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Abstract

Recently, multi-view data has gradually attracted
attention. However, real-world applications often
face Partial View-aligned Problem (PVP) and Par-
tially Sample-missing Problem (PSP) due to data
loss or corruption. Existing methods addressing
PVP typically focus only on learning from the in-
formation of aligned data, while ignoring unaligned
data where samples exist but lack alignment rela-
tionships. This introduces PSP, which does not in-
herently exist in the data, leading to biased learning
of the data’s information. For PSP, due to varying
degrees of missing data, incomplete spatial struc-
tures can cause clustering centers-shifted problem,
resulting in the model learning incorrect correspon-
dences and biased spatial structures.To tackle them,
we propose a novel method called Dual Robust Un-
biased Multi-View Clustering for Incomplete and
Unpaired Information (DRUMVC). To our knowl-
edge, this is the first noise-robust and unbiased
multi-view clustering method capable of simulta-
neously addressing both PVP and PSP. Specifi-
cally, DRUMVC leverages aligned and complete
samples as a bridge to construct high-quality cor-
respondences for samples lacking cross-view re-
lationship information due to PVP or PSP. Addi-
tionally, we employ a dual noise-robust contrastive
learning loss to mitigate the impact of noise poten-
tially introduced during the pair construction. Ex-
periments on several challenging datasets demon-
strate the superiority of our proposed method.

1 Introduction
Multi-view clustering (MVC) aims to learn more accurate
common representations of multi-view data by exploiting
both the consistency and complementarity of multi-view in-
formation. However, the above methods heavily rely on the
assumptions of view consistency that is, the correspondences
between multi-view data for the same object are complete
and instance completeness that is, the multi-view data itself
is complete without missing. In real-world scenarios, how-
ever, the correspondences between multi-view data are often

Figure 1: Ignoring unaligned data is equivalent to actively causing
data to be missing in (a). Cluster centres learned from incomplete
multiview data may be shifted and lead to incorrect correspondences
in (b).

incomplete. PVC [Huang et al., 2020] provides a classic ex-
ample: due to street surveillance cameras being distributed at
different locations along a street, the target of interest may be
captured at different times and locations by different cameras.
Due to such spatial or temporal complexities, it is difficult
to obtain cross-view correspondences, leading to the issue of
PVP. Similarly, due to issues like unstable data transmission
or storage device failures, data itself may be lost, resulting in
the issue of PSP. When multi-view data is affected by PVP
or PSP, existing MVC methods tend to produce suboptimal
results.

For PVP, most existing studies rely on contrastive learn-
ing to reconstruct the alignment relationships of unaligned
data by learning the alignment relationships of known aligned
data. However, unaligned data only lacks alignment rela-
tionships, while the data itself still exists. Therefore, focus-
ing solely on the aligned data while ignoring the informa-
tion contained in the unaligned data is unreasonable. Such an
approach may inadvertently introduce PSP issues into multi-
view data that originally only had PVP issues, as illustrated
in Figure 1(a).

In recent years, various studies have proposed differ-
ent methods to address PSP, such as matrix factorization-
based methods[Li et al., 2014; Zhao et al., 2016; Shao et
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al., 2015; Hu and Chen, 2019a], incomplete multi-kernel
learning[Bach and Jordan, 2002; Liu et al., 2020], and graph-
based approaches[Wang et al., 2019; Liu et al., 2019]. How-
ever, due to the incompleteness of multi-view data, the dis-
tributions learned from incoherent data tend to be biased.
Specifically, because of missing data, the cluster centers or
prototypes of different classes within each view may shift.
When extended to the multi-view, this results in incorrect cor-
respondences between the cluster centers or prototypes of the
same class across different views, as illustrated in Figure 1(b).

Moreover, most current methods addressing PSP or PVP,
such as Deep Incomplete Multi-View Clustering (DIMVC)
[Lin et al., 2021a; Zhu et al., 2019; Wang et al., 2020; Wen et
al., 2021; Zhao et al., 2024a; Zhao et al., 2025] and Deep Par-
tial View-Alignment Clustering (DPVC) [Yang et al., 2021a;
Wang et al., 2024a; Zhao et al., 2024b], adopt a contrastive
learning approach. They treat the representations of different
views of the same sample as positive pairs, while treating the
remaining samples across different views as negative pairs.
However, among these negative pairs, there may exist sample
pairs that, while not belonging to the same sample, belong to
the same class. For clustering tasks, the model needs to learn
more about cluster-level separability. So from the perspective
of clustering tasks and clusters, this negative pair construc-
tion strategy may introduce noisy information, i.e., false neg-
atives, thereby leading to suboptimal clustering performance.

To address the aforementioned challenges, we propose a
novel method called Dual Robust Unbiased Multi-View Clus-
tering for Incomplete and Unpaired Information (DRUMVC),
which simultaneously addresses PSP and PVP within a uni-
fied framework. Specifically, to tackle the issue of incor-
rect PSP introduction in PVP and the clustering center shift
caused by missing data in PSP, we leverage complete and
aligned data within PSP or PVP, rather than relying on clus-
tering centers, as an anchor set to explore similarity relation-
ships with the complete dataset. This approach avoids the
learning of erroneous correspondence information caused by
clustering center shifts.

Furthermore, we propagate anchor graph information
across views based on the assumption of semantic con-
sistency [Wang et al., 2022a], thereby constructing high-
quality cross-view correspondences for incomplete and un-
paired data. This enables the integration of incomplete and
unpaired data into the model’s learning process, while also
addressing clustering center shift issues by compensating for
the missing cross-view correspondences in incomplete data.

Moreover, to mitigate the impact of noise in sample con-
struction, we also design a dual noise-robust contrastive
learning loss. This loss aims to reduce the introduction of
noise and alleviate the effect of false negatives on model
training, both during sample pair construction and through-
out the contrastive learning process. Leveraging these mod-
ules, DRUMVC is capable of learning more complete and
robust consistency information for multi-view data, thereby
achieving class-level cross-view correspondence reconstruc-
tion. The contributions of this work can be summarized as
follows:

• We propose an unbiased multi-view representation
learning module that constructs an anchor graph for the

entire dataset by leveraging aligned and complete data
as the anchor set. Then through cross-view propagation,
it establishes high-quality cross-view correspondences
for unaligned and incomplete data, thereby incorporat-
ing data with PVP and PSP into the model’s learning
process. This approach effectively avoids issues such as
the erroneous introduction of PSP in PVP methods and
clustering center shifts.

• From the perspectives of sample pair construction and
model learning, we design a dual noise-robust con-
trastive learning loss. By exploiting the neighborhood
information of complete and aligned data, the method
filters out most of the noise introduced by random neg-
ative sample selection. Additionally, based on the simi-
larity assumption for positive and negative samples (i.e.,
samples of the same class should be close in high-
dimensional space, while samples of different classes
should be far apart), we construct a novel contrastive
loss to mitigate or even eliminate the impact of false neg-
atives during model training.

• We conduct extensive experiments on several commonly
used real-world datasets under various scenarios, includ-
ing PVP, PSP, and their simultaneous presence. The
proposed method consistently achieves state-of-the-art
performance. Moreover, the model demonstrates ex-
ceptional clustering performance even when the data is
severely corrupted.

2 Method
In this section, we provide a detailed introduction to the pro-
posed DRUMVC, designed to simultaneously address both
incompleteness and unalignment issues. First, we describe
PSP and PVP that needs to be addressed. Then, the imple-
mentation process of the model is elaborated in the subse-
quent three sections. The overall model architecture is illus-
trated in Figure 2.

2.1 Problem Formulation
For {X(v)}Vv=1 = {x(v)1 , x

(v)
2 , . . . , x

(v)
N }Vv=1 a given multi-

view dataset, where V represents the number of views, N
denotes the number of samples in each view, and X(v) ∈
RN×D.Due to the presence of PVP and PSP, the original data
can be divided into {S(v)}Vv=1 = {s(v)1 , s

(v)
2 , . . . , s

(v)
NAC

}Vv=1

and {W(v)}Vv=1 = {w(v)
1 ,w

(v)
2 , . . . ,w

(v)
NUI

}Vv=1, where
NAC +NUI = N . The sets {S(v)}Vv=1 and {W (v)}Vv=1 rep-
resent complete and aligned data, and data affected by PSP,
PVP, or both, respectively. In this paper, we reorganize the
multi-view dataset such that the complete and aligned data
is placed in the first part, while the data with PVP, PSP, or
both is placed in the latter part. Thus, we have {X(v)}Vv=1 =
{S(v),W (v)}Vv=1.

2.2 Mutual Information-like Representation
Learning

Data samples from different views often differ in dimen-
sionality due to variations in the inherent structure of the
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Figure 2: The overall framework of the proposed DRUMVC. We utilize the combined effect of three modules: Mutual Information-like
Representation Learning, Unbiased Multi-View Representation Learning, and Dual Noise Robust Contrastive Learning to learn accurate and
complete latent representations in the presence of both PSP and PVP. After training, we impute and realign latent representations and apply
them to the clustering task.

data. Additionally, real-world multi-view data typically ex-
hibit high dimensionality. As a result, directly processing the
raw data not only suffers from the impact of redundant in-
formation but also incurs high computational complexity in
terms of both time and space. To address these, We will de-
rive the latent representation Z(v) for each view using a set of
view-specific encoders:

Z(v) = fv
θf

(
X(v)

)
(1)

where θv is the network layer parameters of encoder.
Since the original data {X(v)}Vv=1 can be divided into

two parts, {S(v)}Vv=1 and {W(v)}Vv=1, the corresponding
{Z(v)}Vv=1 can similarly be divided into two parts, {Z(v)

s }Vv=1

and {Z(v)
w }Vv=1. It is worth noting that, in recent years, recon-

struction loss based on information theory [Oord et al., 2018;
He et al., 2020] has garnered increasing attention:

Lit =−
NAC∑
t=1

(
I
(
Z(i)
st , Z

(j)
st

))
− α

(
H

(
Z(i)
st

)
+H

(
Z(j)
st

)) (2)

where I represents mutual information, and NAC refers to
the number of aligned and complete samples. By maximizing
the mutual information between data from different views,
the consistency information across views can be effectively
explored.

Leveraging the concept of mutual information, we no
longer directly feed the latent representations of multiple
views into their respective decoders. Instead, we concate-
nate the latent representations of multiple views, denoted as
{Z(v)

s }Vv=1, and feed the concatenated representation into the
decoders. Consequently, the overall loss for this module is:

LMIL =
1

V

V∑
v=1

L
(v)
MIL

=
1

V

V∑
v=1

∥S(v) − gvθg ([Z
(1)
s , Z(2)

s , · · · , Z(v)
s ])∥2F

(3)
where [...] represents the concatenation operation for multi-
view data, and θg denotes the learnable parameters of the de-
coder.

2.3 Unbiased Multi-View Representation Learning
When multi-view data simultaneously suffers from both in-
completeness and unalignment, the situation becomes even
more complex. The corrupted data is difficult to explore for
multi-view consistency information because it not only has
missing data but also lacks cross-view correspondences. Fur-
thermore, when the proportion of incomplete and unaligned
data exceeds 50%, it becomes unreasonable to infer over-
all data information using only a small portion of the data.
Therefore, we propose an unbiased multi-view representation
learning approach to complete the missing and misaligned
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data, enabling the model to go beyond learning only from the
aligned and complete portions of the data.

We use complete and aligned data {S(v)}Vv=1 as the anchor
set {A(v)}Vv=1 to measure the similarity relationship between
the data within each view and the anchors. The anchor graph
C(v) ∈ RN×NAC is defined as:

C
(v)
ij =


Kδ(x

(v)
i ,a

(v)
j )∑

j∈(i)v Kδ(x
(v)
i ,a

(v)
j )

, ∀j ∈ ⟨i⟩v

0, otherwise
(4)

where ⟨i⟩v denotes the index set of the m (m << n) nearest
anchors to x

(v)
i , determined using a distance function such as

the l2 distance. Although the anchor graph C(v) has NAC

columns, each row contains only m non-zero values that sum
to 1. To conserve space, the zero values can be omitted, re-
ducing the graph to the form RN×m. However, for the sake of
clarity and to facilitate understanding in subsequent descrip-
tions, we choose to retain the zero values in the paper. Fur-
thermore, Kδ

(
x
(v)
i , a

(v)
j

)
= exp(−D2(x

(v)
i , a

(v)
j )/σ2) is a

commonly used Gaussian kernel function with a bandwidth
parameter δ.

We achieve learning from incomplete and unaligned data
by leveraging the information contained in the anchor graph
C(v). Specifically, As AMCP [Zhao et al., 2024c] says, if
the corresponding samples in different views of multi-view
data describe the same object in different forms, these cor-
responding samples across multiple views are not only simi-
lar themselves but also exhibit similar neighborhood informa-
tion. When extended to incomplete and unaligned data, even
if a sample in one view cannot find its corresponding sam-
ple due to PVP or PSP, we can reasonably infer the spatial
neighborhood information of its corresponding sample based
on the neighborhood information of the given sample. This
enables the cross-view transfer of neighborhood structures.

Moreover, due to our anchor selection strategy and the con-
sistency assumption of multi-view data [Luo et al., 2018],
aligned and complete data across different views are expected
to be similar. Consequently, by leveraging the alignment re-
lationships of anchors and the cross-view transfer of neigh-
borhood structures, we can construct high-quality cross-view
correspondences for misaligned and incomplete data.

Z(j)
c = C

(i)
[NAC :,:] · Z

(j)
s (5)

where [NAC :, :] refers to the rows of anchor graph informa-
tion corresponding to incomplete and unaligned data in the
i-th view. Z(j)

s represents the aligned and complete samples
and anchor set in the j-th view. Meanwhile, Z

(j)
c is con-

structed in the j-th view based on the neighborhood infor-
mation of incomplete and unaligned data from the i-th view,
forming cross-view correspondences.

Thus, incomplete and unaligned data can also be incorpo-
rated into the scope of model learning. However, as cross-
view correspondences are constructed through the transfer of
cross-view neighborhood structures, minimizing the spatial
distance between them is not appropriate. Instead, we pro-
pose optimizing it to a boundary using a bounded contrastive

learning loss.

L
(v)
t =

1

V − 1

V∑
j ̸=i

|
∥∥∥z(i)wt

− z(j)ct

∥∥∥
2
− a| (6)

where a is the boundary of similarity. Extending this to the
entire view, the overall loss of this module is:

LUMR =
1

V NUI

V∑
v=1

NUI∑
t=1

L
(v)
t (7)

2.4 Dual Noise Robust Contrastive Learning
To mitigate or even eliminate the impact of false nega-
tives, we designed a Dual Noise-Robust Contrastive Learning
(DRC) loss from two perspectives: sample pair construction
and the contrastive learning process.

LDRC =
1

NACV

V∑
v=1

NAC∑
i=1

(PL(v)
pi

+ (1− P )L(v)
ni

) (8)

where P = 1/0 for positive/negative pairs, L(v)
pi will take

effects when the pairs are positive, and L
(v)
ni acts on negative

pairs.
For the anchor graph C(v) computed in the above module,

since aligned and complete data are used as the anchor set,
the similarity relationships corresponding to this part of the
data in C(v) can essentially be transformed into the spatial
structural information of the aligned and complete data within
the view. In other words, each sample can derive its similarity
relationships with its top m closest samples through C(v).

To further process the aligned and complete samples in
each view, we define an index set ⟨k⟩vi , to store the index in-
formation of the top K (K ≤ m) nearest neighbors for each
sample. Additionally, based on the assumption of semantic
consistency [Wang et al., 2022b], neighborhood information
within a view can be transferred across views and converted
into adjacency relationships with cross-view samples.

Thus, for aligned and complete data, besides the explicit
cross-view corresponding samples that can serve as positive
sample pairs, the cross-view neighborhood information also
contains implicit positive sample pair information. Finally,
we mine the consistency information of multi-view data by
minimizing the distance between these relationships:

L(v)
pi

=
1

V − 1

V∑
j ̸=i

∥∥∥z(i)st − z(j)st

∥∥∥2
2

+ β · 1

(V − 1)K

V∑
j ̸=i

K∑
k=1

∥∥∥z(i)st − z(j)pk

∥∥∥2
2

(9)

where z
(i)
st represents the t-th aligned and complete sample

in the i-th view, while z
(j)
pk denotes the k-th indirect positive

sample identified in the j-th view based on the cross-view
index set ⟨k⟩vi . β is a hyperparameter.

Additionally, by learning positive sample pairs, the model
can further leverage the consistency information across mul-
tiple views, improving the accuracy and reliability of cross-
view information transfer in unbiased multi-view representa-
tion learning.
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(a) (b)

Figure 3: The performance surface of the loss function L
(v)
ni in 2D

and 3D

Moreover, the cross-view index set ⟨k⟩vi is not only uti-
lized to mine indirect positive sample pair information across
views but also serves to reduce the introduction of noisy in-
formation during sample pair construction. Specifically, for
each aligned and complete sample z(i)st as the anchor, M neg-
ative samples z(j)n are randomly selected from the aligned and
complete data across views, with the constraint that the cross-
view negative samples n /∈ ⟨k⟩it. By preliminarily filtering
neighborhood information, this approach effectively reduces
the introduction of false negative pair information to some
extent. Furthermore, we designed a noise-robust contrastive
learning loss to mitigate or even eliminate the impact of false
negative pairs during the model training process:

L(v)
ni

=

{
sin

(
π
md

(2md − d)
)
, 0 < d < md

md − d+ c, md ≤ d ≤ 2md

(10)

where d refers to the Euclidean distance between the negative
sample pair z(i)st and z

(j)
n , c is a constant and md is a distance

margin that is calculated only once during the initial stage
using the following formula:

md =
1

Np
Σ
∥∥∥z(i)st − z(j)st

∥∥∥2
2
+

1

Nn
Σ
∥∥∥z(i)st − z(j)n

∥∥∥2
2

(11)

where Np refers to the total number of explicit positive sam-
ple pairs, while Nn represents the total number of negative
sample pairs.

Next, we will demonstrate the noise robustness of the loss
function using the visualizations in Figure 3. When the dis-
tance between negative sample pairs lies within the range
[0,md], the gradient of our loss function differs from that of
conventional contrastive learning loss functions. The latter
simply aims to increase the distance between negative pairs,
failing to mitigate the impact of noisy negative pairs. For false
negative pairs (FNP) within [0,md/2], they are considered to
belong to the same class but not the same sample, with rela-
tively small distances. While the objective of reconstructing
class-level relationships may require reducing these distances
as much as possible, it is still necessary to preserve the dis-
criminative information within the same class cluster to ex-
tract more accurate spatial structural information. Therefore,
for FNP within [0,md/2], we moderately increase their dis-
tance.For FNP within the range [md/2,md], instead of sim-
ply pushing them apart as in conventional contrastive learning
loss functions, we reverse their gradients and gradually pull
them closer. This approach enhances the model’s robustness

to noise introduced by random sampling. For negative pairs
within the range [md, 2md], we directly push their distances
apart.

Considering that a small number of TNP may exist within
[0,md], the loss functions designed for explicit and indirect
positive pairs, along with the unbiased multi-view represen-
tation learning module, enable the model to learn sufficient
consistency information between samples. For TNP with rel-
atively large distances, the model has already learned the dis-
criminative information between negative sample pairs, giv-
ing it the ability to distinguish true negative pairs. Addition-
ally, compared to L

(v)
pi , which focuses on the quadratic term

of the sample pairs, L(v)
ni focuses only on the linear term of the

distance for negative pairs. Furthermore, the gradient of L(v)
ni

within [0,md] has a maximum value of just 1. As a result, the
small number of TNP within [0,md] will not be optimized in
the wrong direction due to the small reverse gradient.

Overall, the loss function is as follows:

L = LMIL + λLUMR + LDRC (12)

Once the model converges, the cross-view correspondence
for incomplete data is determined by calculating the distance
matrix D between views. The mean of the neighboring data
points is used for imputation. For PVP, the nearest sample
across views is selected as the correspondence.

3 Experiments
3.1 Experimental Settings
In this study, we utilized four multi-view datasets: Scene15
[Fei-Fei and Perona, 2005], Reuters [Amini et al., 2009],
NoisyMNIST [Wang et al., 2015], and MNIST-USPS [Peng
et al., 2019]. A brief description of each dataset is provided
in Table 1.

In this paper, we conduct experiments on multi-view
datasets with an alignment rate of 0.5, a completeness rate
of 0.5, and various scenarios of unaligned incomplete multi-
view datasets. The primary evaluation metrics include Ac-
curacy (ACC), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI). Higher values for these metrics
indicate better clustering performance.

3.2 Comparisons with State of the Arts
Based on various settings, we compared DRUMVC with 18
latest state-of-the-art multi-view clustering baselines, includ-
ing BMVC [Zhang et al., 2018], AE2-Nets [Zhang et al.,
2019], PVC [Huang et al., 2020], MvCLN [Yang et al.,
2021b], EGPVC [Zhao et al., 2023], GCFAgg [Yan et al.,
2023], CMK [Liu et al., 2023], SURE [Yang et al., 2022],

Datasets Samples Classes Features

Scene15 4485 15 {20,59}
Reuters 18758 6 {10,10}

NoisyMNIST 30000 10 {784,784}
MNISTUSPS 5000 10 {784,256}

Table 1: Statistics of the datasets.
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Setting Method Scene15 Reuters NoisyMNIST MNIST-USPS
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Unpaired

BMVC 36.81 36.55 20.20 38.15 11.57 12.07 28.34 24.69 14.19 36.90 15.90 12.10
AE2-Nets 28.56 26.58 12.96 35.49 10.61 8.07 38.25 34.32 22.02 37.60 23.90 16.10

PVC 37.88 39.12 20.63 42.07 20.43 16.95 81.84 82.29 82.03 86.54 78.08 74.60
MvCLN 38.53 39.90 24.26 50.16 30.65 24.90 91.05 84.15 83.56 89.96 81.36 80.40
EGPVC 37.30 38.82 19.21 39.49 18.68 14.19 - - - 78.52 70.50 61.11
GCFAgg 41.32 42.29 24.67 58.18 38.54 34.42 91.89 85.03 85.18 90.17 82.89 83.21

CMK 40.51 42.12 25.38 59.48 38.94 31.54 93.60 86.41 86.89 92.35 83.72 84.38
SURE 40.32 40.33 23.08 49.99 29.46 24.60 95.17 88.24 89.72 92.14 82.83 83.47
OTGM 41.63 42.05 22.57 51.82 27.83 15.23 - - - 87.62 83.86 80.74
NCL 44.57 43.93 26.46 64.51 43.88 38.87 96.00 89.93 91.46 95.60 89.23 90.50
Ours 45.33 42.83 26.79 65.13 43.59 39.70 96.33 90.61 92.15 96.06 90.46 91.49

Incomplete

AE2-Nets 22.44 23.43 9.56 29.08 7.55 4.84 29.88 23.78 11.81 40.90 29.30 19.70
PMVC 25.47 25.37 11.31 29.32 7.42 4.42 33.13 25.49 14.62 60.50 47.10 39.80
UEAF 28.95 26.92 8.37 33.32 20.06 12.19 37.45 34.42 25.71 63.32 58.86 49.23

DAIMC 27.00 23.47 10.62 40.94 18.66 15.04 33.81 26.42 15.96 55.20 49.60 38.60
EERIMVC 31.50 31.11 14.82 29.77 12.01 4.21 55.62 45.92 36.76 65.20 55.70 48.90

COMPLETER 39.50 42.35 23.51 34.61 17.53 2.93 80.01 75.23 70.66 88.91 89.52 85.31
SURE 39.60 41.58 23.49 47.18 30.89 23.32 92.34 84.99 84.31 92.34 84.99 84.31

DSIMVC 30.56 35.47 17.24 39.87 19.61 17.13 57.47 55.12 44.08 96.71 91.82 92.98
ProImp 41.58 42.86 25.31 51.89 35.54 28.53 94.86 87.43 89.08 96.81 91.85 93.06
DIVIDE 45.53 45.53 28.35 54.70 37.30 28.60 51.82 49.24 29.95 92.34 83.77 83.87

Ours 47.34 44.72 28.48 65.27 44.27 40.54 95.18 88.26 89.78 97.38 93.28 94.28

Table 2: The clustering performance on four multi-view benchmarks with 0.5 align or 0.5 complete rate.

OTGM [Wang et al., 2024b], NC3L [Qian et al., 2024],
PMVC [Li et al., 2014], UEAF [Wen et al., 2019], DAIMC
[Hu and Chen, 2019b], EERIMVC [Liu et al., 2020], COM-
PLETER [Lin et al., 2021b], DSIMVC [Tang and Liu, 2022],
ProImp [Li et al., 2023], and DIVIDE [Lu et al., 2024]. The
best experimental results are in bold, with the second-best
results marked using an underscore ’ ’. A dash ’-’ denotes
impractical methods due to excessive time or memory con-
sumption.

Since some of the comparison algorithms were not specif-
ically designed for the PVP or PSP problems, we adopted
the same approach as SURE. For partially aligned multi-view
datasets, we used the Hungarian algorithm to realign the data
before inputting it into the relevant models. In the case of in-
complete multi-view datasets, we employed the mean value
within each view for data imputation.

As shown in Table 2, our model achieves satisfactory ex-
perimental results in both settings compared to existing state-
of-the-art algorithms for PVP or PSP. Although the per-
formance improvement in unpaired setting over the NC3L
model is not particularly significant, the lightweight nature
of DRUMVC stands in contrast to the complex mathemat-
ical derivation process utilized by NC3L. Furthermore, in
the challenging context of the incomplete multi-view dataset
Reuters, DRUMVC exhibited a minimum of 19% improve-
ment across all three metrics. These experimental findings
validate the capability of DRUMVC to effectively mitigate
data missing or unpaired challenges in multi-view datasets.

As of now, SURE is the only effective method that can
address both PVP and PSP. Therefore, we follow up with
experimental comparisons with it in a variety of PVP and
PSP ratio scenarios. Table 3 reveals that, in comparison to

SURE, DRUMVC yielded consistently optimal experimental
outcomes across all datasets, accompanied by significant im-
provements. Notably, when data corruption was more severe,
such as alignment rates of only 0.1 with completeness levels
of 0.5 or 0.7, owing to its unbiased multi-view representa-
tion learning module (as detailed in Section 2.3), DRUMVC
demonstrated an enhanced capacity to learn more comprehen-
sive data information compared to other models. In particu-
lar, on the Noisymnist and NNIST-USPS datasets, when the
alignment rate was 0.1 and the completeness level was 0.5,
DRUMVC achieved a remarkable improvement of 81.15%
in ACC, 92.30% in NMI, and an astonishing 156.67% in
ARI on the Noisymnist dataset. Similarly, on the NNIST-
USPS dataset, it achieves a 57.15% improvement in ACC, a
72.02% improvement in NMI, and a dramatic 110.66% im-
provement in ARI. These results not only demonstrate the ef-
fectiveness of DRUMVC in addressing the simultaneous oc-
currences of incompleteness and misalignment but also high-
light our model’s ability to maintain commendable clustering
performance even in the presence of severe data degradation.

3.3 Ablation Study and Parameters Analysis
To validate the effectiveness of the designed modules, we
conducted ablation experiments on three loss functions:
LMIL, LUMR, and LDRC . The LMIL loss function lever-
ages the concept of class mutual information to extract the
consistency information of multi-view data; LUMR is em-
ployed to ensure that the model learns unbiased spatial struc-
tural information and comprehensive consistency informa-
tion; while LDRC aims to reduce, or even eliminate, the im-
pact of false negatives on noise. Table 4 indicates that the
model’s performance reaches its optimal level when all three
losses are applied in conjunction.
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Complete rate Align rate Method Scene-15 Reuters NoisyMNIST MNIST-USPS
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.5

0.1 SURE 25.22 19.32 10.06 36.89 15.43 11.18 38.47 23.89 17.42 42.90 25.41 19.60
Ours 30.79 21.07 12.88 47.31 18.81 19.25 69.69 45.94 44.71 67.42 43.71 41.29

0.3 SURE 33.62 26.82 15.45 40.44 22.04 17.92 73.65 53.57 52.22 72.67 50.96 49.69
Ours 35.05 27.00 16.00 54.58 25.18 24.77 78.93 58.03 58.84 78.78 58.20 58.54

0.5 SURE 36.57 30.43 17.84 43.98 20.65 16.65 84.94 67.54 69.42 83.02 65.30 66.07
Ours 40.58 32.08 20.45 58.58 30.51 29.96 85.77 68.82 70.93 85.88 69.42 71.09

0.7 SURE 37.30 35.05 21.71 44.74 23.45 19.83 90.60 77.72 80.26 90.18 77.33 79.37
Ours 41.05 35.73 21.81 59.68 32.85 32.04 91.21 78.86 81.44 91.22 79.47 81.72

0.7

0.1 SURE 31.19 24.00 12.96 39.66 18.73 15.10 39.27 29.96 22.15 41.38 30.21 22.30
Ours 32.55 26.21 15.84 50.71 21.99 23.41 76.19 55.85 55.06 73.36 52.94 50.58

0.3 SURE 35.92 30.19 18.31 47.52 21.19 17.35 73.84 58.70 55.77 63.75 47.03 41.86
Ours 37.57 31.29 19.04 55.46 27.20 27.37 85.04 68.09 69.77 83.94 66.91 67.68

0.5 SURE 35.43 33.41 19.31 43.18 26.25 20.58 88.38 73.88 76.00 86.94 71.78 73.22
Ours 41.20 35.05 21.88 58.73 32.01 30.53 89.71 76.09 78.51 90.10 77.28 79.33

0.7 SURE 39.09 37.58 22.02 43.93 25.19 22.52 93.48 83.63 86.07 92.78 82.39 84.62
Ours 43.37 38.99 24.22 60.64 37.20 34.56 93.75 84.11 86.61 93.88 84.64 86.85

Table 3: The clustering performance on four datasets under both PVP and PSP.

LMIL LUMR LDRC ACC NMI ARI

✓ ✓ 23.95 18.63 8.53
✓ ✓ 34.47 31.41 18.45

✓ ✓ 36.72 31.64 18.78
✓ ✓ ✓ 40.58 32.08 20.45

Table 4: Ablation studies on Scene15.

(a) (b)

Figure 4: Analysis of model parameters on Scene-15.

Similarly, we evaluated the model’s performance under
various combinations of hyperparameters with 0.5 paired and
complete rate. As shown in Figure 4, our model exhibits ro-
bust performance concerning the chosen hyperparameters.

3.4 Visualization Results
We present a visualization of the clustering results for SURE
and our model DRUMVC on the Noisymnist datasets, both
characterized by alignment and completeness rates of 0.5.
Figure 5 shows that DRUMVC effectively learns more com-
prehensive spatial structural information and unbiased con-
sistency information through its unbiased multi-view repre-
sentation learning module. It also shows the dual noise-robust
contrastive learning module significantly mitigates the impact
of false negatives. Consequently, the clustering outcomes
produced by DRUMVC do not exhibit instances of data par-

(a) (b)

Figure 5: SURE as (a) and Ours as (b) Clustering Visualisation in
NoisyMNIST.

titioning within the same class, in contrast to SURE. Further-
more, due to the model’s ability to learn complete data in-
formation, the cluster centroids within each class Cluster are
more accurate.

4 Conclusion
To mitigate the erroneous introduction of PSP in PVP
datasets, address the issue of cluster centroid displacement
caused by data incompleteness, and tackle the presence of
noise in sample pair construction, we presented a novel al-
gorithm, DRUMVC, capable of simultaneously addressing
both PSP and PVP challenges. By incorporating problematic
data into the model’s learning process, DRUMVC enables the
model to acquire a more comprehensive understanding of the
data information. Furthermore, by utilizing neighborhood
information and spatial distance to implement a dual noise-
robust contrastive loss, the algorithm effectively reduces the
impact of noise on data information extraction. Through
the synergistic interaction of multiple modules, DRUMVC
achieves satisfactory clustering performance across various
datasets.
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