756
Ours(3 experts) 74.9 759 76.1

Table 3: Performance on iNat-LT in many, medium, and few classes.

MoE CoL. DOL ACC

50.34
v 54.42
v v 56.50
v v 56.56
v v v 57.59

Table 4: Influences of key modules.

model achieves a maximum accuracy of 57.59%, a 3.17% im-
provement over the baseline MoE model. The steady per-
formance improvement demonstrates the effectiveness of the
proposed ICL.

Analysis of CoL

To show the effect of competition and collaboration learn-
ing on inter-expert contributions, we show gradient contribu-
tion experiments for models trained using CoL in Figure 3(a),
where the baseline results are displayed with transparent lines
for easy comparison. Compared to the baseline, where expert
3 always dominates the training process, the experts trained
using CoL have a clear competitive relationship. Specifi-
cally, expert 2 and expert 3 have comparable contributions
and alternately dominate the training process. Eventually,
the three experts of CE achieved individual accuracy rates
of 45.23%, 44.68%, and 45.36%, with a systematic accu-
racy rate of 47.56%.In comparison, the three experts of CoL
achieved individual accuracy rates of 46.62%, 48.02%, and
47.33%, with a systematic accuracy rate of 48.28%. Its ac-
curacy rate matches the gradient contribution ranking, which
not only indicates that the gradient contribution experiment
can correctly reflect the individual optimality of the experts
in training, but also proves that CoL. can maintain the indi-
vidual optimality of the experts through the competition, and
promote the model to perform a better overall effect. Fur-
thermore, Figure 3(b) illustrates the KL divergence between
the predicted probabilities of each expert’s outputs for CoL
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Figure 3: Visualization of competition and collaboration between
experts. (a) Gradient contribution of each expert during training. (b)
Sum of KL divergence among the output logits of experts.

and baseline across various categories. The KL divergence
signifies the degree of uncertainty among experts regarding
the inputs. CoL demonstrates a substantially smaller KL di-
vergence than CE in all categories, particularly in the tail
categories with limited samples. This finding suggests that
CoL’s mutual distillation effectively promotes expert knowl-
edge sharing and reduces system uncertainty.

Analysis of DOL

In our early experiments, we found that DOL was able to
achieve a 56.52% accuracy rate if its two losses were used
consistently throughout the training process. This result does
not utilize the potential of DOL. We hypothesized that en-
hancing the diversity of the model at the onset of the training
phase would yield a more diverse feature extraction driven
by CoL. Similarly, since the prototype construction of DOL
relies on a more rational representation space, CCL losses
should be introduced only after several training epochs. We
therefore performed a combination of these two parameters
tap and tcp, to obtain the results shown in Figure 4. The
model achieved the best results at 57.59% at t 4 p and to, of
30 and 120, respectively, which is an improvement of 1.07%
over the baseline 56.56%, proving our analysis. We further
observed that the elements on the subdiagonal of the matrix
are typically the largest within their respective rows. This is
because, due to the effect of CoL, experts may tend to approx-
imate, and thus the later the intervention of CCL, the stronger
the tendency for expert homogeneity. Therefore, a longer di-
versity loss duration is needed to maintain expert diversity
and support CCL in promoting domain-specific expertise.

CCL aims to improve the representation space, enhancing
individual experts’ performance. A visual comparison of the
baseline CE and CCL methods is made using t-SNE [Maaten
and Hinton, 2008]. As shown in Figure 5, the t-SNE plot for
CCL exhibits better clustering, with more compact feature
distribution and clearer class separation. This indicates that
CCL outperforms CE in creating discriminative feature rep-
resentations. Additionally, the effect of AD loss is demon-
strated by visualizing the activation maps of three MoE ex-
perts using Grad-CAM [Selvaraju et al., 2019]. Figure 6
highlights, as an example of a picture in Img-LT, the differ-
ences in expert attention across image regions, showing that
AD loss enhances expert diversity, rather than just the posi-
tional relationships in the representation space.

Top-1 Accuracy (%)

tap

57.12

100 120 140 160
ter,

Figure 4: Parametric analysis of t4p and tcr.

(@) (b)

Figure 5: Visualization of t-SNE with (a) CE and (b) CCL on
CIFAR100-LT with an imbalance factor of 100. We have chosen
ten classes equally spaced for better view.

(a) Expert 1 (c) Expert 3

(b) Expert 2

Figure 6: Grad-CAM visualization.

5 Conclusion

In this work, we introduced the Independent and Collabo-
rative Learning (ICL) framework, which enables the inde-
pendent optimization of each expert while preserving their
strengths to achieve globally optimal performance collab-
oratively. By incorporating Diverse Optimization Learn-
ing (DOL), we enhanced the diversity among experts and
strengthened their representation space, thereby reducing un-
certainty. Additionally, we propose the Competition and Col-
laboration Learning (CoL) approach, which conceptualizes
experts as branches of parallel circuits. This framework en-
ables the dynamic interaction between competition and col-
laboration, where experts simultaneously strive for individ-
ual optimization while sharing knowledge to enhance collec-
tive performance. Our approach demonstrates a promising
path toward balancing autonomy and collaboration in multi-
agent systems, paving the way for more effective and efficient
learning paradigms.
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