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Abstract

Sequential recommender systems (SRS) have
gained increasing popularity due to their remark-
able proficiency in capturing dynamic user prefer-
ences. In the current setup of SRS, a common con-
figuration is to uniformly consider each historical
behavior as a positive interaction. However, this
setting has the potential to yield sub-optimal perfor-
mance as each individual item often have a differ-
ent impact on shaping the user’s interests. Hence,
in this paper, we propose a novel automatic sam-
pling framework for sequential recommendation,
named AutoSAM, to non-uniformly treat histori-
cal behaviors. Specifically, AutoSAM extends the
conventional SRS framework by integrating an ex-
tra sampler to intelligently discern the skew distri-
bution of the raw input, and then sample informa-
tive sub-sets to build more generalizable SRS. To
tackle the challenges posed by non-differentiable
sampling actions and to introduce multiple deci-
sion factors for sampling, we further design a novel
reinforcement learning based method to guide the
training of the sampler. Furthermore, we theoret-
ically devise multi-objective sampling rewards in-
cluding Future Prediction and Sequence Perplex-
ity, and then optimize the whole framework in an
end-to-end manner by combining the policy gradi-
ent. We conduct extensive experiments on bench-
mark recommendation models and four real-world
datasets. The experimental results demonstrate the
effectiveness of the proposed AutoSAM.

1 Introduction

Recommender systems [Koren et al., 2009; Liu e al., 2018;
Zhang et al., 2025; Zhang et al., 2024a; Cheng et al., 2021]
have become crucial tools for information filtering in various
online applications, such as e-commerce, advertising, and on-
line videos. Among them, sequential recommender systems
(SRS) [Li et al., 2017; Liu et al., 2022] have become in-
creasingly prevalent due to their ability to capture long- and
short-term user interests.
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So far, many efforts have been devoted to sequential rec-
ommendation, ranging from early matrix factorization and
Markov chain based method [Rendle ef al., 2010] to state-
of-the-art deep neural network models [Cheng et al., 2022],
including recurrent neural networks (RNNs) [Hidasi et al.,
2015; Hidasi et al., 2016], convolutional neural networks
(CNNs) [Tang and Wang, 2018; Yuan er al., 2019], and self-
attentive models [Kang and McAuley, 2018; Sun et al., 2019;
Li et al., 2021]. Meanwhile, the effectiveness and efficiency
of the generative loss (i.e., auto-regressive loss) [Yuan et al.,
2019] in SRS tasks have been widely demonstrated in these
approaches. Despite their remarkable success, these methods
often consider from a model perspective while treating all his-
torical behaviors as uniformly positive. In fact, this may lead
to sub-optimal performance as items in the sequences are usu-
ally of unequal importance on shaping user interests [Zhang
et al., 2013]. For instance, purchased items should hold more
significance than merely clicked ones. Moreover, the motiva-
tions behind the same action (e.g. clicking) can also be very
complex and multifaceted. Interactions on online platforms
may sometimes be driven by a herd mentality or could even
be the result of mis-clicks, while in other cases, they may ac-
curately represent a user’s genuine interests.

Recently, there have also been some works which attempt
to improve the recommender systems from a data perspec-
tive [He et al., 2023; Qin et al., 2023]. SIM [Pi et al., 2020]
and UBR4CTR [Qin et al., 2020] extracts user interests with
search or retrieve units to capture the diverse user’s long-
term interest with target item. Similarly, SDIM [Cao et al.,
2022] samples from multiple hash functions to gather simi-
lar behavior items to the target for CTR prediction. Though
the aforementioned methods have proven effective, they may
suffer from the following limitations. Firstly, these methods
often select items according to the target, which brings chal-
lenges to compute scores across all candidate items in paral-
lel and only suitable to fine-ranking stage [Covington et al.,
2016]. And such setup may be too strict. Secondly, these
sampling processes are mainly designed for CTR prediction
tasks [Guo et al., 2017; Wang et al., 2017], which are often
typically optimized as binary classification problems. As a re-
sult, these approaches often cannot be equipped with genera-
tive loss in SRS tasks, whose effectiveness have been demon-
strated in many previous works [Kang and McAuley, 2018;
Yuan et al., 2019].
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We hold that an ideal solution should be adaptive while
maintaining the core training principles of SRS. Hence, to
achieve this goal, we propose a general automatic sampling
framework, named AutoSAM, to non-uniformly treat histor-
ical behaviors for sequential recommendation. To be con-
crete, an additional sampler layer is first employed to adap-
tively explore the skew distribution of raw input. Then, in-
formative sub-sets are sampled from the distribution to build
more generalizable sequential recommenders. In order to
overcome the challenges of non-differentiable discrete sam-
pling actions, and to introduce multiple decision factors for
sampling, we further introduce a novel reinforcement learn-
ing based method to guide the training of the sampler due to
its flexibility. We believe that a proper decision should not
only focus on the target item in the future, but also consider
the coherence with the previous context. Along this line, we
incorporate the major factors into the reward estimation, in-
cluding Future Prediction and Sequence Perplexity. Finally,
both the SRS and the sampler can be jointly optimized in an
end-to-end manner by combining the policy gradient. As a
result, our method exhibits more accurate recommendations
than previous approaches, and is generally effective for var-
ious sequential recommenders with different backbones. We
summarize the contributions as follows:

e We propose to sample user behaviors from a non-
uniform distribution for SRS task. We highlight that the
main challenge is to sample historical behaviors dynam-
ically while leveraging the benefits of generative loss.

e We propose a general automatic sampling framework for
sequential recommendation, named AutoSAM, to build
generalizable SRS with an additional sample layer. We
further introduce a reinforcement learning based method
to solve the challenges of non-differentiable actions and
design multi-objective rewards to optimize the sampler.

e We conduct extensive experiments on public datasets to
show superior recommendation results compared to pre-
vious competitive baselines. We also validate the gen-
erality of the proposed method and additionally analyze
the effectiveness of the sampler.

2 Related Work

2.1 Sequential Recommendation

Sequential recommendation aims to predict users’ future be-
haviors given their historical interaction data [Luo et al.,
2024; Cheng et al., 2024; Zhang et al., 2024b]. Early ap-
proaches mainly fuse Markov Chain and matrix factoriza-
tion to capture both long- and short-term item-item transi-
tions [Rendle et al., 2010]. Latter, with the success of neural
network, recurrent neural network (RNN) methods are widely
conducted in sequential recommendation [Hidasi et al., 2015;
Hidasi et al., 2016]. Besides, convolutional-based mod-
els [Tang and Wang, 2018; Yuan et al., 2019] can also be
very effective in modeling sequential behaviors. In addi-
tion, we notice that graph neural networks [Wu et al., 2019;
Xu et al., 2019] have become increasingly prevalent by con-
structing graph structures from session sequences. And in re-
cent years, self-attention models [Kang and McAuley, 2018;

Sun et al., 2019; de Souza Pereira Moreira et al., 2021] have
shown their promising strengths in the capacity of long-term
dependence modeling. However, these methods focus on the
model architectures and treat all behaviors as uniformly pos-
itive, may lead to the sub-optimal performance.

2.2 User Behavior Sampling

As a data-driven technology, recommendation systems have
attracted a series of works that consider from the data per-
spective in recent years [Qin er al., 2021]. To be specific,
in SIM [Pi et al., 20201, a two-stage method with a general
search unit (GSU) and an exact search unit is proposed to
model long-term user behaviors better. Similarly, UBR4CTR
[Qin er al., 2020] conducts retrieval-based method to achieve
the goal. Besides, SDIM [Cao er al., 2022] proposed a
sampling-based approach which samples similar items to the
target by multiple hash functions. And some other works
[Wang et al., 2021; Lin et al., 2023] mainly formulate a
denoising task with the aims of filtering irrelevant or noise
items. Despite effectiveness, these methods are mainly de-
signed for CTR prediction, which may be not suitable to con-
duct the left-to-right generative loss and sample items dynam-
ically in the SRS task. We also notice some works which at-
tempt to capture more informative patterns between user be-
haviors sequence by designing advance model architectures.
RETR [Yao et al., 2022] build recommender transformer for
sampling the user behavior pathway. And an all-MLP based
model is proposed [Zhou et al., 2022] which adopts Fourier
transform with learnable filters to alleviate the influence of
the noise item. Differently, in this paper, we present a gen-
eral framework to learn the distributions of the raw inputs
adaptively with carefully designed multi-objectives, so as to
enhance the SRS with more informative training data.

3 Preliminaries

3.1 Problem Definition

Assume that there are item set 7 = {i1, 2, ..., 4|7/} and user
setU = {u1,ua, ..., uy }, we denote each behavior sequence
of useru € U as X¥ = [z}, 2%, ..., z1], where z}* € T is the
item that u interacted at step ¢ and n is the sequence length.
Sequential recommender systems (SRS) aim to predict the
item that users might interact with at the next time step. Dif-
ferent from traditional SRS, the main idea behind this work
is to sample historical behaviors with a policy w(A*|X™"),
where A" € {select = 1,discard = 0}", and then utilize
Xu = [x}gl s Loy ooy J;}jm] to train more generalizable SRS, in
which £ is the set of time steps about sampled items, m is the
length of Xu.

3.2 Sequential Recommender System

As shown in Figure 1(a), modern SRS contain the compo-
nents as following. First, each input item x} is mapped into
an embedding vector by an embedding lookup operation as:
E; = (s, where ¢ € RIIX? is item embedding matrix.
Then, the sequential embedding will be fed into stacked hid-
den layers to capture the long- and short-term dependence.

HO — F(l)(H(l—l))’ 1<I1<L, (D
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Figure 1: (a) is the architecture of the standard sequential recommender system (SRS). (b) is our proposed AutoSAM which augments the
traditional sequential recommendation architecture with an additional sampler layer to adaptively explore the skew distribution of raw input.

The dashed lines represent gradient backpropagation.

where L stands for the number of layers, H") is the output of
the I-th hidden layer F) while H(®) = E. Next, a prediction
layer is adopted to generate the distribution P of the user’s
next preferences for each time step ¢:

P, = Softmax(H™W +b), )

in which W € R¥>IZl p € R is the learnable parame-
ters. Finally, to train the model, the auto-regressive genera-
tive loss are employed as optimization objectives, i.e., left-to-
right supervision signals. Combining the cross-entropy loss
with such an objective, the loss function can be written as:

n—1 n—1
L(X;0) = =) logP(yi|X<i:0) = =Y logPiy,, (3)
t=1 t=1

where 6 is the parameters of the model, y; = x4 is the item
expect to be predicted at step ¢, and n is the input length.

4 AutoSAM: the Proposed Method

4.1 Overview of the Framework

The framework of our proposed AutoSAM is depicted in
Figure 1(b). First, we employ a light-weighted sampler to
adaptively learn the non-uniform distribution of the raw in-
put. After that, the sequential recommender systems (SRS)
are trained with informative sub-sets sampled from the whole
sequence to gain stronger generalizations. Considering the
challenges of non-differentiable sampling actions and the ne-
cessity to introduce multiple decision factors, we further in-
troduce a novel reinforcement learning based method to op-
timize the sampler. Specifically, we treat the sampler as the
agent. For each time step ¢ of the user behavior sequence X,

the sampler takes X< as the current state s;, and outputs an
action a; € {0,1} of the ¢-th item. Then, it observes the
carefully designed multi-objective rewards from the environ-
ment to update the model via the policy gradient. Finally, the
sampler could make optimal decisions by continuously inter-
acting with the environment. And it is worth mentioning that
both the sampler and the SRS can be jointly optimized in an
end-to-end manner in our proposed framework.

4.2 User Behavior Sampler

We first transform sequence X into embedding Ex = (x +
Px, where ¢ and P are the embedding matrix and position
embedding, respectively. We suggest that the sample deci-
sions should be based on both local and global information.
Hence, the sampler leverages a Transformer Block with trian-
gular mask matrix to aggregate the global information X <; at
each step ¢, and then concatenate it with the local item embed-
ding to generate the sample policy 7 through an MLP layer.
The above procedure can be formulated as:
S = ReLU ([Transformer(E)||E]W1 4 b1)Wa + ba,
“)
where || means concatenation, W, € R2%x4 b, ¢ R4 W, €
R%*2 by € R? are learnable parameters. After that, binary
decisions A € {0,1}" are sampled from the Bernoulli distri-
bution as following:

7 = Softmax(S/7) € R™? A~ 1€ {0,1}", (3)
where 7 is the temperature of the Softmax. Finally, we can
build the sampled sub-set as X = {x;|a; = 1}.

4.3 Multi-Objective Rewards

Now we discuss how to design our reward, which plays an im-
portant role in learning the optimal 7. As mentioned before,
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traditional SRS often follow the next item prediction task,
which can neither update sampler network directly due to
the non-differentiable challenge of discrete actions nor con-
trol the sample rate. Besides, such single objective may be
too strict and one-sided. We argue that the proper decisions
should not only focus on the target item but also consider the
coherence with preceding context. Along this line, we incor-
porate the major factors into the reward estimation, including
Future Prediction and Sequence Perplexity.

Future Prediction

Generally, items that contribute to predicting the future inter-
actions should be of more opportunities to be selected. Ac-
cordingly, we theoretically propose our rewards with consid-
eration of the recommendation loss in Eq. 3. Since we train
the SRS with the sampled sub-set X, the objective can be
written as:

min J(0,¢) = min ExEacr,(ax) [ﬁ(X; 9)] , (6)

where 0 and ¢ are the parameters of SRS and sampler, re-
spectively. To optimize this objective, we first transform the
prediction loss to an equivalent form:

m—1

> —logP (| X<i:6)
t=1

n—1

= —arp1logP(yl{zk, |1 < j < msk; < 1};0)
t=1

n—1
23 Li(X, A:0),
t=1
(7)

where m, n is the length of X, X respectively. And then de-
rive the gradients with respect to ¢, we have:

L(X;0) =

Vs (0,0) = ExV, ZW¢(A|X)£(X; 0)
n—1
=ExEawn,(ax) wZ logmg(a| X) Z.ct (X, A:0)]
t=1 t=1
=ExE o, (a1x)Vo Y —logme(a] X)rP"e,
t=1
®)
where "¢ = Y71 1 —L:(X, A; 0) means the rewards asso-

ciated to the sampler. In practice, we may make a few changes
to it. First, we add a baseline £° computed on raw input to
L as it is always positive. Second, we discount the future re-
wards by a factor v € [0, 1] and ignore the targets whose sam-
ple probabilities are lower than ) to increase stability. Then,
the future prediction reward at each time step ¢ can be defined
as follows:

Ty = Z " mg(ar 41| X) > 1(Lr (X, A;0) - L),

t'=t
(€]
in which I[-] is the indicator function, -y is set to 0.9 across all
the experiments in this work.

Sequence Perplexity

In addition to sampling based on future predictions, it should
also be attached great importance to considering the coher-
ence with previous context. Inspired by perplexity (PP),
which is widely used to evaluate the quality of sentences in
Natural Language Processing (NLP) [Dathathri ef al., 2019]
with the definition as:

PP(X) = P(x1,22,..20) "7 = [[ Pz X)) ™. (10)

t=1

As words causing high perplexity tend to stray from the con-
text [Lin et al., 2024], similarly, we insist that the items caus-
ing hlgh perplex1ty may lack representativeness. A natural
idea is to assign lower sampling probabilities to the items
whose predicted probabilities according to historical behav-
iors are lower than 1/PP(X), so as to reduce the perplex-
ity and obtain informative sub-sets in some way. To this
end, the sampler should be encouraged to drop z; (a; = 0)
while P(z:|X <) < 1/PP(X), and select x; (a; = 1) while
P(x¢|X<y) > 1/PP(X).

In practice, we employ the SRS to compute the approxi-
mate objective at each time step ¢. Besides, a relax factor
is further conducted to control the strictness of the sampler.
Above all, the reward can be defined as follow:

1
= (lOgP($t|X<t) - logm + b) (2a;—1), (11)

where b is the relax factor, by which we can indirectly control
the global sampling ratio. Generally, the smaller b will lead
the sampler to be stricter.

4.4 Optimization

We summarize the rewards with trade-off parameter A and
scaling factors k as:

r = k(AP + (1 — \)rPP). (12)
To further learn the sequential recommendation task, we also
derive the gradients according to Eq. 6 with respect to 6:

VoJ(0,0) = ExEamn,ax)VoL(X;0).  (13)

Finally, both the SRS and sampler can be optimized jointly in
an end-to-end manner by combining the policy gradient:

0« 0—a1VeL(X;0), < d+0a2Vy y_ logmy(ar|X)ry,
t=1
(14)
where oy, ao are the learning rates of SRS and sampler.
Overall, we present our algorithm in Algorithm 1.

4.5 Time and Computation Complexity Analysis

To evaluate the efficiency of our proposed method for online
services, we analyze the time complexity of AutoSAM during
inference in this part. Denote L as the number of layers and
N as the sequence length. Since we conduct Transformer-
based SRS whose time complexity is O(LN?), the sampling
processing takes O(IN?) and the sequence modeling can be
done within O(L(E[(XY, a:)?])) = O(L(42N? + No?)),
in which p € {0, 1} denotes the average sampling rate while
o is the variance. Thus, AutoSAM could reduce the time
complexity of about O((L — pu?L — 1)N?) by shorten the
behavior sequence.
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Algorithm 1 Learning the AutoSAM framework

Datasets #Num. Users #Num. Items #Num. Actions #Actions/Item #Actions/User

1: Initial SRS parameters 6 and sampler parameters ¢.
2: for Epoch =1,2,...T do
3: foru=1,2,..|U|do

4: X « [2¥, 2y, ...zl

5: X [

6: Compute Sampling policy 7,(A|X) € [0, 1],
7: fort =1,2,..ndo

8: Sample a; from 7¢;

9: if a; = 1 then Append z; to X;
10: end for \

11: Compute the recommendation loss L£(X;6) =

i1 logP (G| X<130)

12: Compute reward r = k(A\rP"¢ 4 (1 — \)rPP)
13: 00— a1VeL(X;0)
14: ¢ ¢+ V> r logme(a X)r

15:  end for
16: end for

5 Experiments

5.1 Experimental Setup

Datasets

We conduct four real-world datasets from different online
platforms as following: Tmall' mainly contains anonymized
users’ shopping logs of Tmall platform in the past 6 months
before and on the “Double 117 day. Alipay? collects huge
amount of user data of Alibaba Group and Koubei between
July 1%, 2015 and November 30", 2015. Yelp? is a public
dataset where we obtain each user’s sequential behaviors by
ranking its rated items in time order. Amazon Book* (abbre-
viated as Amazon) is selected from Amazon review data. We
construct sequential behaviors by using user’s rating history.
Similar to some previous works [Zhou et al., 2022], we filter
inactive users and items with fewer than c interactions, where
c is set to 10 for Tmall, Alipay and Amazon while adjusted
to 5 for Yelp due to the smaller data scale. The statics are
summarized in Table 1.

Compared Methods

We first compare our method” from data perspective with fol-
lowing approaches: (1) FullSAM trains normally with full
historical behaviors. (2) FMLP-Rec [Zhou et al., 2022] con-
ducts Fourier transform with learnable filters to alleviate the
influence of noise. (3) RETR [Yao et al., 2022] builds rec-
ommender transformer to sample the user behavior pathway
for sequential recommendation. (4) SDIM [Cao et al., 2022]
replaces the attention mechanism with multiple hash func-
tions to sample relevant historical items for modeling long-
term preference. (5) RanSAM, (6) LastSAM, (7) PopSAM
samples random, last or most popular behaviors respectively.
Note that we adopt SASRec [Kang and McAuley, 2018]

"https://tianchi.aliyun.com/dataset/dataDetail ?datald=42
*https://tianchi.aliyun.com/dataset/dataDetail ?datald=53
3https://www.yelp.com/dataset
“http://deepyeti.ucsd.edu/jianmo/amazon/index.html
>https://github.com/zh-ustc/AutoSAM

Tmall 424,170 969,426 22,010,938 22.71 51.89
Alipay 520,064 2,076,041 20,976,085 10.10 40.33
Yelp 221,397 147,376 3,523,285 2391 1591
Amazon 724,012 1,822,885 18,216,875 9.99 25.16

Table 1: Statics of the used datasets in the experiments.

Hyper-parameter Tuning Range Tmall Alipay Yelp Amazon
t [1.0,3.0,5.0,7.0,9.0] 5.0 50 50 3.0
b [-0.5,0.0,0.5,1.0,1.5,2.0] 1.0 20 1.0 0.5
k [2e71,2¢72,2e73,2e74 2¢7%] 273 273 2e72 2e73
A [0.25,0.5,0.75] 0.5 05 0.5 0.5
o [0.2,0.5,0.8] 08 08 08 0.5

Table 2: AutoSAM’s hyper-parameter exploration.

as the sequential recommender system for all sample-based
methods due to its effectiveness. It is worth mentioning that
some other sampling based methods e.g. UBR4CTR, SIM are
mainly designed for CTR tasks and typically optimized as a
binary classification problem. While they sampling behav-
iors using target item, the sampled user behaviors often
depend on what the candidate item is [Cao et al., 2022].
As a result, these methods are hard to compute the scores of
large candidate set as the million-level setting in this paper.

Besides, We also compare the models with other architec-
tures: (8) PopRec is a popularity-based method, in which
each user is recommended according to the popularity. (9)
BPR-MF [Rendle et al., 2012] is a well-known matrix
factorization-based method optimized by Bayesian personal-
ized ranking loss. (10) FPMC [Rendle ef al., 2010] combines
matrix factorization with the Markov chain to predict the next
interaction. (11) GRU4Rec [Hidasi et al., 2015] is a pioneer-
ing attempts by employing recurrent neural network for next
item recommendation. (12) NextitNet [Yuan er al., 2019]
is a CNN-based method to capture long-term and short-term
interests. (13) BERT4Rec [Sun et al., 2019] utilizes a bidi-
rectional self-attention network to model user sequence. (14)
SR-GNN [Wu et al., 2019] applies GNN with attention net-
work to model each session. (15) CL4SRec [Xie et al., 2022]
utilizes contrastive learning to extract the discrimination in-
formation in sequential recommendation. (16) DuoRec [Qiu
et al., 2022] is proposed with a contrastive objective serving
as the regularization over sequence representations.

Hyper-parameter Settings

We set the batch size of 128 with 10, 000 random negative
items per batch, and the embedding size is set to 128 for all
methods. In all sampling based methods which employ two-
layer SASRec as the backbone, we conduct 4 multi-head self-
attention and 2 FFN layers, while the hidden size is set to 256.
The sample rates of RanSAM, LastSAM and PopSAM are
searched from {0.5,0.6,0.7,0.8,0.9}. We consistently em-
ploy Autom as the default optimizer for all recommenders,
combined with a learning rate oy of 1 X e~3. As for our sam-
pler, we conduct SGD with a learning rate ap of 1 x e =1, We
use grid search to find the best group of AutoSAM’s hyper-
parameters as shown in Table 2.


https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://www.yelp.com/dataset
http://deepyeti.ucsd.edu/jianmo/amazon/index.html
https://github.com/zh-ustc/AutoSAM
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Tmall Alipay
Method  N@10 N@20 R@10 R@20 | N@I10 N@20 R@10

Yelp Amazon
R@20 | N@10 N@20 R@10 R@20| N@10 N@20 R@10 R@20

PopRec  0.0045 0.0053 0.0087 0.0118 | 0.0136 0.0143 0.0155
BPR-MF  0.0217 0.0268 0.0402 0.0602 | 0.0129 0.0142 0.0181
FPMC  0.0379 0.0452 0.0683 0.0971 | 0.0572 0.0632 0.0907
GRU4Rec 0.0410 0.0503 0.0765 0.1135]0.0450 0.0518 0.0779
NextitNet 0.0425 0.0510 0.0775 0.1115]0.0498 0.0568 0.0850
BERT4Rec 0.0496 0.0595 0.0906 0.1301|0.0485 0.0551 0.0815
SR-GNN  0.0359 0.0437 0.0664 0.0975 | 0.0401 0.0459 0.0681
CL4SRec 0.0516 0.0616 0.0929 0.1322]0.0616 0.0694 0.1040
DuoRec  0.0526 0.0627 0.0950 0.1350 | 0.0619 0.0698 0.1050

0.0182 | 0.0037 0.0048 0.0066 0.0111 | 0.0016 0.0018 0.0030 0.0038
0.0234 | 0.0173 0.0228 0.0343 0.0564 | 0.0116 0.0145 0.0212 0.0324
0.1144 | 0.0210 0.0273 0.0407 0.0657 | 0.0481 0.0520 0.0662 0.0817
0.1050 | 0.0213 0.0276 0.0415 0.0666 | 0.0370 0.0421 0.0581 0.0783
0.1124 | 0.0229 0.0295 0.0447 0.0711 | 0.0441 0.0493 0.0666 0.0863
0.1078 | 0.0235 0.0305 0.0460 0.0739 | 0.0386 0.0441 0.0618 0.0840
0.0915 | 0.0199 0.0255 0.0383 0.0608 | 0.0312 0.0355 0.0485 0.0655
0.1351 | 0.0256 0.0322 0.0486 0.0766 | 0.0472 0.0528 0.0726 0.0950
0.1365 | 0.0248 0.0317 0.0476 0.0752 | 0.0478 0.0534 0.0731 0.0954

FullSAM 0.0515 0.0614 0.0927 0.1320|0.0617 0.0695 0.1037
FMLP-Rec 0.0558 0.0665 0.1007 0.1431 | 0.0630 0.0709 0.1052
RETR  0.0526 0.0624 0.0942 0.1332 0.0608 0.0688 0.1027
SDIM 0.0527 0.0626 0.0939 0.1333| 0.0585 0.0685 0.0991
RanSAM  0.0532 0.0633 0.0961 0.1354 | 0.0633 0.0713 0.1061

0.1346 | 0.0245 0.0314 0.0473 0.0746 | 0.0470 0.0524 0.0718 0.0932
0.1362 | 0.0263 0.0337 0.0506 0.0798 | 0.0480 0.0535 0.0729 0.0949
0.1346 | 0.0250 0.0318 0.0478 0.0751 | 0.0471 0.0525 0.0711 0.0926
0.1332 |1 0.0241 0.0308 0.0464 0.0734 | 0.0464 0.0513 0.0701 0.0898
0.1380 | 0.0246 0.0315 0.0475 0.0749 | 0.0443 0.0500 0.0685 0.0914

LastSAM  0.0502 0.0600 0.0904 0.1291 | 0.0599 0.0667 0.0993
PopSAM  0.0522 0.0623 0.0945 0.1347 | 0.0590 0.0665 0.0995
AutoSAM  0.0604 0.0717 0.1084 0.1528 | 0.0672 0.0753 0.1117

0.1297 | 0.0234 0.0297 0.0445 0.0698 | 0.0446 0.0514 0.0696 0.0893
0.1292 | 0.0246 0.0316 0.0474 0.0752 | 0.0442 0.0496 0.0681 0.0893
0.1437 | 0.0272 0.0347 0.0521 0.0817 | 0.0549 0.0610 0.0831 0.1074

IMP 824% 7.82% 7.65% 6.78% | 6.16% 5.61% 5.28%

4.13% | 3.42% 2.97% 2.96% 2.38% |14.14% 14.02% 13.68% 12.58%

Table 3: Recommendation performance comparison of different models. The best and the second best performance methods are indicated by
bold and underlined fonts. “IMP” denotes the improvements of AutoSAM compared to the best baseline.
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Figure 2: Performance comparison using different backbones.

Evaluation Metrics

We evaluate the performance over all items with Recall and
Normalized Discounted Cumulative Gain (NDCG). The first
one is an evaluation of unranked retrieval sets while the other
reflects the order of ranked lists. We consider top-k items for
recommendations where & € {10,20}. We split the dataset
into training, validation and testing sets following the leave-
one-out strategy [Cheng et al., 2022; Zhao et al., 2022].

5.2 Experimental Performance Analysis

Overall Performance

The result of different models on datasets are shown in Ta-
ble 3. First of all, we can find that considering from the data

perspective instead of treating all items as uniformly posi-
tive can benefit the performance. However, SDIM achieves
limited improvement compared to FullSAM. A possible rea-
son is that SDIM samples according to the last item maybe
too strict to capture the user’s rich interests. Besides, FMLP-
Rec achieves much better performance than traditional SRS
probably due to its stronger ability to filter noise informa-
tion. And we surprisingly find that RanSAM outperforms
FullSAM, this suggests that sampling can be regarded as a
method of data augmentation in some way, which lead to
significant enhancement in generalization capability by in-
creasing the diversity of the training sequence. Unfortunately,
RanSAM treats each interaction uniformly and may also drop
lots of high-quality behaviors, making the improvement lim-
ited. Different from these baselines, the proposed AutoSAM
adaptively explore the skew distribution of the raw input,
and then enhance the sequntial recommender with informa-
tive samples. Consequently, our method performs best on all
datasets, which gains an average improvement over the best
baseline of 7.40%, 7.99% on Recall@10, NDCG@10, and
6.47%, 7.60% on Recall@20, NDCG @20 respectively.

Generality Analysis

To investigate the general applicability of AutoSAM to other
models, we conduct a performance comparison between
models using different sampling or filtering methods on var-
ious architectures, including RNN-based GRU4Rec [Hidasi
et al., 2015], CNN-based NextitNet [Yuan et al., 2019] and
Transformer-based SASRec [Kang and McAuley, 2018]. It
should be noted that since RETR and SDIM are improve-
ments based on attention mechanisms, they are not univer-
sally applicable to other architectures. Figure 2 presents the
comparison results in terms of test NDCG@10 on Yelp and
Tmall datasets. Note that ”+ MLP Filter” corresponds to
FMLP-Rec. It is evident that all the sequential recommenders
demonstrate the most significant improvements through the
integration of automatic sampling, highlighting the general-
ity of our AutoSAM for different backbones.
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Method N@I0 R@10| k& N@I0 R@I0| A N@I0 R@I10

AutoSAM  0.0672 0.1117 | 2¢~! 0.0663 0.1111 | 0.00 0.0663 0.1109
wlo P 0.0663 0.1109 | 272 0.0666 0.1113 | 0.25 0.0668 0.1115
w/o rPP 0.0603 0.1016 | 2¢=3 0.0672 0.1117 | 0.50 0.0672 0.1117
wlor 0.0581 0.0984 | 2¢=* 0.0664 0.1109 | 0.75 0.0634 0.1057

2e7° 0.0596 0.0995 | 1.00 0.0603 0.1016

Table 4: Ablation study of each reward component, scaling factors
k and trade-off parameter A on Alipay dataset. "w/o r”” means using
the random initialized sampler throughout. We fix A as 0.5 when
tuning k, and fix k as 2e 2 when tuning \.

Sequence Length

Dataset 0~25 26~50 51~75 76~100
Yelp 5.97 8.33 13.19 14.63
Tmall 13.45 14.58 16.56 17.40

Table 5: The Recall @20 improvement (%) compared to the original
model of users grouped by varying lengths.

Ablation Study of Sampling Reward

In the left column of Table 4, we analyze the efficacy of
each component of the reward. From the results, we can find
that removing either of the components decreases the perfor-
mance. Besides, rPP plays a more important role than rP"¢.
A possible reason is that PP could more directly reflect rep-
resentativeness of a single item. We further show the impact
of scaling factor k and trade-off parameter A by performing
a grid search in Table 4. The model achieves the best perfor-
mance at (k,\) = (2e73,0.5). The results demonstrate the
effectiveness of the incorporation of these two aspects, and
it also exhibits the stability of AutoSAM while the different
settings of k within the appropriate range bring few influence.

Efficiency and Effectiveness of Different Relax Factors

In practice, it is necessary to balance efficiency and effec-
tiveness when adapting to online services. Thus, we control
the relax factors b in Eq. 11 to solve this problem. The per-
formance and the computation cost of the well-trained model
in inference w.r.t. average sample rate by setting relax fac-
tor from {—0.5,0, ...2} are shown in Figure 3. Note that the
computation cost is measured with million floating-point op-
erations (MFLOPs). We surprisingly observe that even pre-
serving 50% interactions can achieve the comparable perfor-
mance as baseline. However, while the sample rate reaches
80%, the performance becomes to drop which probably be-
cause the sampler leads to a uniform distribution. Besides, the
shortened sequences save lots computations especially with
small b, highlighting the value in practical applications.

Impact of Sequence Length

AutoSAM can model users’ non-uniform interest over inter-
acted items, so the method should compatible with different
sequence length. To verify such effectiveness, we analyze
the performance improvement of AutoSAM on sequences of
different lengths. As shown in Table 5. We can find that
(1) AutoSAM is also effective for users with short sequences.
(2) Longer sequences do maximize the effectiveness of sam-
pling, This is probably because longer sequences not only
contain richer information but also tend to include noise, of-
fering greater potential for optimization.

30 3.50 16
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Figure 3: Performance and computation cost w.r.t. sample rates by
setting relax factor from {—0.5, 0, ..., 2}. The dashed line represents
the baseline model, i.e., FullSAM.
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Figure 4: Portion of purchasing behaviors of sampled and discarded
interactions on Tmall Dataset.

Sampling Quality Evaluation

Next, we assess the sample quality by comparing the propor-
tion of purchasing behaviors on sampled and discarded items
across different sampling strategies. Conventionally, items
with purchase or favorite actions are deemed more critical
than clicked ones, as they reflect stronger user intent. As il-
lustrated in Figure 4, AutoSAM preserves the highest ratio of
purchasing behaviors, indicating that the learned probability
distributions better capture user preferences. Notably, Au-
toSAM retains a substantial number of clicked items. A plau-
sible explanation is that clicked items can still significantly
reflect user interests, though the underlying mechanisms gov-
erning such behaviors are often complex and multifaceted.

6 Conclusion

In this work, we proposed a general automatic sampling
framework, named AutoSAM, to non-uniformly treat histori-
cal behaviors. Specifically, a light-weighted sampler was first
leveraged to adaptively explore the distribution of raw input,
so that the sequential recommender systems (SRS) could be
trained with more informative and diverse samples. Consid-
ering the challenges of non-differentiable actions and the ne-
cessity to introduce multiple decision factors for sampling,
we further introduced a novel reinforcement learning-based
method to guide the training of the sampler in an end-to-end
manner. We conducted extensive experiments on four public
datasets. The experimental results showed that the AutoSAM
could obtain a higher performance gain by adaptively sam-
pling informative items. We hope this paper could inspire
more works to be proposed from data perspective for SRS.
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