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Abstract

Multi-label text classification (MLTC) is a chal-
lenging task where each document can be associ-
ated with multiple interdependent labels. This task
is complicated by two key issues: the intricate cor-
relations among labels and the partial overlap be-
tween labels and text relevance. Existing meth-
ods often fail to capture the semantic dependencies
between labels or struggle to handle the ambigu-
ities caused by partial overlaps, resulting in sub-
optimal representation learning. To address these
challenges, we propose the Unified Contextual and
Label-Aware Framework (UCLAF), which inte-
grates a Label Attention Aware Network(LAN) and
Correlation Aware Contrastive Learning (CACL) in
a synergistic design. The Label Attention Aware
Network explicitly models label dependencies by
embedding labels and texts into a shared seman-
tic space, aligning text representations with label
semantics. Meanwhile, Correlation Aware Con-
trastive Learning refines these representations by
dynamically modeling sample-level relationships,
leveraging a contrastive loss function that accounts
for the proportional overlap of labels between
samples. This complementary approach enables
UCLAF to jointly address complex label corre-
lations and partial label overlaps. Extensive ex-
periments on benchmark datasets demonstrate that
UCLAF significantly outperforms state-of-the-art
methods, showcasing its effectiveness in improving
both representation learning and classification per-
formance in MLTC tasks. We will release our code
after the paper is accepted.

1 Introduction
Multi-label text classification (MLTC) is a critical task in
natural language processing (NLP), where each document
can be associated with multiple relevant labels simultane-
ously. This task underpins numerous real-world applications,
such as document categorization [Rubin et al., 2012], news

∗Corresponding author

tagging [Zhang et al., 2019], and research topic classifica-
tion [Yang et al., 2016]. Compared to single-label classifica-
tion, MLTC introduces unique challenges due to the inherent
complexities of label relationships and overlaps.

One of the primary challenges in MLTC lies in the com-
plex correlations among labels. Labels in MLTC often exhibit
hierarchical, semantic, or co-occurrence dependencies. For
example, an article discussing climate change may be tagged
with “Environment,” “Policy,” and “Economics.” These labels
are semantically related, as climate change often involves pol-
icy discussions and economic impacts. Ignoring such intri-
cate correlations risks producing incoherent predictions and
undermines the interpretability of the model. Additionally,
MLTC often faces the issue of partial label overlaps, where
a document aligns strongly with some labels but only par-
tially with others. For instance, an article on renewable en-
ergy may be highly relevant to “Environment” and “Energy”
while weakly overlapping with “Economics” when financial
aspects are discussed. These challenges are illustrated in Ta-
ble 1.

Text Labels
Global leaders discussed the economic impacts of climate change and
the urgent need for policy reforms to address environmental challenges.

Environment, Policy, Economics

The impact of renewable energy policies on reducing carbon emissions
has been widely discussed, with a focus on solar and wind energy inte-
gration.

Environment, Energy, Policy, Economics

Advancements in deep learning have significantly improved au-
tonomous driving, enabling better perception and decision-making ca-
pabilities.

AI, Robotics, Transportation, Ethics

The study explores the ethical implications of using AI in healthcare for
disease diagnosis and treatment planning.

AI, Healthcare, Ethics

This review examines smartphone features such as battery performance,
camera quality, and overall cost efficiency.

Technology, Performance, Price

Table 1: An example of several papers from arXiv.

Although existing methods address parts of these chal-
lenges, limitations remain. Classical approaches, such as bi-
nary relevance and label powerset, treat labels as indepen-
dent entities, completely ignoring label correlations and over-
laps [Guo et al., 2021; Wang et al., 2022]. More recent
methods, such as label embedding and latent space learning,
model label correlations to some extent [Ying et al., 2021;
Xu et al., 2023], but fail to handle the ambiguity caused by
partial overlaps. These approaches often treat overlapping la-
bels as either fully dependent or entirely unrelated, leading to
suboptimal representation learning and reduced generaliza-
tion capabilities.

Motivated by these challenges, we propose a unified frame-
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work to explicitly address both complex label correlations
and partial label overlaps in MLTC. Our solution is rooted
in the observation that these two challenges are inherently
interconnected and require complementary solutions. We
designed the Unified Contextual and Label-Aware Frame-
work (UCLAF), which integrates two key components: (1)
the Label Attention Aware Network(LAN), which explic-
itly captures label dependencies by embedding text and la-
bels into a shared semantic space; and (2) the Correlation
Aware Contrastive Learning (CACL) , which introduces a
dynamic and fine-grained mechanism for defining and op-
timizing relationships between samples based on their la-
bel sets. Unlike traditional methods[Zhang and Wu, 2024;
Khosla et al., 2020] that rely on strict label matching (e.g., ex-
act matches or any overlap), CACL considers the proportional
overlap of labels between samples to determine their similar-
ity and effectively mitigates the ambiguities caused by partial
label overlaps and enhances representation learning in multi-
label contexts. Two components form a complementary and
synergistic design. Label Attention Module explicitly models
label correlations by aligning text and label representations
in a shared semantic space, CACL refines these representa-
tions by focusing on inter-sample relationships. This synergy
ensures a comprehensive solution to the challenges of multi-
label text classification. In summary, the main contributions
of this work are as follows:

• We identify partial label overlaps as a key scientific
problem in MLTC and analyze its impact on positive-
negative sample distinctions and representation learning.

• We propose UCLAF, a unified framework that integrates
label-aware representation learning and supervised con-
trastive learning to address partial label overlaps and
model complex label correlations.

• Extensive experiments on benchmark datasets, including
AAPD, EURLex demonstrate that UCLAF significantly
outperforms state-of-the-art methods in multiple evalua-
tion metrics.

2 Related work
2.1 Multi-Label Learning
Multi-label learning deals with instances associated with mul-
tiple interrelated labels and finds applications in domains
such as object detection and anomaly detection [Ge et al.,
2018; Cheng et al., 2025], image classification [Zhang and
Wu, 2024], and text classification [Xiao et al., 2019]. For ex-
ample, an image may contain several objects, or a text may
cover multiple topics [Bogatinovski et al., 2022; Liu et al.,
2017a; Liu et al., 2021; Wu et al., 2020]. Early methods
approached this by treating multi-label problems as indepen-
dent single-label tasks, which failed to model label correla-
tions effectively [Boutell et al., 2004; Read et al., 2011]. Re-
cent advances utilize statistical analysis [Wang et al., 2018;
Yeh et al., 2017], label embedding techniques like RNNs
and GNNs [Yazici et al., 2020; Wang et al., 2016; Durand
et al., 2019], or auto-encoders to jointly encode label and
instance correlations [Zhao et al., 2021; Bai et al., 2020;
Bai et al., 2022]. Despite progress, most work focuses on

non-text domains, leaving textual multi-label learning rela-
tively underexplored.

2.2 Multi-label Text Classification
Existing multi-label text classification (MLTC) methods pri-
marily focus on learning text representations and modeling
label correlations. Early approaches used CNNs[Moschitti et
al., 2014; Kurata et al., 2016] and RNNs[Liu et al., 2016]
to capture long-range dependencies in text. We propose that
focusing on each label’s unique feature representation is a
promising strategy for obtaining richer text representations
for each label. For example, recent methods[Wang et al.,
2023] have incorporated Transformer-based modules to ex-
ploit label semantic for capturing high-quality document rep-
resentations, while long-range word dependencies are mod-
eled through encoders, and multi-label attention mechanisms
identify[Xu et al., 2023] the most relevant parts of the text for
each label. In terms of label correlation modeling, previous
approaches have employed sequence generation models[Nam
et al., 2017; Yang et al., 2018; Xiao et al., 2021] and iterative
inference mechanisms[Wang et al., 2021]. Additionally, Ma
et al.[Ma et al., 2021] applied graph neural networks based
on labeled graphs. However, these methods have yet to fully
explore the latent semantic space between labels and texts,
and the challenge of obtaining more effective feature repre-
sentations remains a significant issue in MLTC.

In light of these challenges, our paper is specifically de-
signed for multi-label text classification (MLTC). This ap-
proach aims to address the existing limitations of complex
label correlations and partial overlaps through the integration
of a unified framework.

3 Task Formulation
Consider a batch of data B = {(doci, yi)}Ni=1, where N

represents the mini-batch size, and yi = {y(i)j }Lj∈{0,1} de-

notes the multi-label set for sample i. Here, y(i)j indicates
the j-th label of sample i, and L is the total number of la-
bels in the dataset. The classifier computes the probability
ŷi = {ŷ1, ŷ2, . . . , ŷL}, where each ŷj represents the likeli-
hood of the corresponding label being true.

The binary cross-entropy (BCE) loss is used to measure
the discrepancy between the predicted probabilities ŷi and the
ground truth labels yi. It is defined as:

LBCE(ŷi, yi) = − 1

L

∑
l∈L

[yl log ŷl + (1− yl) log(1− ŷl)] ,

(1)
where yl and ŷl correspond to the ground truth and pre-

dicted probability for label l, respectively.
For the contrastive learning framework, which is based on

the MoCo structure, we introduce additional notations. Let
z
(q)
i and z

(k)
i denote the L2-normalized outputs of the query

model and key model for sample i, respectively. The key
model is updated using momentum-based updates. Further-
more, a queue Q is maintained to store z(k) from previous
batches, following the MoCo[He et al., 2020] design.
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Figure 1: The overall framework of UCAL is as follows: First, data augmentation is applied to the text to obtain different views, and
embeddings E1 and E2 for each view are generated through the encoder. Then, the model passes through the Correlation Aware Contrastive
Learning module and the Label Attention Aware Module. The Label Attention Aware Module captures label dependencies by embedding
labels and input text into a shared semantic space, effectively aligning text representations with label semantics. On the other hand, Correlation
Aware Contrastive Learning dynamically models sample-level relationships to further refine these representations.

4 Method
4.1 Label Attention Aware Network
To capture the dependencies between label embeddings and
text features, the text data is first embedded into a vec-
tor space. Let the text embeddings be denoted as F =
{f1, . . . , fN}, where fi ∈ Rd represents the embedding of
the i-th text instance. The interaction between a label embed-
ding lk and a text feature fi is quantified using an additive
attention mechanism, producing a score sik:

sik = v⊤
b tanh(Wb[lk; fi]) (2)

where [a; b] denotes the concatenation of vectors a and
b, and vb and Wb are trainable parameters of the attention
mechanism. The computed scores sik are then normalized
across all text instances using the SoftMax function to obtain
attention weights βik:

βik =
exp(sik)∑N

i′=1 exp(si′k)
(3)

These attention weights are subsequently used to generate a
text-aware attention vector ck ∈ Rd by aggregating the text
embeddings:

ck =
N∑
i=1

βikfi (4)

The attention vector ck encapsulates context-specific infor-
mation from the text embeddings relevant to label lk. To

model the joint relationship between text and label, the at-
tention vector ck is concatenated with the label embedding
lk as [lk; ck]. This concatenated representation is passed
through two fully connected layers, which refine the features
and compute the final output[Zhou et al., 2021]. The output
scores for each text-label pair are transformed into probabili-
ties using a sigmoid activation function, enabling multi-label
predictions. By explicitly modeling text-aware label depen-
dencies, this mechanism enhances the representation learning
process, leading to improved performance in multi-label clas-
sification tasks.

5 Correlation Aware Contrastive Learning
In Multi-Label Text Classification (MLTC), identifying pos-
itive samples for the anchor point is complex due to the
presence of multiple labels, unlike single-label classification
where positive samples are clearly identified through exact
label matching. Inspired by these preliminary insights[Zhang
and Wu, 2024; Khosla et al., 2020], we propose the Corre-
lation Aware Contrastive Learning (CACL), which optimizes
the contrastive learning process for both ”ANY” (partial label
overlap) and ”ALL” (exact label match) scenarios. The two
scenarios for defining positive samples are: For the general
case, we denote A(i) as the index of all samples involved in
the loss calculation from both the batch and the queue. The
supervised contrastive loss is defined as:

L(i)
supcon = − 1

|P (i)|
∑

p∈P (i)

log
exp(s

(i)
p /τ)∑

a∈A(i) exp(s
(i)
a /τ)

(5)
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where s
(i)
p = z

(i)
q · z(p)k , τ is a temperature scaling parameter,

and z
(i)
q and z

(p)
k represent the L2-normalized query and key

embeddings, respectively. By taking the gradient of L(i)
supcon

Figure 2: Illustration for ALL and ANY and method. Each row rep-
resents one sample’s label, where the first row is the anchor and the
following ones are samples in A, here |A| = 6. Each sample’s label
is denoted in a one-hot form where the light yellow circle means 1.
The row with circles plotted with dotted lines means that the corre-
sponding sample is in the negative set N , otherwise the sample is in
the positive set P . The proposed Correlation Aware Contrastive loss
function considers each label separately and forms multiple posi-
tive sets for one anchor sample. The positive sets for the anchor are
P1 = {1, 3, 6}, P3 = {1, 2, 3, 4, 6}, suppose the anchor’s label
is y = {1, 3}.

with respect to z
(i)
q , we calculate:

∇
z
(i)
q

L(i)
supcon =

∑
p∈P (i)

−1

τ |P (i)|
z
(p)
k +

∑
a∈A(i)

exp(s
(i)
a /τ)∑

b∈A(i) exp(s
(i)
b /τ)

z
(a)
k

(6)
This gradient can be decomposed into two components:

∇
z
(i)
q
L(i)

supcon = z̄ + ẑ (7)

where:

z̄ =
−1

τ |P (i)|
∑

p∈P (i)

z
(p)
k (8)

ẑ =
∑

a∈A(i)

exp(s
(i)
a /τ)∑

b∈A(i) exp(s
(i)
b /τ)

z
(a)
k (9)

Here, z̄ represents the mean of the positive sample embed-
dings, while ẑ represents the weighted average of all embed-
dings, which prevents representation collapse. This ensures
the optimization direction moves z(i)q towards a balanced rep-
resentation of positive samples while considering all contex-
tual dependencies. To further enhance the method, the pro-
posed CACL loss treats the i-th sample as a distinct instance
for each label y(i)j it belongs to. A separate positive sample

set is constructed for each y
(i)
j ∈ y(i) as:

P
(i)
j = {m | y(i)j ∈ y(m)} (10)

The CACL loss function is defined as:

L(i)
CACL =

∑
y
(i)
j ∈y(i)

− 1

|P (i)
j |

∑
p∈P

(i)
j

log
exp(s

(i)
p /τ)∑

a∈A(i) exp(s
(i)
a /τ)

(11)
This loss function generalizes the SupCon loss for multi-label
tasks, reducing to the traditional SupCon loss in single-label
scenarios where |y(i)| = 1. Figure 2 illustrates how CACL
effectively balances contributions from partially overlapping
(”ANY”) and fully matching (”ALL”) scenarios, ensuring ro-
bust optimization for multi-label classification tasks.

• ALL: Only samples with exactly the same label set as
the anchor are considered positive:

P (i) = {m | y(m) = y(i)}.

• ANY: Samples with any overlapping label class with the
anchor are considered positive:

P (i) = {m | y(m) ∩ y(i) ̸= ∅}.

5.1 D. Training Objective
The UCLAF is an end-to-end MLTC model that is made pos-
sible by the constructed label attention and CACL. The goal
of UCLAF is to minimize the target loss function Lsum, which
includes LCACL and LBCE(ŷ

i
doc, y

i). The specific formula is
defined as:

Lsum = λLCACL + LBCE(ŷ
i
text, y

i) (12)
Here, λ is the tunable coefficient for the document-label

contrastive learning loss function and the Correlation Aware
Contrastive Learning (CACL) loss function, respectively,
controlling the balance between the two losses. ŷitext repre-
sents the final probability that the semantic information of
the i-th document is used as input.

6 IV. Experiments
In this section, we conduct a series of experiments on real-
world text datasets to evaluate the performance of UCLAF
and answer the following research questions:

Q1: Does UCLAF outperform current state-of-the-art
(SOTA) methods? Q2: Does each module in UCLAF con-
tribute to the overall model performance? Q3: How does
correlation-aware contrastive learning operate and improve
performance? Q4: How does the label attention network cap-
ture the relationships between labels and text? Q5: What is
the impact of hyperparameters α and λ on UCLAF’s perfor-
mance?

6.1 Datasets
We evaluated our proposed model on two bench-
mark datasets: AAPD[Yang et al., 2018] and
EURLex[Loza Mencı́a and Fürnkranz, 2008]. Table 2
presents the statistics for these datasets, where Ntrn repre-
sents the number of samples in the training set, L denotes the
total number of labels, L̄ is the average number of labels per
document, and W̄trn represents the average number of words
per training document.
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6.2 Baseline Methods and Evaluation Metrics
To rigorously assess the effectiveness of the proposed
UCLAF method, we compare it against several state-of-the-
art multi-label text classification (MLTC) models that have
been widely recognized in recent research. The following
baseline methods are selected for comparison:

• XML-CNN[Liu et al., 2017b]: A CNN-based model
that employs a dynamic max pooling scheme to capture
high-level features in the input text.

• AttentionXML[You et al., 2019]: A BiLSTM-based
model that integrates a label tree structure, utilizing label
attention to capture contextual semantics and generate
label-aware document representations.

• CornetAttentionXML[Xun et al., 2020]: An architec-
ture that combines the AttentionXML text encoder with
a Cornet module to effectively model label correlations
and dependencies in multi-label classification.

• LightXML[Jiang et al., 2021]: A lightweight deep
learning framework that incorporates dynamic negative
label sampling. For experimental consistency, we repro-
duce this model using BERT as the underlying architec-
ture.

• GUDN[Wang et al., 2023]: A model that utilizes guided
networks to enhance classification performance by im-
proving the representation of labels.

• MLGN[Liu et al., 2023]: A method that integrates label
semantic information to improve document representa-
tions but does not fully address complex label dependen-
cies in multi-label tasks, nor does it effectively model
label associations.

6.3 Evaluation Metrics
We evaluate model performance using two widely adopted
metrics: precision at k (P@k) and normalized discounted
cumulative gain at k (N@k)[You et al., 2019; Xiao et al.,
2019],with higher values indicating better performance.

• P@k: Measures the proportion of relevant items among
the top-k results.

• N@k: Considers both the relevance and ranking of re-
trieved items, rewarding relevant items ranked higher.

Datasets Ntrn Ntest D L L̄ W̄trn W̄test

EURLex 15499 3865 186104 3956 5.30 1248 1230
AAPD 54840 1000 69399 54 2.41 163 171

Table 2: Data statistics.

6.4 Implementation Details
All experiments were conducted on an NVIDIA 3090 GPU
using the pre-trained bert-base-uncased model for feature ex-
traction. The maximum input text length was set to 512, with
a dropout rate of 0.5 for text representation, and a batch size
of 16. For the EURLex dataset, the learning rate was set to
5 × 10−5, with λ = 0.5 and τ = 3. For the AAPD dataset,
the learning rate was set to 1×10−5, with λ = 0.7 and τ = 5.

Figure 3: Attention map on AAPD. Due to space limitation, we only
report the results for the first 16 label.

6.5 Main Results(Q1)
We evaluated the performance of the proposed UCLAF model
against state-of-the-art methods using P@K and N@K as
evaluation metrics. The results in Table 3 show that UCLAF
achieves superior performance compared to existing mod-
els across all metrics. Specifically, UCLAF outperforms
the second-best model in terms of P@1, P@3, P@5, N@3,
and N@5 by significant margins. For the EURLex dataset,
UCLAF improves P@1 by 1.01%, P@3 by 2.62%, P@5 by
0.24%, N@3 by 0.69%, and N@5 by 0.40% compared to the
second-best model, which is AttentionXML. Similarly, for
the AAPD dataset, UCLAF improves P@1 by 0.59%, P@3
by 0.39%, P@5 by 0.28%, N@3 by 0.54%, and N@5 by
0.53% compared to the second-best model, which is MLGN.
These results demonstrate that UCLAF consistently leads to
better classification performance, confirming its effectiveness
in multi-label text classification tasks.

7 ANALYSIS
7.1 Ablation Study (Q2)
We conducted ablation experiments to evaluate the impact of
the Label Attention Aware Network (LAN) and Correlation-
Aware Contrastive Learning (CACL) modules in UCLAF,
with results shown in Table 4. Adding the LAN module im-
proves performance by leveraging label semantics. For ex-
ample, P@1 increases from 85.30 to 85.58 on AAPD and
from 84.55 to 85.42 on EURLex. Similarly, incorporating
the CACL module enhances performance by capturing label
correlations, as seen in the rise of P@5 from 41.18 to 42.24
on AAPD and P@3 from 73.05 to 74.13 on EURLex. The
combination of both LAN and CACL achieves the best re-
sults across all metrics, with P@1 reaching 86.69 on AAPD
and 87.32 on EURLex. These results demonstrate that LAN

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Datasets XMLCNN AttentionXML CornetAttentionXML LightXML CUDN MLGN UCLAF

EURLexa

P@1 76.81 85.90 85.85 86.03 85.51 86.31 87.32
P@3 62.79 73.01 73.32 74.19 74.10 74.77 75.39
P@5 51.56 61.00 61.68 62.27 62.14 62.66 62.90
N@3 66.44 76.41 76.61 77.41 77.23 77.97 78.66
N@5 60.47 70.47 70.49 71.70 71.49 72.13 72.50

AAPDb

P@1 74.38 83.70 86.00 85.80 85.80 86.10 86.69
P@3 53.84 60.63 61.57 61.30 62.30 62.57 62.96
P@5 37.79 41,64 41.76 42.02 42.42 42.44 42.72
N@3 71.12 79.90 81.25 81.26 81.97 82.45 82.99
N@5 75.93 84.10 84.90 85.32 85.87 86.17 86.70

Table 3: Comparisons with state-of-the-art and representative methods.

Method AAPD EURLex

Baseline LAN CACL P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5

Y N N 85.30 61.37 41.18 82.45 81.30 84.55 73.05 61.49 80.93 79.20
Y Y N 85.58 61.67 41.26 82.87 81.85 85.42 73.87 62.18 81.65 79.86
Y N Y 85.78 61.97 42.24 82.21 82.10 86.20 74.13 62.37 77.82 71.67
Y Y Y 86.69 62.96 42.72 82.99 86.70 87.32 75.39 62.90 78.66 72.50

Table 4: Comparison of the ablation results of each module.

and CACL complement each other effectively, jointly con-
tributing to significant improvements in label alignment and
inter-label modeling.

7.2 Analysis of Label Attention Aware (Q3)
The heatmap in AAPD dataset demonstrates the Label At-
tention Module’s ability to capture semantic relationships be-
tween texts and labels by aligning them in a shared semantic
space. For example, Label 1 shows strong attention on Text
3 and Text 5, indicating effective focus on relevant text seg-
ments. Overlapping attention patterns, such as for Label 2
and Label 3 on Text 4 and Text 6, highlight the module’s abil-
ity to model label correlations, capturing co-occurrence and
semantic dependencies between labels.

However, limitations exist. For example, Text 7 consis-
tently receives low attention weights, suggesting weak align-
ment or poor feature representation. Similarly, Label 4 shows
a uniform attention distribution, reducing precision in distin-
guishing relationships. These results confirm the module’s
effectiveness in addressing complex label correlations while
highlighting areas for further improvement.

7.3 Correlation Aware Contrastive Learning
Experiments(Q4)

To evaluate the effectiveness of CACL, we conducted a se-
ries of experiments. First, we examined the impact of positive
and negative sample pair construction on model performance.
Second, we visualized the learned sample representations to
provide qualitative insights. Finally, we investigated the influ-
ence of different data augmentation strategies on the model’s
overall performance.

Effects of Positive Sample Generation
As shown in Table 5, CACL significantly outperforms the
”ANY” and ”ALL” match strategies on the AAPD dataset.

It achieves the highest scores across all metrics, with a P@1
of 87.32, compared to 85.46 (ANY) and 84.32 (ALL). Sim-
ilar improvements are observed in P@3 and P@5. The key
strength of CACL lies in its flexible positive sample selec-
tion, associating samples with others that share a subset of
their labels. This strategy better suits multi-label tasks by
capturing label correlations, leading to more effective repre-
sentation learning and performance gains.

Performance of Different Data Augmentation Techniques
Table 6 presents a comparison of different data augmentation
strategies, including random masking, continuous masking,
token shuffling, and the dropout strategy. Among these, the
dropout strategy achieves the highest performance, indicat-
ing its effectiveness in generating positive samples by ran-
domly removing neuron-level information. Random mask-
ing and continuous masking yield comparable results, show-
ing no significant differences in their impact on model per-
formance. Conversely, token shuffling results in the lowest
scores, likely due to its disruption of text semantics, which
hinders the model’s ability to recover meaningful informa-
tion. These findings underscore the critical role of maintain-
ing semantic structure in data augmentation to ensure effec-
tive learning.

Visualization of Learned Representation
To further investigate the interpretability of the high-quality
document representations in UCLAF, this section provides a
visual analysis of the document representations in UCLAF.
We employ t-SNE to visualize the category prototypes, as
shown in Figure 4. The results demonstrate that the cat-
egory prototypes capture meaningful semantic information.
Specifically, the distance between different categories is
maximized, while the distance between pairs of highly co-
occurring categories is minimized, and pairs of categories
with low co-occurrence are more distantly separated.
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(a) BCE(AAPD) (b) Ours(AAPD) (c) BCE(EURLex) (d) Ours(EURLex)

Figure 4: Visualization of Learned Representation.

(a) AAPD (b) EURLex (c) AAPD (d) EURLex

Figure 5: Hyper-parameter Analysis. Figures (a) and (b) show temperature parameters (τ ), and (c) and (d) show balancing parameters (λ).

Strategy P@1 P@3 P@5
ALL 84.32 73.59 60.34
ANY 85.46 74.18 60.62
CACL 87.32 75.39 62.90

Table 5: Performance of different contrastive losses on the AAPD
dataset.

Strategy P@1 P@3 P@5
Random Masking 87.15 75.27 62.36
Continuous Masking 86.92 74.56 61.85
Token Shuffling 86.61 74.21 61.72
Ours 87.32 75.39 62.90

Table 6: Performance of different positive example generation tech-
niques on the AAPD dataset.

7.4 Hyper-parameter Analysis(Q5)
Sensitivity Analysis of hyper-parameter threshold λ

λ controls the balance between the contrastive learning loss
LCACL and the binary cross-entropy loss LBCE. As is shown
in Figure 5(a)(b), when λ is too large, the model overly em-
phasizes label correlations, which may reduce the perfor-
mance of individual label classification. Conversely, when
λ is too small, the model focuses more on independent label
classification but may overlook global semantic relationships
between labels. Therefore, λ needs to be adjusted experi-
mentally to balance label correlation modeling and text-label

matching performance.

Sensitivity analysis of the hyperparameter τ

The parameter τ controls the sharpness of the similarity dis-
tribution in contrastive learning. As is shown in Figure
5(c)(d), when τ is too large, the similarity scores become
too uniform, reducing the model’s ability to distinguish be-
tween positive and negative samples, which weakens its per-
formance. Conversely, when τ is too small, the similarity dis-
tribution becomes overly sharp, causing the model to overfit
a few high-similarity positive samples while ignoring others,
leading to poor generalization. Therefore, τ needs to be care-
fully tuned to balance the focus on high-quality positive sam-
ples and the overall similarity distribution, typically through
validation experiments.

8 Conclusion
We proposed the Unified Contextual and Label-Aware
Framework (UCLAF) to tackle challenges in multi-label
text classification, such as label interdependencies and over-
laps. By combining label attention and supervised con-
trastive learning, UCLAF captures semantic relationships and
reduces label ambiguity. Experiments on AAPD, EURLex
show that UCLAF outperforms state-of-the-art methods .
However, UCLAF relies on static label embeddings, strug-
gles with large-scale datasets due to contrastive learning’s
computational cost, and is limited to text data. Future work
could explore dynamic label embeddings, improve efficiency,
and extend UCLAF to multi-modal or hierarchical tasks for
greater scalability and versatility.
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