
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Learning Neural Jump Stochastic Differential Equations with Latent Graph for
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Abstract
Multivariate Temporal Point Processes (MTPPs)
play an important role in diverse domains such as
social networks and finance for predicting event se-
quence data. In recent years, MTPPs based on Or-
dinary Differential Equations (ODEs) and Stochas-
tic Differential Equations (SDEs) have demon-
strated their strong modeling capabilities. How-
ever, these models have yet to thoroughly con-
sider the underlying relationships among differ-
ent event types to enhance their modeling capac-
ity. Therefore, this paper introduces a method that
uses neural SDEs with a jump process guided by
the latent graph. Firstly, our proposed method em-
ploys multi-dimensional SDEs to capture the dy-
namics of the intensity function for each event type.
Subsequently, a latent graph structure is integrated
into the jump process without any encoder, aim-
ing to enhance the modeling and predictive capa-
bilities for MTPPs. Theoretical analysis guaran-
tees the existence and uniqueness of the solution for
our proposed method. The experiments conducted
on multiple real-world datasets show that our ap-
proaches demonstrate significant competitiveness
when compared to state-of-the-art neural point pro-
cesses. Meanwhile, the trainable parameters of the
latent graph also improve the model interpretability
without any prior knowledge. Our code is available
at https://github.com/cgao-comp/LNJSDE.

1 Introduction
Event data typically consists of extensive asynchronous event
sequences, playing a crucial role across various domains from
scientific research to industrial applications, underscoring its
undeniable importance. Each event within these sequences
is characterized by a timestamp and a type mark, indicating
both when and what the event occurred. For instance, in seis-
mology, advancements in technology have enabled the collec-
tion of large-scale earthquake event data, aiding scientists in
better understanding and predicting seismic activities [Rein-
hart, 2018]. In financial, financial transaction records serve as

∗Corresponding author.

event data widely utilized for detecting anomalies and fore-
casting market trends [Du et al., 2016]. On social media
platforms, capturing social interaction data provides valuable
insights, assisting in understanding user behavior and con-
ducting sentiment analysis [Tung et al., 2016]. Temporal
Point Processes (TPPs) represent a crucial tool for studying
event sequences, primarily focusing on the occurrence times
of events and the time intervals between events. Furthermore,
for event sequences with multiple types of events, multivari-
ate TPPs (MTPPs) can be applied to reveal the correlations,
patterns, and trends among different event types.

The traditional TPPs typically rely on certain assump-
tions when defining the intensity function. For instance, the
Hawkes process defines a self-exciting process indicating that
past events increase the probability of future event occur-
rences [Hawkes, 1971]. The self-correcting process assumes
that the occurrence of past events inhibits the occurrence
of future events [Isham and Westcott, 1979]. In a Poisson
point process, the probability of an event occurring at each
time point is constant and independent of past events [Daley
and Vere-Jones, 2003]. These traditional TPP models pro-
vide a foundational framework for studying event sequences,
but they also share some common limitations. These limita-
tions include simplifying assumptions about the correlations
between events, oversimplification of the dynamic evolution
of event sequences, and ignoring complex patterns and non-
linear relationships. Consequently, in recent years, methods
based on the powerful representational capabilities of neural
networks have gradually emerged.

Due to advancements in deep learning, Neural Point Pro-
cesses (NPPs) have gained significant attention for employ-
ing neural networks to model the intricate dynamics of asyn-
chronous event sequences. For instance, Omi et al. in-
troduce a fully neural network-based method to model the
integral of the intensity function and obtain the intensity
function as its derivative [Omi et al., 2019]. Shchur et al.
propose an intensity-free method that learns without explic-
itly modeling the intensity function, reducing reliance on
specific forms [Shchur et al., 2019]. Then, transformer-
based approaches are proposed to use attention mechanisms
to model MTPPs [Zuo et al., 2020]. However, these ap-
proaches still exhibit limitations when modeling continuous-
time processes, particularly in terms of ensuring continuity
and smoothness. Consequently, techniques rooted in Ordi-
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nary Differential Equations (ODEs) and Stochastic Differ-
ential Equations (SDEs) have showcased competitive perfor-
mance [Song et al., 2024; Zhang et al., 2024]. Nevertheless,
these methods do not explore the impact of underlying rela-
tionships between events, whereas graphs play a crucial role
in predicting the spatiotemporal evolution of complex sys-
tems [Pei et al., 2022]. Therefore, the main motivation of
this paper is to enhance the modeling capability of MTPPs by
incorporating a latent graph over different types of events.

This paper presents a novel jump-diffusion SDE method
with a latent graph for modeling MTPPs. Firstly, inspired by
the equivalent SDE formulation of the multivariate Hawkes
process, multi-dimensional SDEs are proposed to represent
the hidden state of the intensity function of each event
type. Then, we integrate an encoder-free graph representa-
tion method and design interaction functions between events
in the jump process to capture potential relationships between
events, which can further enhance the representation and pre-
dictive abilities of event sequences. Moreover, the proof of
existence and uniqueness of solutions enhances the reliability
of our approach.

Our main contributions are as follows:

• Multi-dimensional SDEs are employed to model the in-
tensity function for each event type, enhancing the rep-
resentation capability of the underlying MTPPs.

• To further capture the underlying relationships between
events, a graph generator without encoders is incorpo-
rated. Subsequently, interaction functions between event
types in the jump process are also proposed.

• We prove the existence and uniqueness of the solutions
of our approach. Meanwhile, experimental results show
that the performance of our approach is better than other
SOTA methods.

2 Related Works
2.1 Neural Point Processes
Due to certain limitations in traditional TPPs, such as the
definition of intensity functions or kernel functions, NPPs
have gradually become a focus of research. Early meth-
ods are mainly based on Recurrent Neural Networks (RNNs)
to model point processes by assuming a specific functional
form for the time evolution of the intensity function of a
point process [Du et al., 2016; Mei and Eisner, 2017]. To
overcome this limitation, Omi et al. propose a method that
directly models the cumulative hazard by neural networks
and obtains the intensity function with the automatic differ-
entiation techniques [Omi et al., 2019]. Subsequently, sev-
eral methods have been proposed that leverage Transformer
architecture networks to capture the dependencies between
events [Zuo et al., 2020; Zhang et al., 2020; Yang et al., 2022;
Meng et al., 2024]. With the development of neural ODEs
and SDEs, methods based on modeling continuous sys-
tems rather than other architectures like RNNs can explicitly
model the smooth transitions between states of intensity func-
tions [Chen et al., 2018]. Jia et al. propose NJSDE, a neural
ODEs-based hybrid system that encompasses both flow and
jump processes, to model TPPs [Jia and Benson, 2019]. Song

et al. introduce Dec-ODE to decouple the hidden state dy-
namics by neural ODEs [Song et al., 2024]. Zhang et al.
present NJDTPP, where the intensity process is designed by
a neural jump-diffusion SDE [Zhang et al., 2024]. It is worth
noting that both NJSDE and NJDTPP also design the impact
of event occurrences in their jump items. However, neither
of them continues to deeply consider the underlying relation-
ships between event types. Consequently, this oversight may
lead to the magnification of the impact between unrelated
events. Furthermore, NJSDE uses ODEs to model the overall
system rather than each event type, while NJDTPP employs
one-dimensional SDEs for each event type. In contrast, our
innovative approach utilizes multidimensional SDEs to cap-
ture more complex temporal dynamics for each event type.
These improvements enhance the predictive and modeling ca-
pabilities of our approach.

2.2 Temporal Point Processes with Graph
In traditional TPPs, besides establishing a probabilistic
graphical model based on existing knowledge, some methods
aim to infer relationships among events. For instance, Zhou et
al. propose a method to infer latent connectives between users
in social networks by a multivariate Hawkes process [Zhou et
al., 2013]. Lemonnier et al. propose a Low-Rank Hawkes
Process framework for fitting multivariate Hawkes processes
in large-scale problems [Lemonnier et al., 2017]. With the
emergence of NPPs, some NPPs models combining graphs
have appeared. Zhang et al. adopt a variational inference
framework to model the posterior relation of MTPP data for
probabilistic estimation [Zhang and Yan, 2021]. Zhang et al.
propose a probabilistic graph generator. The sampled graph
can be easily integrated as a plug-in to modify an existing
NPP model [Zhang et al., 2021]. Yoon et al. extract po-
tential graph structures through data processing and encode
multivariate event sequences into a sequence of graphs, en-
hancing the predictive capability of the model [Yoon et al.,
2023]. Yang et al. partition event sequences into differ-
ent sub-intervals based on prior knowledge and establish dy-
namic graph relationships using a Variational Autoencoder
(VAE) to capture changes in relationships between different
event types [Yang and Zha, 2024]. In a nutshell, NPPs with
latent graphs have effectively enhanced the interpretability
and predictive capability of the model. However, SDE-based
methods have not yet explored this aspect, which is also the
motivation of our method.

3 Preliminaries
3.1 Multivariate Point Processes
A MTPP is a stochastic process that describes the temporal
evolution of multiple event types V = {1, 2, ..., V }, where
V is the number of event types. Let S = {(vi, ti)}Li=1 be
an event sequence, where the tuple (vi, ti) is the i-th event,
vi ∈ V and ti ∈ [0, T ] are its event type and timestamp, T is
the size of the time window. A general MTPP can be char-
acterized by the conditional intensity function of each event
type k ∈ V:

λk(t) = lim
∆t→0

E[dNk(t)|H(t)]

∆t
, (1)
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where dNk(t) = Nk(t + ∆t) − Nk(t) ∈ {0, 1} is the jump
size, Nk(t) counts the number of the event type k prior to
history H(t) until time t, H(t) = {(v′, t′)|t′ < t, v′ ∈ V}
records the history. The log-likelihood of observing a se-
quence S is the sum of the log-likelihood of events and non-
events and can be expressed as Eq. (2). The optimization of
MTPPs is to maximize the log-likelihood.

log p(S) =
L∑

i=1

log λvi
(ti)−

∫ T

0

V∑
k=1

λk(t)dt. (2)

3.2 Multivariate Hawkes Processes
We then introduce a classic and important MTPP known
as the Multivariate Hawkes Process (MHP). Let N(t) =
(N1(t), . . . , NV (t))

T be a MTPP, where its intensity function
λk(t) for each event type k is defined as follows:

λk(t) = µk +
V∑

j=1

∑
(v′,t′)∈H(t),v′=j

αjkg(t− t′), (3)

where µk ∈ R+ represents the base intensity, and g(t) ∈ R+
denotes a kernel function that signifies the extent of influence
of an event. The entry αjk indicates how event type j effects
event type k.

3.3 Stochastic Differential Equations
A basic SDE can be defined as:{

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t),

X(0) = x0,
(4)

where x0 is the initial value, f is the drift coefficient function,
g is the diffusion coefficient function, {W (t)}t≥0 is a Brow-
nian motion. Then, X={X(t)}t≥0 is called a solution of the
SDE, and it satisfies the Itô integral equation.

X(t) = x0 +

∫ t

0

f(X(s), s)ds+

∫ t

0

g(X(s), s)ds. (5)

In the context of neural SDEs, the selection of the diffusion
function is especially crucial. To make training stable, this
paper also considers a Linear Noise SDE (LNSDE) [Oh et
al., 2024], presented as follows.

dX(t) = f(X(t), t)dt+X(t)g(t)dW (t). (6)

It has been proved that, with appropriate neural network de-
signs, the LNSDEs in Eq. (6) have their unique strong so-
lutions. Furthermore, neural LNSDEs also demonstrate ro-
bustness in maintaining excellent performance and effectively
preventing overfitting.

3.4 Equivalent SDE Formulation for MHPs
To establish a connection between SDEs and MTPPs, the fol-
lowing derived equivalent SDE formulation is introduced.

Theorem 1. Suppose that the kernel function g(t) =
exp(−β(t)), the MHPs N(t) and its intensity functions

λ(t) = (λ1(t), . . . , λV (t))
T can be equivalently expressed

as the solution to the jump SDEs. Each λk(t) follows
dλk(t) = β(µk − λk(t))dt+

V∑
j=1

αjkdNj(t),

λk(0) = µk, k ∈ V .

(7)

Proof. The proof is similar to the univariate Hawkes Process
discussed in [Zhang et al., 2024], which can be found in
Appendix A.1.

4 Methodologies
4.1 Overview
As shown in Fig. 1, the proposed method involves SDEs with
jumps designed for MTPPs with a latent graph. To better
capture the internal states within each event, every event type
is associated with multidimensional hidden states that evolve
according to an SDE system. Moreover, we employ a graph
generator without any encoder and integrate the influence of
the latent graph into the jump process.

Figure 1: An overview diagram illustrates three-variate TPPs in our
approach. Hidden states Z(0) are initialized for the intensity func-
tion λ(t) of each event type, and they evolve following an SDE sys-
tem during the time interval between event occurrences. When an
event occurs, the latent graph is incorporated to influence the jump
process. The trainable parameters Ψ can transform the adjacency
matrix by the softmax function.

4.2 Proposed SDEs for Intensity function
Due to the diversity of underlying dynamical systems, we in-
troduce two different variants of SDEs for the hidden state in
our model as Eqs. (8) and (9), which denote whether the dif-
fusion term is time-independent or not. In our model design,
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we assume that each type of event k ∈ V has its correspond-
ing hidden state Zk, and Zk(t) evolves as a SDE. To more
accurately capture the temporal effects, the continuous SDE
between events [ti−1, ti) is designed as follows:{

dZk(t) = f(Zk(t), ti−1, t− ti−1)dt+ g(Zk(t))dWk(t),

Zk(0) = zk,
(8)

where f : RdZ × R+ × R+ → RdZ considers not only the
hidden state Zk(t) but also the time ti−1 and the time since
the last event occurred t − ti−1, while the diffusion term
g : RdZ → RdZ is dependent on the hidden state Zk(t),
{Wk(t)}t≥0 is a dZ-dimensional Brownian motion. Also, the
version of neural LNSDE can be expressed as follows.

dZk(t) =f(Zk(t), ti−1, t− ti−1)dt+

Zk(t)g(t− ti−1)dWk(t),

Zk(0) =zk,

(9)

where the function g : R+ → RdZ is dependent on the time
t− ti−1. For the convenience of discussion, we use Eq. (8) as
the default. Furthermore, the proposed approach can directly
adopt Eq. (6).

Then, the intensity function λk(t) of each event type k is
defined as follows.

λk(t) = softplus(η(Zk(t))), (10)

where η : RdZ → R, softplus(x) = log(1 + exp(ζx))/ζ
ensures the λk(t) > 0 and ζ is a hyper-parameter.

4.3 Latent Graph in Jump Process
From Theorem 1, it can be intuitively observed that the in-
fluence between different types of events takes effect when
events occur. Therefore, compared to incorporating the ef-
fects of node interactions into the drift coefficient function,
our proposed approach emphasizes the latent relationships
between different types of events in the jump process. More-
over, this method can reduce computational costs by passing
messages between nodes solely at the times of event occur-
rences, rather than continuously throughout all time.

Firstly, let us consider the situation without any graph
structure. In this case, the occurrence of an event of one type
will have a certain impact on all other types of events. There-
fore, when an event type j occurs at time t, then the jump size
∆Zk(t) = Zk(t

+)−Zk(t) of event type k can be formulated
as Eq. (11).

∆Zk(t) = ρ(Zj(t), Zk(t))∆Nj(t), (11)

where t+ is the right-limit of t, the function ρ : RdZ ×RdZ →
RdZ is used to capture the interaction between different types
of events. Furthermore, in general, the form of the jump size
can be extended as

∆Zk(t) =
V∑

j=1

ρ(Zj(t), Zk(t))∆Nj(t). (12)

However, our proposed approach incorporates a latent graph
in the jump process to emphasize capturing potential re-
lationships between event types. Trying to capture events

that are practically unrelated may result in a decrease in the
model’s representation and predictive capabilities. Therefore,
we adopt a method to integrate a latent graph without an en-
coder inspired by [Pan et al., 2024]. Additionally, we design
interaction functions to enhance the model’s ability to capture
relationships between different event types.

The latent graph1 is constructed as follows.
Aa

ij = (Softmax(γ[Ψ0
ij ,Ψ

1
ij ]))a, (13)

where a ∈ {0, 1}, Ψ0 and Ψ1 ∈ R are trainable parameters,
and γ is the inverse temperature, and A1 = 11T − A0. In-
stead of using the initial states Z(0) to build the latent graph,
this way can decouple the graph structure from the hidden
states to enhance training stability, especially when dealing
with long sequences.

Then, the jump size of event k is designed by incorporating
the latent graph as shown in Eq. (14).

∆Zk(t) =ρv(Zk(t))∆Nk(t)+

ρn(Zk(t),
∑
j ̸=i

Ẑjk(t)∆Nj(t)),

Ẑjk(t) =
∑

a∈{0,1}

Aa
jkρ

e(a)(Zj(t), Zk(t)),

(14)

where Ẑjk(t) is the interaction term between event type vj
and vk under the latent graph, ρv : RdZ → RdZ is the jump-
wise function, ρn : RdZ × RdZ → RdZ is the aggregation-
wise function and ρe(a) : RdZ ×RdZ → RdZ is the edge-wise
function for adjacency matrix Aa.

4.4 Theoretical Analysis
Based on the two sections mentioned above, our proposed
approach can be expressed as follows.

dZ(t) =f(Z(t), ti−1, t− ti−1)dt+

g(Z(t))dW(t), t ∈ (ti−1, ti]

Z(t+) =Z(t) + ∆Z(t), t = ti,

Z(0) =z,

λ(t) =softplus(η(Z(t))),

(15)

where Z(t)=(Z1(t), ..., ZV (t))
T is a collection of latent

state vectors, W(t)=(W1(t), ...,WV (t))
T is a collection of

Brownian motions, its components Wv(t) are pairwise inde-
pendent, ∆Z(t)=(∆Z1(t), ...,∆ZV (t))

T are calculated by
Eq. (14), t and ti−1 are also column vectors. We then pro-
ceed to investigate the existence and uniqueness of the solu-
tion {Z(t)}t≥0 and {λ(t)}t≥0 to our proposed approach.
Theorem 2. Assuming that f , g, ρv , ρn, ρe, η are measurable
functions and satisfy the Lipschitz continuity condition, ρv ,
ρn, ρe are continuous, then a strong unique solution Z :=
{Z(t)}t≥0 exists, once initial values z := {zk}Vk=1 is fixed,
and the resulting process λ := {λ(t)}t≥0 also has a strong
unique solution.

Proof. The proof can be found in Appendix A.2.
1In this context, the term “graph relationships” does not refer to

the ground-truth causal relationships but rather to Granger causality,
which aims to assess the utility of one variable in predicting other
variables.
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4.5 Model Training
Throughout the training process, we utilize the Euler-
Maruyama scheme [Kloeden et al., 1992] with a constant
step size for its computational efficiency. This scheme subdi-
vides the time interval (ti−1, ti] into D sub-intervals, where
ti−1=τ i0<· · ·<τ id<· · ·<τ iD=ti with the fixed step size ∆i

d =
(ti − ti−1)/D. Then, for each hidden state Zk, Eq. (8)
on (ti−1, ti] can be discredited by the recursive equation as
Eq. (16).

Zk(τ
i
d+1) =Zk(τ

i
d) + f(Zk(τ

i
d), ti−1, τ

i
d − ti−1)∆

i
d+

g(Zk(τ
i
d))∆W i

d,
(16)

for d ∈ {0, 1, ..., D − 1}, and Zk(τ
i
0) = Zk(t

+
i−1), ∆W i

d =

W (τ id+1)−W (τ id) is sampled from N (0,∆i
d) for numerical

computation. Finally, the log-likelihood can be approximated
as follows.

log p(S) =
L∑

i=1

log(λvi
(ti))−

L+1∑
i=1

D∑
d=1

V∑
k=1

τ id − τ id−1

2
(λk(τ

i
d−1) + λk(τ

i
d)),

(17)
where τ10=0, τL+1

D =T , λk(t) can be calculated by Eqs. (10)
and (15).

4.6 Time and Event Prediction
To predict the subsequent event time and event type based on
the historical events H(ti), the conditional density function
of the next event time for t̂i+1 ≥ ti is estimated as Eq. (18).

t̂i+1 =

∫ ∞

ti

tfti+1
(t)dt,

fti+1(t) = λ(t) exp(−
∫ t

ti

λ(t))dt,

(18)

where λ(t) =
∑V

k=1 λk(t).
For the next event type prediction v̂i+1, it can be estimated

by Eq. (19).

v̂i+1 = argmaxk∈Vλk(ti+1)/λ(ti+1). (19)

5 Experiments
5.1 Datasets
We evaluate our proposed approaches and other baselines on
five real-world benchmark datasets used in [Yang and Zha,
2024; Zhang et al., 2024], including New York Motor Vehicle
Collisions (NYMVC), two stack exchange datasets (MathOF
and AskUbuntu), Taobao and Taxi. The statistical character-
istics of these datasets are shown in Table 1. Additionally,
to scale down the time, a logarithmic transformation is ap-
plied to all time values. We also ensure that at most one event
occurs at any given time to facilitate the training and predic-
tion processes for all models. More detailed information of
datasets can be found in Appendix B.

Datasets Train Dev Test Events Average length Types
NYMVC 120 40 40 12736 63.68 5
MathOF 156 52 52 50464 194.09 15

AskUbuntu 102 34 35 31194 182.42 11
Taobao 1300 200 500 115397 57.69 17

Taxi 1400 200 400 74078 37.04 10

Table 1: Statistics of the datasets.

5.2 Baselines
We compare our approaches with the following eight state-of-
the-art models. One RNN-based model: Recurrent Marked
Temporal Point Process (RMTPP) [Du et al., 2016]. One
TPP with fully neural networks (FullyNN) [Omi et al.,
2019]. Two attention-based models: Transformer Hawkes
Process (THP) [Zuo et al., 2020], Attentive Neural Hawkes
Process (AttNHP) [Yang et al., 2022] and Interpretable
Transformer Hawkes Processes (ITHP) [Meng et al., 2024].
One log-normal mixture distribution-based model: Varia-
tional Autoencoder for MTPPs with Dynamic Latent Graphs
(VAETPP) [Yang and Zha, 2024]. One ODEs-based
method: (NJSDE) [Jia and Benson, 2019]. One SDEs-based
method: Neural Jump-Diffusion Temporal Point Processes
(NJDTPP) [Zhang et al., 2024]. The detailed description and
comparison of baselines can be found in Appendix C.

5.3 Experimental Settings
For our approaches, both f and g in our approach are imple-
mented as three-layer Multilayer Perceptions (MLPs), which
contain an input layer, a hidden layer, and an output layer.
In the jump process, ρv , ρn, and ρe are two-layer MLPs,
each consisting of an input layer and an output layer. The
activation function default used is Tanh. The dimension
dZ of Z is set to 32, and the dimension of hidden layers
is uniformly set to 64. The learning rate of parameters in
neural networks is set to 0.001 for the NYMVC dataset and
0.0001 for other datasets, and the learning rate of initial hid-
den states z and Ψ is set to 0.1. We employ the Adam op-
timizer [Kingma and Ba, 2015] to optimize the parameters.
During the training process, the number of sub-intervals D
in the Euler-Maruyama scheme is set to 10, while during the
prediction process, D is set to 1000 for a more precise fore-
cast. More details can be found in Appendix D. As for the
other comparative baselines, their settings are adopted from
the original papers.

5.4 Evaluation Metrics
We utilize the negative log-likelihood (NLL) as a metric to as-
sess the modeling capability of event sequences in real-world
datasets. Furthermore, we assess performance in the stan-
dard next-event prediction task within TPPs, predicting each
subsequent event (vi, ti) based on the history H(ti). Event
time prediction is evaluated using Root Mean Square Error
(RMSE), while event type prediction is assessed through ac-
curacy and the weighted F1 score. The accuracy in multiclass
classification represents the proportion of correct classifica-
tions. The weighted F1 score provides a better assessment
of class imbalance situations. These metrics are shown in
Eqs. (20), (21) and (22).
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Dataset NYMVC Mathof AskUbuntu Taobao Taxi
Metric NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE

RMTPP 1.647 0.825 1.891 0.753 1.776 0.443 1.659 0.533 0.227 0.373
FullyNN 1.172 0.844 1.399 0.655 1.525 0.573 1.489 0.574 0.310 0.366
NJSDE 0.655 - 0.508 - 1.505 - -0.342 - -0.392 -

THP -0.642 0.336 -0.532 0.872 -0.508 0.355 1.191 0.531 0.442 0.373
AttNHP -0.632 0.108 -0.427 0.181 -0.585 0.236 1.206 0.530 0.491 0.369

ITHP -1.053 - -0.845 - -1.106 - 0.465 - -0.362 -
VAETPP -0.886 0.0596 -0.822 0.136 -1.016 0.111 -1.064 0.120 -0.592 0.311
NJDTPP -0.764 0.0948 -1.058 0.160 -1.922 0.154 -0.474 0.132 -0.293 0.296
Our SDE -0.961 0.0837 -1.512 0.132 -2.186 0.127 -0.979 0.193 -0.595 0.284

Our LNSDE -0.991 0.0787 -1.571 0.126 -2.200 0.129 -1.000 0.198 -0.580 0.284

Table 2: Performance comparison of negative log-likelihood and time prediction RMSE on real-world datasets. The best performance is bold,
and the second-best performance is underlined. The RMSE results for NJSDE and ITHP are excluded, as their original papers and codes do
not mention the time prediction.

Dataset NYMVC Mathof AskUbuntu Taobao Taxi
Metric Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

RMTPP 0.241 0.186 0.154 0.127 0.189 0.163 0.431 0.429 0.836 0.815
FullyNN 0.244 0.199 0.166 0.132 0.245 0.188 0.440 0.410 0.812 0.782
NJSDE 0.298 0.145 0.136 0.08 0.227 0.108 0.430 0.264 0.644 0.615

THP 0.291 0.226 0.211 0.183 0.315 0.249 0.467 0.406 0.865 0.828
AttNHP 0.315 0.231 0.173 0.103 0.289 0.177 0.458 0.386 0.761 0.724

ITHP 0.285 0.213 0.239 0.221 0.352 0.323 0.602 0.577 0.911 0.886
VAETPP 0.320 0.236 0.234 0.191 0.341 0.225 0.573 0.442 0.866 0.832
NJDTPP 0.304 0.212 0.254 0.211 0.358 0.311 0.486 0.452 0.908 0.891
Our SDE 0.354 0.311 0.281 0.261 0.394 0.364 0.611 0.598 0.925 0.913

Our LNSDE 0.382 0.348 0.298 0.282 0.391 0.358 0.610 0.593 0.924 0.911

Table 3: Performance comparison of event type prediction accuracy on real-world datasets. The best performance is bold, and the second-best
performance is underlined.

RMSE =

√√√√ 1

L

L∑
i=1

(ti − t̂i)2, (20)

Accuracy =
# correct classifications

# all classifications
, (21)

weighted-F1 =
C∑
i=1

wi · F1i, (22)

where C denotes the number of classes, wi denotes the sam-
ple weight for class i, and F1i represents the F1 score for
class i.

5.5 Experimental Results
In Table 2, the performance of the baselines and our proposed
methods is presented in terms of negative log-likelihood and
time prediction RMSE on various datasets. Concerning NLL,
our proposed approaches consistently achieve some of the
highest rankings across all datasets, showcasing the robust
modeling capabilities of our approach for MTPPs. NJDTPP
and VAETPP also demonstrate commendable performance.
In the realm of time prediction, our proposed methods and
VAETPP exhibit strong competitiveness. VAETPP utilizes a
mixture of log-normal distributions to model the distribution

of one-dimensional inter-event times, enhancing its capabil-
ity for time prediction. Consequently, its time prediction ac-
curacy leads on some datasets, while our approaches also per-
form well on the majority of datasets.

Table 3 illustrates the accuracy of predicting event types
using various methods on real-world datasets. The results in-
dicate that our methods, SDE and LNSDE variants, outper-
form other baselines in terms of prediction accuracy across
all datasets, underscoring the effectiveness of our methods
tailored for MTPPs. One reason for the lower accuracy of
event prediction in NJSDE is that it models the entire system
based on ODEs, making it difficult to accurately represent the
hidden states of each event. Furthermore, SDE and LNSDE
variants demonstrate varying performances across different
datasets, highlighting the importance of careful consideration
when selecting diffusion terms. Suitable diffusion term se-
lections will further enhance prediction accuracy. Addition-
ally, the competitive performance of VAETPP and NJDTPP is
also noteworthy. The discernible gap between accuracy and
weighted F1 arises from the imbalance in event categories,
particularly evident in the AskUbuntu dataset.

Overall, our proposed methods have demonstrated strong
capabilities in modeling, time prediction, and event-type pre-
diction on various real-world datasets, further illustrating the
effectiveness of our proposed methods.
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5.6 Ablation Study
Our ablation experiments are designed as follows: ODE-NA
signifies that the version of our approach without both the
Brownian motion and the latent graph in the jump process,
as depicted in Eq. (11). The ρ function is also implemented
through three-layer MLPs. ODE denotes the version of our
approach without Brownian motion.

Dataset Taobao AskUbuntu
Variants NLL RMSE Acc F1 NLL RMSE Acc F1

ODE-NA -0.855 0.279 0.600 0.583 -2.088 0.130 0.360 0.316
ODE -0.956 0.216 0.605 0.585 -2.170 0.129 0.374 0.332
SDE -0.979 0.193 0.611 0.598 -2.186 0.127 0.394 0.364

LNSDE -1.000 0.198 0.610 0.593 -2.200 0.129 0.391 0.358

Table 4: Performance of the variants of our proposed methods on
Taobao and AskUbuntu. The best performance is bold, and the
second-best performance is underlined.

The results shown in Table 4 show that the performance is
significantly improved by incorporating a latent graph in the
jump process. This also demonstrates that considering the
dependency levels among different event types can enhance
the modeling and predictive capabilities of the model. Fur-
thermore, utilizing SDE will further enhance the accuracy of
modeling and prediction.

5.7 Hyperparameter Analysis
Number of Sub-intervals
For the solver of SDEs (e.g., Euler–Maruyama method in our
approach), a large number of sub-intervals results in a more
accurate approximation of the integral but also linearly in-
creases the time complexity. Following our preliminary ex-
periments, we generally found that there is a good balance
between training time and effectiveness when the number of
sub-intervals D=10. For instance, the impacts on our LNSDE
variant on NYMVC are in Table 5.

D NLL RMSE Accuracy F1 Sec/Epoch
5 -0.984 0.0824 0.380 0.344 2.409
10 -0.991 0.0787 0.382 0.348 4.247
15 -0.993 0.0772 0.383 0.348 6.871

Table 5: Performance of our LNSDE variant on NYMVC with dif-
ferent number of sub-intervals.

Dimensions of Hidden State Zk(t)

We also conduct experiments regarding the dimensions of the
hidden state Zk(t). For instance, the performances of our
LNSDE variant on NYMVC and Mathof are in Table 6.

Dataset NYMVC Mathof
|Zk(t)| NLL RMSE Acc F1 NLL RMSE Acc F1

8 -0.842 0.081 0.312 0.223 -1.053 0.133 0.217 0.181
16 -0.896 0.082 0.325 0.276 -1.356 0.128 0.256 0.227
32 -0.961 0.083 0.354 0.311 -1.512 0.132 0.281 0.261
64 -1.104 0.096 0.403 0.380 -1.682 0.134 0.309 0.296

Table 6: Performance of our SDE variant on NYMVC and Mathof
with different dimensions of the hidden state.

The results show that increasing the dimensionality pro-
vides significant improvement in predicting events. However,
overly large dimensions can harm time prediction, since the
model may memorize noise or over-fit instead of capturing
true temporal patterns.

5.8 Model Interpretability
The learned latent dependencies among events can offer some
interpretability to the model. As a result, we conduct an ex-
periment on a synthetic network to present the interpretability
of our model.

Figure 2: Comparison of ROC curves and AUC.

We initially create a directed graph with 20 nodes. Then,
we simulate a multivariate Hawkes process 100 times. Here,
the parameters µ and α are randomly sampled from uniform
distributions U [0, 0.02] and U [0.1, 0.3], respectively, while
the time delays follow an exponential distribution with a pa-
rameter of β = 2.5. After training, we acquire the edge
probabilities in the same way in [Pan et al., 2024]. Subse-
quently, we compare these edge probabilities to the ground-
truth graph structure by the Receiver Operating Characteris-
tic (ROC) curve, and the Area under the ROC Curve (AUC)
value. Furthermore, we conduct similar testing on the static
version of VAETPP, a SOTA NPPs model with a latent graph.
As shown in Fig. 2, the AUC obtained by our approach is
better than VAETPP, indicating a more precise capture of the
latent relationships between different event types. More de-
tailed information can be found in Appendix E.

6 Conclusion
In this study, we propose a novel approach that leverages
multi-dimensional SDEs to enhance the representation capa-
bility of the underlying MTPPs. Additionally, we incorpo-
rate a graph generator to capture the dependency structure
between event types and improve the interaction function be-
tween event types in the jump process. Theoretical analy-
sis proves the existence and uniqueness of the solutions of
our proposed approaches. Furthermore, experimental results
have demonstrated that our method outperforms state-of-the-
art methods in terms of modeling ability and prediction per-
formance. In the future, we aim to expand the scope of our
research by extending our model to encompass the dynam-
ics of non-stationary networks and addressing the scalability
of NPPs in larger-scale data, especially concerning the large-
scale latent graph.
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