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Abstract

Knowledge tracing (KT) aims to predict learners’
future performance based on historical learning in-
teractions. However, existing KT models predom-
inantly focus on data from a single course, lim-
iting their ability to capture a comprehensive un-
derstanding of learners’ knowledge states. In this
paper, we propose TransKT, a contrastive cross-
course knowledge tracing method that leverages
concept graph guided knowledge transfer to model
the relationships between learning behaviors across
different courses, thereby enhancing knowledge
state estimation. Specifically, TransKT constructs a
cross-course concept graph by leveraging zero-shot
Large Language Model (LLM) prompts to estab-
lish implicit links between related concepts across
different courses. This graph serves as the foun-
dation for knowledge transfer, enabling the model
to integrate and enhance the semantic features of
learners’ interactions across courses. Furthermore,
TransKT includes an LLM-to-LM pipeline for in-
corporating summarized semantic features, which
significantly improves the performance of Graph
Convolutional Networks (GCNs) used for knowl-
edge transfer. Additionally, TransKT employs a
contrastive objective that aligns single-course and
cross-course knowledge states, thereby refining the
model’s ability to provide a more robust and ac-
curate representation of learners’ overall knowl-
edge states. Our code and datasets are available at
https://github.com/DQYZHWK/TransKT/.

1 Introduction

The popularity of massive open online courses (MOOCs) has
expanded access to diverse educational resources, resulting in
the accumulation of vast datasets on learner behaviors [Ghosh
et al., 2020; Wang et al., 2024; Zhou et al., 2025a]. This has
led to the emergence of knowledge tracing (KT) as a criti-
cal technique for analyzing learners’ behaviors, with the goal
of providing personalized learning experiences. KT aims to
predict a learner’s future performance (i.e., the probability of
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Figure 1: An illustrative example of Cross-Course Knowledge Trac-
ing, where each question is associated with one or more concepts.
X denotes C Programming course, and Y denotes Data Structure
and Algorithm Analysis course.

correctly answering new questions), by dynamically assess-
ing their knowledge state based on historical interactions.

Most existing KT models [Ghosh et al., 2020; Huang et
al., 2023; Liu et al., 2023a; Zhou et al., 2024; Zhou et al.,
2025b] are developed based on data from a single course, lim-
iting their ability to capture overall knowledge state across
different courses. This paradigm often results in a frag-
mented understanding, as in practice, learners frequently en-
gage with multiple courses simultaneously [Simamora, 2020;
Hu et al., 2023]. The cumulative effect of these varied learn-
ing experiences plays a crucial role in shaping a comprehen-
sive knowledge state. In such cases, a single-course focus
may lead to unstable and suboptimal predictions, overlook-
ing the interdependencies and transferability of knowledge
across different courses. For example, as shown in Figure 1,
while Course X and Course Y might not share direct con-
cepts, implicit connections (indicated by the yellow dashed
line) between their respective concepts could significantly in-
fluence a learner’s overall proficiency. This interconnected-
ness highlights the importance of considering learners’ expe-
riences across multiple courses to gain a comprehensive un-
derstanding of their knowledge states.

To bridge this gap, we introduce a novel task called cross-
course knowledge tracing (CCKT), which aims to enhance
knowledge state estimation by leveraging the relationships
between learning behaviors across different courses. For ex-
ample, by considering a learner’s historical interactions in
both Course X and Course Y, the goal of CCKT is to pre-
dict the probability that the learner can correctly answer the
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future question, such as g3 .

However, CCKT is not a trivial task and presents signif-
icant challenges. Firstly, the connections between concepts
are often sparse, especially when comparing concepts from
different courses. This scarcity makes it difficult to transfer a
learner’s proficiency in one concept to potentially related con-
cepts in another course. Secondly, while integrating knowl-
edge states across multiple courses provides a more compre-
hensive view, it can also introduce noise from unrelated inter-
actions. Therefore, effectively synthesizing learners’ knowl-
edge states within and across courses to achieve a robust rep-
resentation remains another key challenge in CCKT.

To address these challenges, we propose a contrastive
cross-course knowledge tracing model via concept graph
guided knowledge transfer (denoted as TransKT). As shown
in Figure 2, TransKT predicts learners’ performance on fu-
ture questions in a course by analyzing their historical learn-
ing interactions across multiple courses. Specifically, to ad-
dress the first challenge, we introduce a cross-course con-
cept graph construction module that establishes implicit links
between intra-course and inter-course concepts by an ad-
vanced Large Language Model (LLM). Furthermore, based
on the constructed cross-course concept graph, we propose a
semantic-enhanced knowledge transfer module, which lever-
ages an LLM-to-LMpipeline to summarize and extract rich
semantic features, which are then utilized to enhance the
performance of Graph Convolutional Networks (GCNs) in
cross-course knowledge transfer. Additionally, we derive the
learner’s knowledge state based on their learning history. Fi-
nally, to overcome the second challenge, we propose a cross-
course contrastive objective with hybrid hard negative sam-
pling strategy to maximize the mutual information between
single-course and cross-course knowledge states. This objec-
tive aims to encourage the correlation of learners’ knowledge
states within and across courses for a more robust knowl-
edge state representation. To demonstrate the validity of our
model, we utilize the publicly available PTADisc [Hu et al.,
2023] dataset to derive three cross-course KT datasets and use
the state-of-the-art KT models for comparison.

The contributions of this paper can be summarized as:

* Motivation. This study advances cross-course knowl-
edge tracing, underscoring the critical importance
of modeling knowledge acquisition across multiple
courses. To the best of our knowledge, the proposed
TransKT model represents the first systematic effort to
investigate knowledge tracing within a multi-course con-
text, offering novel insights and methodologies for this
unexplored yet significant area.

e Method. We introduce TransKT, a novel model for
cross-course knowledge tracing designed to address the
challenges of sparse connections and potential noise in
cross-course integration. Firstly, we construct a cross-
course concept graph with aligned semantics using an
LLM-to-LM pipeline, enabling semantic-based knowl-
edge transfer across courses via graph convolutional net-
works (GCNs). Secondly, we propose a cross-course
contrastive objective that aligns single-course knowl-
edge state representations with their cross-course coun-

terparts, enhancing the robustness and coherence of
the synthesized knowledge states. Additionally, as a
content-based approach, TransKT allows new questions
or concepts to be incorporated without any additional
training, offering a significant advantage over traditional
ID-based knowledge tracing methods.

* Experiments. Extensive experiments on three cross-
course knowledge tracing datasets, demonstrating the
superiority of TransKT over state-of-the-art baselines.

2 Related Works

2.1 Deep Learning Based Knowledge Tracing

Inspired by deep learning [LeCun et al., 2015], recent knowl-
edge tracing models generally apply deep learning technol-
ogy. DKT [Piech et al., 2015] stands out as a representative
method, employing Long Short-Term Memory to predict the
probability of correct responses at each time step. Inspired
by memory-augmented neural networks, DKVMN [Zhang et
al., 2017] directly predicts learners’ knowledge mastery lev-
els based on the values of a dynamic memory matrix, consti-
tuting an extension method within the DKT framework. Fur-
thermore, several studies [Ghosh et al., 2020; Chen et al.,
2023] have sought to integrate attention mechanisms into KT
models following the emergence of the transformer architec-
ture [Vaswani et al., 2017]. The basic idea of these methods
is to assign different attention weights to questions in a series
of interactions. Additionally, recent studies [Lee et al., 2022;
Yin et al., 2023; Zhou et al., 2025b] have considered incor-
porating contrastive learning into the training of KT mod-
els to maintain the stability of knowledge state diagnostics.
However, existing KT methods only consider learners’ in-
teractions within a single course, overlooking the transfer of
knowledge between courses.

2.2 Text-attributed Graph Representation
Learning

Text-attributed graph (TAG) representation learning is an
emerging field that integrates graph based learning with nat-
ural language processing to effectively utilize text attributes
in graph-structured data. Recent research has used deep em-
bedding techniques, leveraging pre-trained language models
(LMs) like BERT [Devlin et al., 2018] to generate rich node
embeddings that encapsulate the semantic depth of text at-
tributes. Approaches such as TextGNN [Zhu et al., 2021] and
GIANT [Chien et al., 2021] have demonstrated significant
performance improvements by integrating LM-based embed-
dings with graph neural networks (GNNs). The incorporation
of large language models (LLMs) such as ChatGPT [Mann
et al., 20201, presents new opportunities for enhancing TAG-
related tasks [Lv et al., 2024; Dai et al., 2024; Wu et al., 2024;
Guo et al., 2025]. TAPE [He et al., 2023] is a representa-
tive method that prompts an LLM for zero-shot classifica-
tion explanations and then using an LLM-to-LM interpreter
to translate these explanations into informative features for
enhancing GNN performance. Although these strategies per-
form well in TAG-related tasks, the application of this idea
to cross-course knowledge tracing, where the concept graphs
of different courses are independent and the question textual
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Figure 2: The overview of the proposed TransKT model is shown in (a). The construction of the cross-course concept graph is illustrated in
(b). The pipeline of semantic-enhanced knowledge transfer is depicted in (c).

contents of different courses vary greatly in form, has not
been explored.

3 Preliminary

Knowledge Tracing (KT) involves tracing learners’
knowledge states and predicting their future performance
over time. Formally, assuming there is a course with a total
of n learners, m questions, and k£ concepts, which can be
denoted as S = {s1,82,...,5,}, @ =1{q1,¢2,---,9m}, and
C ={ci,ca,...,cp} respectively. The interaction records of
the learner are denoted as R, which is a sequence of tuples
(g,7), where ¢ € Q and r indicates the binary correctness
of the learner’s response to the question gq. Each question
is associated with one or more concepts. To simplify the
explanation, we use {c} to represent the set of concepts
associated with question q. KT aims to predict the probability
that a learner will correctly answer the next question ¢ € Q
by utilizing historical interaction records R.

Cross-Course Knowledge Tracing (CCKT) focuses on
predicting a learner’s performance on a new question
based on their interleaved interaction records from mul-
tiple courses. In a simplified scenario where learners’
interaction records involve two courses, denoted as X

and Y, giVel’l RX = [(qf(ﬂq{()f o a(qr)z(xﬂd'r)fx)] and
RY = [(a,m)),--- . (qr, 7y, )], representing the inter-

action records of the learner in courses X and Y, re-

spectively.  The interaction records from both courses

are merged in chronological order, forming RXYY =
X X Y .Y Y Y

[(QI yT1 )7 Tty (ql yT'1 )7 Tty (qnyaTny)]nx+nY' We use

a padding strategy to align the interaction records of
{RX,RY,RXVY}. CCKT aims to predict the probability
that the learner will correctly answer the next question qffx 11

(or q}fy 1 1) based on the observed interaction records, which

can be formulated as p(ry ,=1|R* ,RY RXY ¢X )

(or P(TY 1=1 |RX7 RY, RXWY, qu-«-l))-

ny +

An example of padding for an interaction sequence of length 5:
RX = [(qf(» Tf()7 pad, pad, (qf, 7"5()7 (Q§(7 7“?)];
RY =1pad, (g1 ,r1 ), (g2 72 ), pad, pad];
RXUY = [(Qf(ﬂ”f()v (qf, 7"%/)7 (qu 7'%/)7 (qf,rﬁ(), (q:)),(, 7”3%()]

4 Methodology

In this section, we present the overview of our TransKT
model (Shown in Figure 2(a)). Initially, a cross-course con-
cept graph is constructed by predicting concept relations us-
ing zero-shot prompting Large Language Models (LLMs)
(§4.1). Subsequently, based on the constructed graph, Tran-
sKT incorporates a semantic-enhanced knowledge transfer
module (§4.2) that utilizes LLMs to extract semantic informa-
tion as features, which are then utilized to enhance the perfor-
mance of Graph Convolutional Networks (GCNs) in facilitat-
ing cross-course knowledge transfer. Furthermore, TransKT
derives the learner’s knowledge state based on their learning
history(§4.3). Finally, TransKT incorporates a cross-course
contrastive objective (§4.4) which maximizes mutual infor-
mation between single-course and cross-course knowledge
states to learn more robust representations for prediction. The
prediction and training process of the framework are intro-
duced in §4.5.

4.1 Cross-Course Concept Graph Construction

In modern education, concept graphs (CGs) are widely
used as powerful tools for organizing information, offer-
ing learners a more intuitive understanding of links between
concepts [Ain er al., 2023]. By leveraging these links,
knowledge tracing can uncover connections among learn-
ing records [Yang er al., 2021; Liu et al., 2020; Yu et al.,
2024]. However, in cross-course scenarios, the CGs of differ-
ent courses are independent of each other. This independence
hinders the transfer of knowledge between courses, making
it challenging for cross-course knowledge tracing model to
identify valuable learning records from other courses. To
address this issue, we propose a zero-shot link prediction
method to construct a cross-course concept graph G.

As shown in Figure 2(b), the cross-course concept graph,
includes two types of nodes: questions and concepts, and
two types of links: explicit question-concept links (solid line)
and implicit concept-concept links (dotted line). As defined
in the Preliminary (§3), the explicit question-concept links
are predefined (i.e., the links between ¢ and {c}). To derive
the implicit concept-concept links, we draw inspiration from
previous work [Yang et al., 2024] and identify four types of
candidate relations (i.e., “Prerequisite_of”, “Used_for”, “Hy-
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ponym_of”, “Part_of””). We then design a prompt, pro,, to
leverage the robust zero-shot reasoning capabilities of large
language models (LLMs) [Mann ef al., 2020] for determining
pairwise relations between concepts. The core components of
pro, include the course names, the definition and description
of the dependency relation to be predicted, and the query con-
cepts. If a pair of concepts satisfies one of the relation types,
an implicit concept-concept link is established in the cross-
course concept graph G.

4.2 Semantic-Enhanced Knowledge Transfer

Previous work [Tong et al., 2022] endeavors to integrate se-
mantic information into knowledge tracing. However, in real-
world scenarios, the textual content of questions and concepts
can often be overly specific or overly abstract, making it chal-
lenging to extract meaningful semantic information. There-
fore, we propose a semantic-enhanced approach to knowl-
edge transfer in this section. The approach includes: 1) expla-
nation generation with LLMs, 2) semantic feature encoding,
and 3) semantic knowledge propagation.

Explanation Generation with LLMs

In educational settings, each question and concept is accom-
panied by specific textual content, including question descrip-
tions and concept names. The diverse forms of this textual
content make it challenging to directly extract effective se-
mantic features with language models. For instance, in com-
puter science course, question descriptions often contain in-
tricate code, while concept names are typically concise and
abstract. To align these different types of textual content,
as shown in Figure 2(c), TransKT employs an “open-ended”
method to query large language models (LLMs) [Mann et
al., 20201, leveraging their general knowledge and powerful
reasoning capabilities to summarize diverse textual content,
which can be formulated as:

. _ [LLM(prog : xor;)
ST\ LLM(prog : Torq)

rree
ifreC
where z,,; denotes the original textual content, g, de-
notes the summarized textual content, and LLM(-) denotes
the LLM interface. Prompts pro, and pro. are tailored re-
spectively for question descriptions and concept names.

Semantic Feature Encoding

After obtaining xs,,, the next step is to convert these text-
based outputs into fixed-length semantic features. This trans-
formation facilitates the discovery of semantic relationships
within educational content, particularly for questions and
concepts across different courses. To achieve this, we fine-
tune a smaller language model (LM) to serve as an interpreter
for the outputs of the LLM. This process extracts the most
valuable and relevant semantic features from x ,,,,, for knowl-
edge tracing, which can be formulated as:

x = LMy(Zgum) € RP, (2)

where LM(-) denotes a language model based on the trans-
former structure, such as ROBERTa [Liu et al., 2019]. Here,
# denotes the parameters of the LM, and x denotes the se-
mantic features of a question or concept.

Semantic Knowledge Propagation

Following the construction of the cross-course concept graph,
G, and the extraction of semantic features x for nodes within
G, knowledge transfer across courses is achieved through the
utilization of graph convolutional networks (GCNs). Specif-
ically, we utilize GraphSAGE [Hamilton e al., 2017] by
stacking multiple GCN layers to encode higher-order neigh-
borhood information. At each layer, the representation of
each node is updated by considering both its own semantic
feature and those of its neighboring nodes. We denote the
feature of node ¢ in the graph as x;, and the set of its neigh-
bor nodes as N;. The [-th GCN layer can be expressed as:

1
x! :ReLU(m > w4, 3)
*ieNiuiy

After knowledge propagation by GCN, we get the en-
hanced feature of questions and concepts, denoted as q and
c respectively. We then combine q with the representation of
the response to indicate interaction as:

q =q-+r, 4

where r = x, - W, with z,. being a 2-dimensional one-hot
vector indicating the correctness of the answer, and W, €
R2*P representing a learnable weight parameter.

4.3 Representation for Learning History

The process of knowledge acquisition is inherently heteroge-
neous due to the diverse characteristics of learners. In the
context of knowledge tracing, a learner’s historical learning
data can serve as a reflection of these distinct traits in the
acquisition of knowledge. So, we adopt the attention func-
tion to obtain context-aware interaction representations from
the learner’s historical learning records. The interaction level
knowledge state h;, achieved after the learner completes
the ¢-th learning interaction, is denoted as:

h; 1 = SelfAttention(Q, K, V),
Q:qt+17K: {q17'--7qt}7V: {quaqz}

Then, an average pooling layer pool(.) is used to represent
the entire interaction history, which can be formatted as:

g = pool(hy.7). (5)

Here, T represents the length of the learning history. The
final output, g € R¥ is utilized in the subsequent contrastive
learning process.

4.4 Cross-Course Contrastive Objective

As mentioned earlier, the single-course knowledge state fo-
cuses solely on the learning behaviors related to a particu-
lar course, potentially resulting in unstable and suboptimal
predictions. Additionally, the cross-course knowledge state
offers insights into multiple courses, but may also introduce
noise from interactions with other courses. Therefore, it is
essential to jointly learn both the learner’s single-course and
cross-course knowledge state in order to make more accurate
predictions. Drawing on the concept of mutual information
maximization [Becker, 1996; Hjelm er al., 2019], we pro-
pose a cross-course contrastive objective to push together the
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Dataset Java&Python C&DS CS&MA
#Records 1,129,999 1,800,066 282,135
#Learners 7,770 12,275 2,431
#Questions 5,734/7,562 11,934/7,624  5,870/1,386
#Concepts 360/364 362/323 359/140

Table 1: CCKT dataset statistics.

single-course and cross-course knowledge state of the same
learner. Additionally, inspired by contrastive learning based
KT methods [Lee et al., 2022; Yin et al., 20231, we propose a
hybrid hard negative sampling strategy designed specifically
for cross-course scenarios to further enhance the discrimina-
tive capability of the contrastive learning process.

Hybrid Hard Negative Sampling

The hybrid hard negative sampling module contains two
strategies, namely the response flip strategy and the interac-
tion replace strategy.

For the response flip strategy, we randomly flip learners’
responses, which can be formatted as:

R ={(¢::7)}, (6)

where ¢ indicates the index of randomly selected interactions.

For the interaction replace strategy, for each correct inter-
action, we replace the question with an easier one and mark
the response as incorrect, and vice versa. The hard sample
generated by this strategy can be formatted as:

R ={(F(q:).7)}, )

where ¢ indicates the index of randomly selected interactions
and F(-) denotes the application of corresponding replace-
ment operations.

Cross-Course Contrastive Learning

Motivated by maximizing mutual information, we propose a
cross-course contrastive objective to push KT model to cap-
ture the shared and distinct information across courses. This
objective aim to maximize the mutual information between
the local (single-course) and global (cross-course) features of
the same learner. Taking course X as an example, we seek the
single-course knowledge state g% to be relevant to the cross-
course knowledge state gX“Y but irrelevant to the negative
representation gX YUY Therefore, the cross-course contrastive
objective for course X is formulated as:

L3 = —(log D¥ (g%, g*"") +log(1 — D* (g¥,&¥"))),

®)
where DX is a binary discriminator that scores local and
global representation pairs through a bilinear mapping func-
tion:

DX (gX, gXUY) 2 Sigmoid(gXWﬁI(gXUY)T). 9)

Here, W3, € RP*P is a learnable weight matrix. As men-
tioned in previous work [Cao er al., 2022; Li et al., 2023], the
binary cross-entropy loss in Equation (8) serves as an effec-
tive mutual information estimator.

4.5 Prediction and Training

Cross-Course Prediction Objective

In cross-course scenarios, when predicting a learner’s per-
formance on a new question, we simultaneously utilize the
knowledge state from both cross-course and single-course
perspectives to form the joint knowledge state. Taking course
X as an example, the joint interaction level knowledge state
can be formatted as:

h, =7 b9 + (1 -n) h¥,, (10)

where 7 € [0, 1] is a hyperparameter to balance the influence

of the cross-course hfiUlY and single-course knowledge state

hfj_l at timestep ¢ + 1. This joint knowledge state ﬁfﬂ_l is
then used to predict the learner’s performance on a new ques-
tion in course X. Specifically, we concatenate flfﬁrl with the
question representation g, and use the binary cross-entropy
loss. The prediction output f't)j_l and the loss function ’Cz))(re d
are calculated as:

i1 = ReLUW™ - (b, @ qu41)), (11)

Lovea=—_ (i log i + (1 —r})log(1 — #Y)), (12)
t
where WX € RP*2D represents the learnable weight pa-
rameter.

Model Training

During training of TransKT, a regularization factor \ is uti-
lized to balance the prediction loss and contrastive learning
loss. The final loss function is:

L=MNLY g+ Loeq) + (1= N(LY +LY). (13)

pre

S Experiments

We present the details of our experiment settings and the cor-
responding results in this section. We conduct comprehen-
sive analyses and investigations to illustrate the effectiveness
of proposed TransKT model.

5.1 Experimental Setup

Datasets. We further process the publicly available
PTADisc dataset [Hu et al., 2023] to obtain three sub-datasets
specifically tailored to support the analysis of the CCKT task.
These are Java and Python (Java&Python); C programming
and Data Structure and Algorithm Analysis (C&DS); C pro-
gramming and Discrete Mathematics (CS&MA). The statis-
tics for the three CCKT datasets are in Table 1.

Baselines. We compare TransKT with the state-of-the-art
methods, including 1) deep sequential methods: DKT [Piech
et al.,2015], DKT+ [Yeung and Yeung, 2018], IEKT [Long et
al., 20211; 2) deep memory-aware methods: DKVMN [Zhang
et al., 2017] and Deep_IRT [Yeung, 2019]; 3) graph based
method: GIKT [Yang et al., 20211; 4) attention based meth-
ods: AKT [Ghosh et al., 20201, simpleKT [Liu et al., 2023b],
sparseKT [Huang et al., 20231, stableKT [Li et al., 20241,
5) contrastive learning based methods: CLAKT [Lee et al.,
2022] and DTransformer [Yin et al., 2023]. To ensure a
fair comparison, we perform joint training using the merged
cross-course learning records RXYY for these baselines.
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Java&Python C&DS CS&MA

Methods Course Java Course Python Course C Course DS Course CS Course MA

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
DKT 0.7988  0.7064  0.7917  0.7128  0.7617  0.6662  0.7906 ~ 0.6706  0.7571  0.7002  0.8000  0.8527
DKT+ 0.8085  0.7070  0.7939  0.7198  0.7595  0.6674  0.7933  0.6774 0.7562 0.6971 0.7916  0.8500
IEKT 0.7983  0.7132  0.7870  0.7250  0.7567  0.6821  0.7924  0.6871  0.7648 0.7013 0.8077  0.8484
Deep_IRT 0.7964  0.6929  0.7833  0.7058  0.7568  0.6626 ~ 0.7872  0.6667  0.7440 0.6643 0.8071  0.8457
DKVMN 0.7988  0.6955 0.7834  0.7077 0.7541  0.6644  0.7828  0.6694  0.7433  0.6769 0.8047  0.8438
GIKT 0.8005  0.7088  0.7880  0.7165 0.7535  0.6708  0.7819  0.6800  0.7456 0.7033 0.8014  0.8415
AKT 0.8110  0.7258  0.8035 0.7301  0.7612  0.6783  0.7970  0.6853  0.7679 0.6972 0.8086  0.8447
simpleKT 0.7942  0.7250  0.7933  0.7270  0.7514  0.6825  0.7873  0.6903  0.7664 0.6992 0.8061  0.8523
sparseKT 0.8098  0.7222  0.7976  0.7262  0.7656  0.6872  0.7981  0.6924  0.7512 0.6941 0.8103  0.8551
stableKT 0.7912  0.7194  0.7960  0.7292  0.7577  0.6856  0.7951  0.6850  0.7505 0.6899 0.7998  0.8504
CL4KT 0.8068  0.7260  0.7965  0.7286  0.7630  0.6768  0.7836  0.6931  0.7584 0.6957 0.8035  0.8506
DTransformer 0.8040  0.7152  0.7947  0.7216  0.7601  0.6680  0.7745  0.6863  0.7510 0.6851 0.7998  0.8469
TransKT(Ours)  0.8341*  0.7703* 0.8119* 0.7440* 0.7793* 0.7022* 0.8214* 0.7532* 0.7765* 0.7020 0.8222* (.8629*

Table 2: Performance comparison of TransKT and 12 KT models on three datasets. The best results are in bold, and the second-best results
are underlined. * indicates statistical significance over the best baseline, measured by t-test with p-value < 0.01.

Methods Java&Python C&DS CS&MA

Course Java Course Python Course C Course DS Course CS Course MA
AKT* 0.7331(+0.73%)  0.7373(+0.72%)  0.6845(+0.62%) 0.6960(+1.07%) 0.7016(+0.44%) 0.8510(+0.63%)
stableKT*  0.7315(+1.21%) 0.7398(+1.06%) 0.6944(+0.88%) 0.6945(+0.95%) 0.7031(+1.32%) 0.8613(+1.09%)
CL4KT*  0.7344(+0.84%) 0.7361(+0.75%) 0.6872(+1.04%) 0.7015(+0.84%) 0.7008(+0.51%) 0.8570(+0.64%)

Table 3: AUC performance of variant versions of the baseline method across three datasets. * denotes the replacement of each model’s original
question representation with the one extracted by the proposed semantic-enhanced knowledge transfer module. The values in parentheses

indicate the improvement over the original version.

Experimental Settings and Metrics. We use the AdamW
optimizer to train all models, fixing the embedding size at 256
and the dropout rate at 0.3. The learning rate and Lo coeffi-
cient are chosen from the sets {le-3, le-4, le-5} and {le-4,
Se-5, le-5}, respectively. The hyperparameters 7 and A are
chosen from the range 0.1 to 0.9 with a step size of 0.1. To
ensure a fair comparison, method-specific hyperparameters
(e.g., Cognition Space Size for IEKT) were set according to
the specifications outlined in their respective papers, while we
optimized shared hyperparameters, such as the learning rate
and L regularization coefficient, for all baseline methods. In
line with existing KT studies, our evaluation metric includes
both AUC and Accuracy (ACC). We repeat each experiment
5 times and report the averaged metrics. In addition, we set
an epoch limit of 200 and employ an early stopping strategy
if the AUC shows no improvement for 10 consecutive epochs.

5.2 Results

Overall Performance

Table 2 shows the performance comparison of our model with
other KT models on three CCKT datasets: Java&Python,
C&DS, CS&MA. The results reveal several key observations:
(1) Our TransKT consistently outperforms the baseline mod-
els across all datasets, irrespective of the level of course sim-
ilarity. Whether the datasets exhibit high course similarity
(e.g., Java&Python and C&DS) or significant differences in
course topics (CS&MA), TransKT demonstrates superior per-
formance. Specifically, it achieves an average increase of
1.51% and 3.17% over the best baseline model in ACC and

AUC, respectively. This highlights the effectiveness and gen-
eralizability of the TransKT. (2) The performance gains of
TransKT vary from course to course and are influenced by
the distribution of interleaved interaction records. In datasets
like C&DS, learners tend to engage more in Course C before
Course DS, making the knowledge transfer from Course C to
Course DS more beneficial. (3) Among all baseline methods,
ranked from weakest to strongest, are deep memory-aware
methods, deep sequential methods, graph based method, con-
trastive learning based methods and attention based methods.
AKT performs the best, possibly due to its monotonic atten-
tion mechanism modeling forgetting behavior in cross-course
learning.

The Impact of Semantic-Enhanced Knowledge Transfer

To further validate the significance of incorporating question
and concept semantic features in cross-course scenarios, we
select three baselines and enhance them by integrating the
cross-course concept graph construction (§4.1) and semantic-
enhanced knowledge transfer (§4.2). As shown in Table 3,
the results indicate that these baselines perform better on the
CCKT dataset than their original versions. Specifically, they
achieve average improvements of 0.96% in AUC. This indi-
cates that the design in TransKT for facilitating cross-course
knowledge transfer can be seamlessly integrated with other
methods, resulting in improved performance on CCKT tasks.
Figure 3 visualizes the interaction level attention weights of
a single learner at time T (i.e., during interaction y5) towards
interactions from 7' — 9 to T' — 1. The AKT model predom-
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AKT- x1 yl x2
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Figure 3: A representative example illustrating the benefits of
semantic-enhanced knowledge transfer.
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Figure 4: Performance comparison of cross-course contrastive learn-
ing objective across different learning sequence lengths.

inantly focuses on interactions y2 and y3, which share the
same concept name (“linked list”), while exhibiting temporal
monotonicity in relation to the other interactions. In contrast,
TransKT not only emphasizes interactions y2 and y3 but also
extends its focus to interactions y1 and y4 (“time complex-
ity””) within the same course, as well as cross-course interac-
tions z1 and x2 (“pointer”). This indicates that TransKT ef-
fectively links the learner’s current interaction with their pre-
vious ones based on the semantic similarity of concept names,
thereby enhancing knowledge transfer between interactions.
These observations underscore the efficacy of the semantic-
enhanced knowledge transfer module.

The Impact of Cross-Course Contrastive Learning

The proposed cross-course contrastive learning objective is
based on learning history, implying that the performance im-
provement is correlated with the length of the learning his-
tory. To investigate this, we conducted experiments using
the Java&Python dataset, further analyzing the scenarios in
which this objective applies. As shown in Table 1, the av-
erage learning history length in the Java&Python dataset is
145.4. In our experiments, we set four different upper limits
for the learning history length: [16, 32, 64, 128] (i.e., truncat-
ing learner interaction records within these ranges). As de-
picted in Figure 4, the benefits of the cross-course contrastive
learning objective increased with the upper limit of learning
history length, reaching a 1.22% improvement in AUC when
the upper limit was set to 128. This highlights the importance
of aligning learners’ knowledge states in single-course and
cross-course in long-term learning scenarios.

Ablation Study
We conduct a comprehensive ablation study on three datasets.
We first define the following variations to investigate the im-

0.785

0.780

= 0.72 ‘
S w \ 0.775 wio.KP
i o \ \ 0.770
) [ ]
\ \ 0765 Wio.SE
0.70 0.760
Java&Python C&DS
085—— 0805, 0.805 wio.LLM
0.820- 0.800+ 0.800 -
0.795 wlo.CL

0.815- 0.7951

N
0.790 N \
0.785 % & TransKT
0.805 - S ML 0,755—LL o.780—§—\L

Java&Python C&DS

ACC (D)

0.810+ 0.790+

L]
A A
AN
A,

Figure 5: Ablation study.

pact of each component in TransKT: 1) w/0.KP removes the
semantic knowledge propagation module. 2) w/0.SE removes
the semantic feature encoding from TransKT and use ID-
based embeddings for questions and concepts. 3) w/o.LLM
directly extracts semantic features from questions and con-
cepts without using LLM for explanation generation. 4)
w/0.CL removes the cross-course contrastive objective from
TransKT. The results in Figure S reveal several observa-
tions: (1) All variants suffer relative performance declines
across the three datasets on different metrics, demonstrating
the contribution of the designed modules in TransKT. Among
them, w/0.KP performs the worst, indicating that establish-
ing a cross-course concept graph for knowledge transfer can
effectively uncover the correlation between learners’ behav-
iors across different courses. This is fundamental for effec-
tive CCKT. (2) The performance of w/0.LLM is even worse
than that of w/o0.SE, indicating the challenge of directly ex-
tracting semantic features without the interpretative capabil-
ities of LLM. In fact, extracting semantic features directly
from the original content of questions and concepts performs
even worse than using randomly initialized embedding fea-
tures. (3) By introducing a cross-course contrastive learn-
ing objective, TransKT effectively integrates the learning of
both single-course and cross-course knowledge states. This
approach not only effectively leverages learning information
from multiple courses but also helps to mitigate noise from
other courses, enhancing the overall performance.

6 Conclusion

In this paper, we introduce TransKT, a novel model for cross-
course knowledge tracing (CCKT). TransKT utilizes zero-
shot large language model (LLM) queries to construct a
comprehensive cross-course concept graph and employs an
LLM-to-LM pipeline to enhance semantic features, signif-
icantly improving the performance of Graph Convolutional
Networks (GCNs) in knowledge transfer. By aligning single-
course and cross-course knowledge states through a cross-
course contrastive objective, TransKT offers a more robust
and comprehensive understanding of learners’ knowledge
states. Extensive experiments on three real-world datasets
demonstrate that TransKT surpasses state-of-the-art KT mod-
els in predicting learners’ performance across courses.
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