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Abstract
Pre-trained Language Models (PLM) have enabled
a cost-effective approach to handling various down-
stream applications via Parameter-Efficient-Fine-
Tuning (PEFT) techniques. In this context, ser-
vice providers have introduced a popular fine-
tuning-based product service known as Model-as-
a-Service (MaaS). This service offers users ac-
cess to extensive PLMs and training resources.
With MaaS, users can fine-tune, deploy, and uti-
lize their customized models seamlessly, leverag-
ing a one-stop platform that allows them to work
with their private datasets efficiently. However,
this service paradigm has recently been exposed
to the possibility of leaking users private data.
To this end, we identify the data privacy leakage
risks in MaaS-based PEFT and propose a Split-
and-Privatize (SAP) framework, mitigating the pri-
vacy leakage by integrating split learning and dif-
ferential privacy into MaaS PEFT. Furthermore, we
propose Contributing-Token-Identification (CTI), a
novel method to balance model utility degradation
and privacy leakage. As a result, the proposed
framework is comprehensively evaluated, demon-
strating a 65% improvement in empirical privacy
with only a 1% degradation in model performance
on the Stanford Sentiment Treebank dataset, out-
performing existing state-of-the-art baselines.

1 Introduction
In recent years, Pre-trained Language Models (PLMs) rep-
resented by BERT [Kenton and Toutanova, 2019] and GPT
[Brown et al., 2020] have demonstrated powerful text learn-
ing capabilities and have been widely used in various fields
such as law [Jiang and Yang, 2023], finance [Arslan et al.,
2021], and healthcare [Arora and Arora, 2023]. To im-
prove the adaptability of a PLM on these downstream appli-
∗Yi Liu and Yang Liu are corresponding authors.

cations, it is necessary to fine-tune it on datasets related to
the downstream tasks. Considering that PLMs contain hun-
dreds of millions of parameters, researchers have proposed
several Parameter-Efficient-Fine-Tuning (PEFT) algorithms
to reduce the cost of secondary training [Ding et al., 2023],
such as Low-Rank Adaptation (LoRA) [Hu et al., 2021]. In
practice, most users are unable to independently acquire the
PLM and perform fine-tuning due to resource or technical
constraints, which has given rise to a new business direction
known as Model-as-a-Service (MaaS). In MaaS, enterprises
(called service providers) with sufficient resources and tech-
nical capabilities release PLMs in the form of cloud services
and provide customers (i.e., users) with a fine-tuning API so
that they can customize their own PLM based on private data.

In the context of utilizing PLM APIs provided by service
providers (e.g., OpenAI) for fine-tuning, users are often re-
quired to upload private data to the cloud [Chen et al., 2024].
However, this data, such as text and images, frequently con-
tains sensitive information, including personal identifiers and
demographic attributes (e.g., age). Directly transmitting raw
data to service providers poses a significant risk of privacy
leakage, thereby hindering privacy-conscious users from en-
gaging with customized services [Pan et al., 2020]. There-
fore, there is an urgent need for a privacy-preserving fine-
tuning framework to alleviate privacy concerns and promote
the development of PLM customization services.

To address this challenge, existing research has made pre-
liminary attempts in three main directions: text privatiza-
tion [Qu et al., 2021], differentially private fine-tuning [Wang
et al., 2024; Du et al., 2023], and split learning-based fine-
tuning [Hong et al., 2024]. While the first two approaches
offer different levels of user data protection, they face chal-
lenges in effectively balancing the trade-off between utility
and privacy due to the introduction of (local) Differential
Privacy (DP) noise. For instance, Qu et al. in [Qu et al.,
2021] proposed a text privatization mechanism based on DP
noise, requiring users to locally perturb individual data en-
tries before sharing them with the service provider. However,
this approach inevitably degrades the performance of down-
stream tasks, highlighting the inherent tension between pri-
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vacy preservation and model utility. In addition, fine-tuning
schemes based on split learning are vulnerable to privacy in-
ference attacks. For example, the attackers can utilize text
embeddings to infer user privacy information via attribute in-
ference attacks [Du et al., 2023] and embedding inversion
attacks [Song and Raghunathan, 2020].

To achieve a better privacy-utility trade-off, we propose
a Split-and-Privatize (SAP) privacy-preserving fine-tuning
framework based on the split learning architecture. Specif-
ically, to address privacy concerns, inspired by split learn-
ing [Vepakomma et al., 2018; Ceballos et al., 2020; Wang
et al., 2023b], we first divide the entire PLM into a bottom
model and a top model and then send the bottom model to
the users while keeping the confidentiality of most parts of
the PLM. During fine-tuning, the user feeds locally sensi-
tive data into the bottom model and privatizes the outputs
by applying dχ-privacy mechanisms before sending them to
the service provider. Furthermore, to maintain downstream
tasks’ utility performance, we propose a Contributing-Token-
Identification (CTI) method to identify the important token
representations. By reducing the perturbation to a small num-
ber of token representations that are strongly related to the
utility task, we significantly improve the utility performance
while maintaining a similar level of empirical privacy.

To comprehensively evaluate the effectiveness of the pro-
posed framework, we conduct extensive experiments on four
benchmark datasets encompassing both text classification and
generation tasks. To assess privacy performance, we em-
ployed two state-of-the-art privacy attacks, i.e., embedding
inversion attacks [Song and Raghunathan, 2020] and attribute
inference attacks [Du et al., 2023], to validate the frame-
work’s ability to safeguard data privacy. The experiment re-
sults demonstrate that the proposed SAP framework effec-
tively achieves a better privacy-utility trade-off. The contri-
butions of our work can be summarized as follows:

• We design a privacy-preserving fine-tuning framework
based on the split learning, called SAP, for PLMs.

• We propose a CTI method to achieve a better privacy-
utility trade-off.

• We demonstrate the effectiveness of SAP on four bench-
mark datasets, where it outperforms state-of-the-art
baselines.

2 Related Work
Privacy-Preserving Language Model Fine Tuning. Pre-
vious works have discussed privacy concerns and their pro-
tection in PLM fine-tuning. Privacy protection methods can
be categorized into two main types: post-fine-tuning protec-
tion and pre-fine-tuning protection. Post-fine-tuning protec-
tion aims to protect the fine-tuned corpus dataset’s privacy
against fine-tuned model users. The work [Sun et al., 2024]
has discussed certain attacks that extract sensitive informa-
tion from fine-tuned PLMs. For the post-fine-tuning privacy
protection, the most common approach is to utilize DP in
the process of fine-tuning by adding noise to the gradients
[Li et al., 2024a; Charles et al., 2024; Tang et al., 2024;
Li et al., 2024b; Pan et al., 2020]. While pre-fine-tuning

considers fine-tuning service providers as an additional threat
adversary. In this context, to protect the users’ privacy,
we generally utilize text privatization to alleviate privacy
concerns. Common text privatization includes using gener-
ated data for fine-tuning [Akkus et al., 2024], and adding
DP-based noise to fine-tune the corpus [Qu et al., 2021;
Li et al., 2023]. Another type is to utilize Low-Rank Adop-
tion (LoRA) for privacy, including incorporating fully homo-
morphic encryption into LoRA [Li et al., 2024b] and using
the lightweight adapter with a compression emulator [Ji et
al., 2024].

Unlike the above works, some works focusing on split
learning [Zmushko et al., 2023; Lyu et al., 2020; Wang et
al., 2024; Wang et al., 2023b] split the PLM into two parts:
the bottom one including an embedding layer for users and
the top one including the rest parts for providers. In this way,
users do not need to share data with service providers and can
easily customize fine-tuning services. Furthermore, to pro-
tect the privacy of the text representation of the interaction
between users and service providers, DP noise is generally
introduced to protect privacy [Du et al., 2023]. However, this
line of methods has difficulty achieving a good trade-off due
to the introduction of expensive DP noise and ignorance of
the importance of tokens. To this end, we propose the CTI
method to save the extra resources required for plain token
transmission and reconstructing the model training.
Key Token Identification. In traditional classification
tasks, token importance can be determined by analyzing word
frequency [Schneider, 2004; Chen and Meurers, 2016] within
each class, like TF-IDF [Aizawa, 2003; Ramos and others,
2003] and TF-ICF [Reed et al., 2006] or token vector length,
like Word2Vec [Church, 2017]. However, this approach is
unsuitable for generation tasks, such as question-answering,
where classification labels are unavailable. Instead, we lever-
age a technique called attention-based token pruning, origi-
nally designed to accelerate transformer inference by reduc-
ing the computational cost of attention blocks [Fu et al., 2024;
Guo et al., 2024; Kim et al., 2022]. However, previous
works have also used this to identify those tokens with
higher attention scores as key tokens [Wang et al., 2023a;
Liu et al., 2023]. We use attention-based token pruning to
identify key tokens since it suits current Large Language
Models (LLMs) nature better than previous methods.

3 Background and Threat Model
Split Learning. Split learning (SL) [Vepakomma et al.,
2018] is a distributed learning technique that partitions the
model into multiple segments distributed across different
users, enabling collaborative model training without sharing
raw data. In the simplest split learning configuration, known
as SplitNN [Romanini et al., 2021], each user trains a par-
tial deep network, referred to as the bottom model, up to a
designated layer called the cut layer. The output from the
cut layer, representing the feature representation, is transmit-
ted to the server. The server then completes the remaining
training using another partial deep network, referred to as the
top model, without accessing the users’ raw data. This ap-
proach allows a complete round of forward propagation to
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be performed without sharing the raw data. Subsequently,
the gradients are backpropagated in a similar manner: start-
ing from the final layer of the top model, they are propa-
gated back to the cut layer. At this point, only the gradi-
ents of the cut layer are sent back to the user to update the
bottom models. This process is repeated iteratively, with for-
ward and backward propagations, until the distributed split
learning network converges. While SL reduces the risk of
exposing raw data, studies have uncovered potential vulner-
abilities to privacy leakage through the intermediate repre-
sentations transmitted by users [Dosovitskiy and Brox, 2016;
He et al., 2020]. For instance, [He et al., 2020] introduced at-
tack methods effective in both white-box and black-box sce-
narios, showing that original inputs can be partially recon-
structed from these transmitted representations.
dχ-Privacy Mechanism. Then, we introduce the back-
ground and definition of the commonly used text privatization
method, namely the dχ-privacy mechanism [Chatzikokolakis
et al., 2013]. Specifically, dχ-privacy is a generalization of
the concept of Differential Privacy (DP) over some metric
space χ, aiming to protect the privacy of data on this space.
Formally, dχ-privacy is defined as follows:
Definition 1. A randomized mechanism M satisfies ηdχ-
privacy if for any two inputs x, x′ ∈ X ,

Pr[M(x) = y]

Pr [M (x′) = y]
≤ eηd(x,x

′), ∀y ∈ Y, (1)

where η > 0 is a privacy parameter and d(x, x′) is a distance
function (e.g., Euclidean distance).

In existing work, dχ-privacy can be generalized from DP
and its variant local DP (LDP) [Dwork, 2006], aiming to pro-
tect the privacy of data by introducing a random mechanism.
Usually, researchers utilize dχ-privacy generalized from LDP
for various applications [Yang et al., 2022]. Compared with
the definition of LDP, dχ-privacy replaces the exponent term
of the inequality (1) from ε to ηd (x, x′), so it is a relaxation
of LDP. Furthermore, dχ-privacy allows the indistinguisha-
bility of the output distributions to be scaled by the distance
between inputs, which enables the randomized mechanism to
retain more information about the input. Thus, dχ-privacy
can provide a better privacy-utility trade-off in the privacy-
preserving LLM fine-tuning task.
Threat Model and Design Goals. In this paper, we assume
that the service provider is honest but curious; that is, it al-
ways follows the designed fine-tuned protocol but is curious
about the private information of participants (i.e., users’ pri-
vate data). Specifically, the adversary can access the inter-
mediate representation transmitted by users and the bottom
model parameters of users (i.e., white box setting). It then
uses them to infer private information by adopting embedding
inversion attacks [Qu et al., 2021] and attribute inference at-
tacks [Song and Raghunathan, 2020]. Given the above threat
model, aligned with the previous work [Wang et al., 2023b;
Qu et al., 2021], our goal is to achieve 1) the service provider
cannot recover the original input text from the transmitted text
representation; 2) the proposed framework should maintain
comparable performance compared to centralized fine-tuning
methods (i.e., non-private methods).
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Figure 1: An overview of the SAP framework, where the PLM is
split into a bottom model (embedding layer) and a top model.

4 Method
4.1 SAP Workflow
System Model. We consider a PLM fine-tuning scenario
where a service provider S holds a PLM parameterized as
w and provides customized fine-tuning services for users
U , where each user holds a private fine-tuning text dataset
D := {(xi, yi)|i = 1, 2, . . . , |D|}. See Fig. 1 for more de-
tails. To achieve optimal adaptation on the downstream task,
the service provider and user need to collaboratively fine-tune
the PLM, which can be formulated as:

arg min
δ
L(w + δ,D), (2)

where δ is the trainable parameters of the parameter efficient
fine-tuning methods, e.g., low-rank adaptation (LoRA) [Hu et
al., 2021]. Due to privacy constraints, one party cannot per-
form the above fine-tuning process in a centralized manner.
Specifically, the privacy constraints include that the service
provider cannot share the PLM w with the user, and the user
cannot share the private dataset D with the service provider.
Workflow Overview. To protect user privacy, we follow the
SplitNN [Vepakomma et al., 2018] architecture to implement
fine-tuning. Specifically, the service provider sends the first
m layers of the l-layer PLM to the user as the bottom model
(including the embedding layer and several encoder blocks)
and retains the remaining (l − m) layers as the top model
(including the rest of the layer following the head layers).
The bottom model was sent to the user before fine-tuning.
During the fine-tuning process, the user first computes the
forward process using the bottom model to generate an in-
termediate representation. Next, the user identifies the im-
portance of tokens using our proposed CTI (§4.3) and adds
the noise to the representation (§4.2). Then, the representa-
tion was sent to the service providers to complete the forward
process using the remaining rear layers. Since the sample la-
bels remain with the user, updating trainable parameters in
the PLM, such as the LoRA module, requires collaboration.
The service provider sends the output back to the user, who
computes the gradients of the output layer and returns them
to the service provider for parameter updates. The above pro-
cess is iteratively executed until the PLM converges.
Split Layer Selection Problem. Choosing the split layer
in SAP is critical. A bottom model with only an embedding
layer reduces user computation but allows easy input recov-
ery via nearest neighbor search [Qu et al., 2021]. Adding
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more encoder blocks increases privacy, as higher-layer repre-
sentations are more abstract [Song and Raghunathan, 2020].
However, since PLM weights are valuable assets, the provider
may prefer to limit weight exposure. Thus, selecting the split
layer requires balancing privacy, computational burden, and
asset protection, discussed further in §5.

4.2 Text Privatization
In the SAP workflow, the user needs to first utilize the bot-
tom model (i.e., the embedding layer) provided by the ser-
vice provider to extract the text representation of the local
private text dataset. However, if plain representations are di-
rectly released, the service provider might be able to accu-
rately recover the original input text [Song and Raghunathan,
2020]. Therefore, to achieve stronger privacy protection, it
is necessary for the user to employ privatization mechanisms
to perturb text representations. We take the case where the
bottom model is a frozen embedding layer as an example to
demonstrate how to combine the SAP framework with the pri-
vatization mechanism proposed in [Feyisetan et al., 2020] to
guarantee ηdχ-privacy.

Let [x1i , x
2
i , . . . , x

n
i ] represent a sequence of tokens for the

input text xi. The user first obtains the embedding vector
φ(xji ) for each token xji in the sample xi based on the em-
bedding layer. The independent random noise n is added to
each embedding vector:

φ̂(xji ) = φ(xji ) + n, p(n) ∝ exp(−η‖n‖), (3)

where φ(·) is the output of the bottom model. To achieve DP,
the perturbed vector should be replaced by its nearest neigh-
bor in the embedding space:

φ̄(xji ) = arg min
wm

∥∥∥φ̂(xji )−wm
∥∥∥ , (4)

where wm represents the vector in the embedding space.
Finally, the user sends |D| perturbed sequences φ̄(xi) =
[φ̄(x1i ), φ̄(x2i ), . . . , φ̄(xni )] to the service provider.

4.3 Contributing Token Identification (CTI)
Although text privatization strengthens the protection of data
privacy, fine-tuning PLM on the perturbed representations
will inevitably lead to performance degradation on the down-
stream task [Qu et al., 2021], so there is a trade-off between
utility and privacy. To improve the utility-privacy trade-off of
the SAP framework, we propose a Contributing Token Iden-
tification (CTI) method. Considering that text tasks generally
involve two aspects: classification and generation, we design
token importance calculation methods for the two types of
tasks, respectively. For text classification tasks, important to-
kens can be identified by analyzing their statistical contribu-
tions to each category. However, in generation tasks without
categorical labels, such an analysis is not applicable. To ad-
dress this, we propose using attention scores to determine the
importance of tokens in each input sequence. By doing so,
we enhance utility performance while maintaining compara-
ble levels of privacy protection, achieved by reducing the per-
turbations applied to these important tokens. The following
is a detailed description of this method.

Utility Importance w/ Classification. In natural language
processing, term frequency-inverse document frequency (TF-
IDF) [Salton and Buckley, 1988] is a widely used metric to
measure the importance of a word within a document relative
to its occurrence across a collection or corpus. Inspired by
the concept of TF-IDF, we propose a metric that measures
the importance of each token in relation to the utility target
for text classification tasks. Let p(t = tm|y = c) represent
the frequency of a token tm appearing in the c-th class of
samples; then the utility importance (UI) of a token tm to a
class c is defined as:

UImc =
1

N − 1

∑
c′,c′ 6=c

ln
p(t = tm|y = c)

p(t = tm|y = c′)
, (5)

where ln p(t=tm|y=c)
p(t=tm|y=c′) can be regarded as the difference be-

tween the probability distribution of tokens in the c-th class
of samples and that in the c′-th class of samples specifically at
token tm, and N is the number of categories. Intuitively, to-
kens that appear frequently in the c-th class of samples while
being low-frequency in other classes of samples will be con-
sidered to contribute significantly to distinguishing the c-th
class from other classes and thus will be assigned a larger UI.
Utility Importance w/o Classification. For text generation
tasks, we leverage attention scores to assess the importance of
tokens. The key insight is that more important tokens tend to
have higher attention scores within the Multi-head Attention
(MHA) mechanism [Vaswani et al., 2017]. To formalize this,
we first define the relationship between the query, key, and
value in MHA as follows:

AttWk,q,v,o(x) = Wo

n∑
i=1

Wvxi softmax(
x>W>

q Wkxi√
d

), (6)

where n is the number of independent heads, d is the fea-
ture dimension, and W represents the linear parameters in
the attention block. Unlike token importance in text classi-
fication, which is computed in classes, attention-based token
importance is computed in sequence. For an input sequence,
we denote the attention probability [Kim et al., 2022] of the
head h in the layer l between tokens xi and xj in sequence c
with length n as:

A(h,l)(xi, xj) = softmax(
x>W>

q Wkxi√
d

)(i,j). (7)

The attention-based CTI score of a token xi is then defined
as:

s(l)(xi) =
1

Nh

1

n

Nh∑
h=1

A(h,l)(xi, xj), (8)

where Nh refers to the total head numbers. However, merely
computing importance through attention score has draw-
backs. Attention blocks may sometimes give high scores
to simple words with small L1 norms, such as punctuation
marks or conjunctions [Guo et al., 2024]. To improve the ac-
curacy of token importance, we multiply the attention score
s(l)(xi) with the L1 norm of the corresponding token value:

s̄(l)(xi) = s(l)(xi)× ‖Wvxi‖1. (9)
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In this way, the attention scores of punctuation marks or con-
junctions will be constrained by the L1 norm and will not get
high scores. Furthermore, the transformer blocks may come
from either several bottom layers of the target large model or
from a smaller model that has been fine-tuned on the target
dataset. Assume there are L layers for CTI computation; then
the raw UI for tokens m in sequence c is defined as:

UIrawm =
1

L

L∑
l=1

s̄(l)(xm), (10)

where s̄(l) denotes averages across layers. Finally, we assign
the scores of each token in the sequence c to a normal distri-
bution such as UIm = (UIrawm −µc)/σc, where µc and σc are
the mean and standard deviation of raw UIs in the sequence
c. Intuitively, in a given sequence, important tokens generally
play a decisive role in the task and thus are generally given a
larger attention probability in MHA.
Adaptive Privatization via UI. After obtaining the impor-
tance scores of tokens, we adaptively assign DP parameters
to each token based on the scores to achieve better privacy-
utility. The above process is formalized as follows:

ηm =
2η0

1 + exp(−UIm + c0)
, (11)

where η0 denotes the basic privacy budget and c0 is a con-
stant. Compared to a fixed privacy budget η0 for all tokens,
the user reduces the perturbation to the embedding vectors of
tokens with larger UI values and increases the perturbation
to those with smaller UI values, thereby achieving a better
utility-privacy trade-off.

5 Experimental Results
5.1 Experiment Settings
Datasets. The effectiveness of the SAP framework is eval-
uated on both text classification and generation tasks. For
the classification task, we use the classic sentiment analysis
datasets, i.e., Financial Phrasebank (FP) [Malo et al., 2014]
and Stanford Sentiment Treebank (SST) [Wang et al., 2019],
and the topic classification dataset, i.e., Blog [Lyu et al.,
2020]. For the text generation task, we use the question-
answering dataset SQuAD [Rajpurkar et al., 2016].
Models. Roberta-Large, with 355 million parameters, and
Llama-3, with 8 billion parameters, are used as pre-trained
models, both of which are publicly available1.
Baselines. SAP is compared to the following baselines:

DP-Forward [Du et al., 2023]. This approach aims to di-
rectly perturb the embedding matrix in the forward pass of
LLMs to meet the strict DP requirements on both training
and inference data.

SLDP-FT [Wang et al., 2024]. This approach achieves
privacy-preserving fine-tuning by perturbing the forward-
pass embedding via sequence LDP in split learning.

DP-OPT [Hong et al., 2024]. This approach utilized a split
learning framework and adopted a local privacy setting, al-
lowing users to privatize their data locally with DP.

1https://huggingface.co/

Dataset Privacy Parameter η0
40 45 50 55 60 65 70 None

FP 93.15 95.15 96.03 96.74 97.21 97.71 97.97 98.62

Blog 92.82 94.21 95.31 95.95 96.43 96.64 96.71 96.97

SST 82.77 87.33 91.25 93.56 94.55 95.07 95.29 95.63

Table 1: Classification performance evaluation results of the Roberta
model under different η0 on the FP, Blog, and SST datasets.

Privacy Attacks. To comprehensively evaluate the privacy
performance of the SAP, we employ two types of state-of-the-
art privacy inference attacks [Song and Raghunathan, 2020;
Qu et al., 2021] to evaluate SAP. To maximize the attacker’s
abilities, we consider a white-box setting, where the attacker
can access the perturbed text representations transmitted by
the user as well as the parameters of the bottom model. We
elaborate on the above attack as follows:
Embedding Inversion Attacks (EIA). The attack is a
token-level attack aimed at recovering the original input text
from perturbed text representations. When the bottom model
contains only the embedding layer, the attack predicts the
original token by finding the nearest neighbor of each per-
turbed embedding in the embedding space [Qu et al., 2021].
For bottom models with additional layers, a more sophis-
ticated optimization-based attack [Song and Raghunathan,
2020] is used. This method iteratively refines word selec-
tion vectors by minimizing the distance between the predicted
text’s representations and the observed representations for
each input sample.
Attribute Inference Attacks (AIA). This attack aims to in-
fer sensitive user attributes from text representations. As de-
scribed in [Du et al., 2023], the attacker is assumed to have
access to privacy attribute labels for a subset of samples, e.g.,
the author’s gender in the Blog dataset. The privacy inference
is treated as a downstream task, where a classifier is trained
on the text representations and corresponding labels. Once
trained, the attacker uses this classifier to predict privacy at-
tributes of other samples based on their text representations.
Implementation Details. Our experiments are imple-
mented based on the Transformers library and the PEFT li-
brary of Huggingface. Specifically, the LoRA method is
adopted to fine-tune the PLM, and the AdamW optimizer
with a linear learning rate scheduler is used during fine-
tuning, where the initial learning rate is set to 3e-4. Empir-
ically, the constant c0 in Eq. (11) is set to (max(UIm) +
min(UIm))/2. We use utility classification accuracy (UA)
and F1 scores to evaluate utility performance, respectively.
Besides, empirical privacy (EP) [Li et al., 2023] is used as a
metric to evaluate privacy protection capability, where empir-
ical privacy is defined as 1 − X and X represents the attack
success rate.

5.2 Performance Evaluation
Since SAP uses a privacy protection mechanism different
from DP techniques, it is difficult to directly compare it with
baselines under different noise scales (i.e., ε in DP). For this
reason, this section only shows the classification and genera-
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Dataset Privacy Parameter η0
500 550 650 650 700 750 800 None

FP 92.16 93.64 95.21 95.89 96.47 97.34 97.58 97.89

Blog 91.55 93.19 93.97 94.47 95.87 96.11 96.45 97.01

SST 81.49 85.25 88.51 90.39 91.68 93.01 94.03 95.74

SQuAD 10.57 13.65 31.24 42.48 53.31 62.45 67.78 82.74

Table 2: The classification performance evaluation results of the
Llama model under different η0 on the FP, Blog, and SST datasets,
as well as the generation performance results on the SQuAD dataset.
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Figure 2: Comparison with the existing baselines on EIA.

tion performance of SAP under different privacy parameters
η0. We compare the privacy-utility performance with base-
lines in the following section.

Performance Evaluation on Classification Tasks. We uti-
lize Roberta and Llama as PLMs to evaluate classification
task performance on the FP, Blog, and SST datasets under
varying privacy parameters η0. For the Roberta model, η0
is set to {40, 45, 50, 55, 60, 65, 70}, while for Llama, it is
set to {500, 550, 600, 650, 700, 750, 800}. It is important
to note that η0 is determined by d(x, x′), where a smaller η
indicates stronger privacy protection. The numerical results,
summarized in Tables 1 and 2, indicate that the classifica-
tion performance of both models remains largely unaffected
under appropriate privacy protection settings. For instance,
with Roberta, the accuracy within the η0 range of [50, 70] is
comparable to the accuracy without privacy protection. This
demonstrates that the proposed framework, SAP, can effec-
tively balance privacy and utility in classification tasks. The
evaluation of its privacy performance will be discussed in the
subsequent section.

Performance Evaluation on Generation Tasks. In our
evaluation, we use the Llama model as the PLM within SAP
to assess its generation performance on the SQuAD dataset
under various privacy parameters. We apply the same privacy
parameters used in the classification task for consistency. The
experimental results, presented in Table 2, reveal a sharp de-
cline in generation performance when η0 = 500. However,
performance begins to gradually recover when η is within the
range of [700, 800]. We attribute this to the unique nature
of generation tasks, where the introduction of the dχ-Privacy
mechanism can cause slight semantic alterations in certain to-
kens, leading to significant changes in the generated content.
It is worth noting that existing baselines, such as DP-Forward
and DP-OPT, do not currently support generation tasks, high-
lighting the novelty of our approach in this area.

DP-Forward SLDP-FT DP-OPT Ours
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Numbers of Labeled Data
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(b) EP = 35%

Figure 3: Comparison with the existing baselines on AIA.

# of Encoder Blocks Metric Privacy Parameter η0
45 50 55 60 65 70 None

2 EP 55.28 46.03 37.46 31.18 25.79 21.42 19.68
UA 87.21 91.08 93.24 94.38 95.30 95.41 95.84

4 EP 72.15 67.98 59.13 51.42 45.34 40.97 37.80
UA 87.06 90.38 93.21 94.25 94.89 95.13 95.72

6 EP 80.45 75.22 71.58 68.06 64.83 61.41 59.19
UA 86.79 90.51 93.16 93.61 94.77 95.06 95.53

Table 3: Empirical privacy against EIA (%) and utility accuracy
(%) of SAP-CTI with different split positions and different privacy
parameter settings on the Roberta model and SST dataset, where
“None” represents the case without privatization.
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Figure 4: (a) Utility accuracy versus empirical privacy against EIA
on the Llama model and SQuAD dataset. (b) Empirical privacy
against EIA of the SAP framework (without privatization) with dif-
ferent split positions on the Roberta model and SST dataset.

5.3 Privacy Evaluation
Comparison with SOTA Baselines. To ensure a fair com-
parison with the baselines, we evaluate the performance of
different methods under the same EP conditions. Addition-
ally, since existing baselines do not support generation tasks,
our comparison focuses solely on their privacy-utility trade-
offs in classification tasks.

Defend Against EIA. We assume that the attacker em-
ploys an EIA [Song and Raghunathan, 2020] by iteratively
optimizing the word selection vector to minimize the dis-
tance between the predicted text representation and the ob-
served representation. To assess the privacy performance of
SAP and the baselines in defending against EIA, we use the
Roberta and Llama models as PLMs within SAP and con-
duct evaluations on the SST dataset. We set EP at 35%
and 30% to examine the performance of SAP and the base-
lines. The experimental results, illustrated in Fig. 2, indi-
cate that SAP significantly outperforms the baselines. For
instance, when EP is 30%, SAP achieves a 12% higher per-
formance than DP-Forward on the FP dataset by using the
Roberta model, demonstrating its superior capability in miti-
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Figure 5: Impact of the privacy parameter η0 on the EP against EIA and UA.

gating EIA threats.
Defend Against AIA. Fig. 3 presents the results of the

SAP framework and baselines defending against AIA on the
Blog dataset with different numbers of labeled data Nl un-
der EP = {30%, 35%}. Specifically, the attacker fine-tunes
the Roberta model using some auxiliary gender labels along
with the corresponding text representations sent by the user
to infer the gender labels of other samples. Experimental re-
sults demonstrate that SAP significantly outperforms existing
baselines under various Nl conditions, underscoring its su-
perior privacy-utility balance. This advantage is attributed
to the innovative design of the CTI mechanism and the dχ-
Privacy mechanism. Unlike baselines that rely on DP noise
to protect privacy and overlook the significance of tokens,
SAP emphasizes preserving the features of important tokens
while maintaining robust privacy through lightweight privacy
mechanisms. Furthermore, the results indicate that the attack
success rate of the attacker is positively related to the amount
of labeled data it possesses.
Privacy Evaluation on Generation Tasks. SAP’s privacy
performance is also validated on the SQuAD dataset using the
Llama-3 model for open-ended generative responses. Since
generation tasks lack classification labels, an attention-based
CTI method is employed. To calculate attention values, the
client requires encoder or decoder blocks. For a bottom
model with only an embedding layer, the client uses an open-
source model, such as Roberta-Base, as a proxy. Fig. 4
(a) shows the trade-off between utility and privacy of SAP
with different EP. We can observe that the proposed attention-
based CTI method can effectively improve the utility-privacy
trade-off of SAP on generation tasks.

5.4 Parameter Sensitivity Analysis
Impact of Split Position. In the SAP framework, the split
position of the PLM is a crucial consideration. The Roberta
model, with 24 encoder blocks, was split after the 1st to 8th
blocks in experiments, compared to a setup where only the
embedding layer constitutes the bottom model. Fig. 4 (b) il-
lustrates the impact of different split positions on EP against
EIA without text privatization. The results indicate that in-
creasing the number of encoder blocks in the bottom model
enhances privacy, making it harder for attackers to infer the
input text from transmitted representations. Empirical pri-
vacy reaches approximately 80% with 8 encoder blocks, even
without text privatization. Furthermore, we delve into the pri-
vacy protection capability and utility performance of the SAP
framework with different split positions and different privacy

parameter settings. Compared with centralized fine-tuning,
the results in the last column of Table 3 indicate that as the
number of layers included in the bottom model increases, the
UA of the SAP framework without privatization decreases
slightly while the EP increases significantly. In addition, we
can observe that by applying text privatization and reducing
the privacy parameter, EP is further strengthened, but at the
same time, the UA also decreases.

5.5 Ablation Analysis
Impact of CTI in SAP. We evaluate the performance and
security of the SAP framework under varying η0 when the
bottom model uses a frozen embedding layer. As shown in
Fig. 5, splitting the model without text privatization does not
affect performance compared to the centralized fine-tuning
accuracy. However, without privatization, embedded vectors
are vulnerable to EIA, with a 100% attack success rate. Intro-
ducing perturbations to ensure ηdχ-privacy enhances SAP’s
privacy protection. Lower η0 values improve privacy but re-
duce utility, illustrating a trade-off between utility and pri-
vacy. For instance, on the Roberta model with the FP dataset,
SAP achieves 38.85% empirical privacy with a 6.17% per-
formance drop when η0 is set to 50. Experimental results on
the Roberta and Llama models show that the frequency-based
CTI method enhances the utility-privacy trade-off in the SAP
framework for classification tasks. By adaptively adjusting
the privacy budget based on the utility importance of each to-
ken, the CTI method improves both UA and EP. Specifically,
on the Roberta model with the FP dataset and η0 set to 50, the
SAP with the CTI algorithm scheme achieves 49.98% empir-
ical privacy with only a 2.73% performance loss.

6 Conclusion
We propose a privacy-preserving fine-tuning framework,
SAP, with a utility enhancement method called CTI. SAP
splits the PLM into a top model on the vendor and a bottom
model on the customer, using adaptive text privatization to
perturb transmitted representations. This approach protects
both model and data privacy while maintaining competitive
performance. SAP is adaptable to various LLM customiza-
tion scenarios. For customers with limited resources, a frozen
embedding layer in the bottom model is recommended, en-
hancing privacy by 40% with a 4.6% performance loss on the
SST dataset. For customers with more resources, a bottom
model with 6 encoder blocks enhances privacy by 65% with
only a 1% performance degradation.
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