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Abstract

Ensuring the safety of high-speed agent in dy-
namic adversarial environments, such as pursuit-
evasion games with target-purchase and obstacle-
avoidance, is a significant challenge. Existing re-
inforcement learning methods often fail to bal-
ance safety and reward under strict safety con-
straints and diverse environmental conditions. To
address these limitations, this paper proposes a
novel zero-constraint-violation recovery RL frame-
work tailored for high-speed uav pursuit-evasion
combat games. The framework includes three
key innovations. (1) An extendable multi-step
reach-avoid theory: we provide a zero-constraint-
violation safety guarantee for multi-strategy rein-
forcement learning and enabling early danger de-
tection in high speed game. (2) A masked-attention
recovery strategy: we introduce a padding-mask at-
tention architecture to handle spatiotemporal vari-
ations in dynamic obstacles with varying threat
levels. (3) Experimental validation: we validate
the framework in obstacle-rich pursuit-evasion sce-
narios, demonstrating its superiority through com-
parison with other algorithm and ablation studies.
Our approach also shows potential for extension to
other rapid-motion tasks and more complex haz-
ardous scenarios. Details and code could be found
at https://msmar-rl.github.io.

1 Introduction

Reinforcement Learning (RL) has made significant progress
in various fields in recent years, particularly in games
[Vinyals et al., 2019], robotic control [He et al., 2024], and
autonomous driving [Wu et al., 2024]. Among these applica-
tions, high-speed aircrafts pursuit games, which involve dy-
namic adversarial environments where UAVs must simulta-
neously pursue targets, avoid obstacles, and execute tasks,
present one of the most challenging scenarios.

In recent years, reinforcement learning methods have
achieved significant success in UAV control and game theory.

*Corresponding Author

In [Zhao et al., 2024a; Guo et al., 2022], the researchers used
different RL algorithm to successfully win in the games with-
out considering safe conditions. Meanwhile, safe reinforce-
ment learning methods have been applied in path planning
or low-dimension combat scenarios. Despite these achieve-
ments, ensuring the safety of high-speed aircraft in adversar-
ial environments, especially during pursuit-evasion and ob-
stacle avoidance tasks, remains a critical challenge.

In high-speed UAV game scenarios, UAVs face the follow-
ing key challenges:

1. Safety Criticality and Physical Limitations: Due to
strong inertia and limited maneuverability of high-speed
agent, obstacle avoidance decisions must be made ear-
lier to strictly ensure zero violation of safety.

2. Dynamic Input and Hazard Heterogeneity: The number
of hazardous factors varies dynamically over time, and
the severity of risks posed by multiple obstacles differs
spatially. Consequently, there is a critical need to ad-
dress these spatiotemporal challenges by handling dy-
namic inputs while effectively mining and utilizing in-
formation on varying hazard levels.

Traditional safe reinforcement learning have weakness in
addressing the key challenges listed above. Firstly, they de-
pend too much on reward shaping to balance safety and re-
ward in complex scenarios, which may cause conservative or
risky decisions [Liang et al., 2018; Li et al., 2023]. Secondly,
in terms of the extreme danger and limited maneuver in flight,
a zero-constraint-violation safety theory is urgently needed
[Ying et al., 2022]. Thirdly, facing with complexity of haz-
ards in both temporal and spatial variations, algorithms need
to possess strong adaptive and generalization capabilities.

To address the challenges and limitations of existing meth-
ods, this paper introduces Recovery Reinforcement Learn-
ing to high-speed pursuit-evasion game for the first time and
makes the following three key contributions:

* A Extendable Multi-Step Reach-Avoid Theory for Zero-
Constraint-Violation : We extend the reach-avoid theory
to Recovery Reinforment Learning with multi-strategy,
which provides a theoretical foundation for quantifying
safety boundaries in UAV game scenarios. Based on
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this theory, a multi-step safety-discriminant value is pro-
posed for earlier danger detection.

L]

Masked-Attention Recovery Strategy: Faced with dan-
gerous observations changing with time and space, we
introduce a recovery strategy based on padding-mask at-
tention mechanism. This mechanism not only enable
agent to tackle different numbers of obstacle avoidance
by padding-mask method, but it also helps select criti-
cal features, improving training efficiency and recovery
capabilities.

Experimental Validation: We validate the framework
in obstacle-rich pursuit-evasion scenarios, demonstrat-
ing its superiority over state-of-the-art methods through
comparative and ablation studies. The results show
zero-constraint-violation performance and highlight the
framework’s potential for extension to rapid-motion
tasks and complex hazardous scenarios.

2 Related Work
2.1 UAV Pursuit Game

The target of UAV pursuit-evasion games is to position ad-
versarial UAVs within own firing range while avoiding being
targeted. Various methods, including expert systems, game
theory, and reinforcement learning, have been applied to this
domain and have achieved significant success [Pope et al.,
2022]. Among these, RL-based methods have shown the best
performance due to their ability to learn adaptive strategies in
complex and dynamic environments.

Recent studies have also made progress in incorporating
safety considerations into UAV adversarial games [Vinod et
al., 2022; Yue et al., 2023]. These works use techniques such
as barrier functions and constrained RL to ensure collision
avoidance and safe operation. However, they often lack rig-
orous theoretical safety guarantees and are limited to simple,
low-dimensional scenarios. These limitations hinder their ap-
plicability to real-world, high-speed UAV combat scenarios.

2.2 Recovery Reinforcement Learning

Recovery RL is a reinforcement learning approach designed
to help agents recovery from hazardous or suboptimal states
during task execution. It employs a hierarchical policy ar-
chitecture: a main policy for task completion and a recovery
policy for safety [Thananjeyan er al., 2021]. To detect risks
and trigger recovery actions, methods like safety constraints,
model predictive control (MPC), and uncertainty estimation
are commonly used [Zhao et al., 2024b] .

Recovery RL is applied in autonomous driving and
robotics, enabling agents to handle emergencies like colli-
sions or sensor failures [Zhao et al., 2023]. However, chal-
lenges remain including lack of theoretical safety guarantees
and formal verification. Additionally, most applications are
in simple environments, limiting its effectiveness in complex,
real-world scenarios like urban traffic or multi-robot systems.

2.3 Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi (HJ) reachability analysis is a rigorous tool
that verifies the safety and liveness of a dynamic system

[Ganai er al., 2024]. For safety analysis, HJ reachability can
provide the set of initial states from which the system may be
forced into the failure set despite best-case efforts. This ver-
ification method provides guarantees on the safety properties
of a system and generalizes to various challenging problem
settings. These include problems with nonlinear dynamics,
reach-avoid problems with time-varying goals or constraints
and so on.

The Reach-Avoid value, derived from HJ reachability anal-
ysis, has demonstrated success in safety-critical applications
such as autonomous driving and robotics [Akshay er al.,
2024; Hsu et al., 2021]. However, it faces several challenges:
(1) solving the HJ equations is computationally expensive, es-
pecially in high-dimensional spaces; (2) the safety thresholds
often require empirical tuning, which limits its practicality;
and (3) its application in high-speed, maneuver-constrained
scenarios, such as UAV combat, remains underexplored.

3 Preliminaries

This section introduces the foundational knowledge and the-
oretical framework required for our proposed method, cov-
ering four main aspects: (1) Constrained Markov Decision
Process (CMDP). (2) Reach-Avoid theory.

3.1 Constrained Markov Decision Process

In high-speed UAV games, the goal of reinforcement learn-
ing is not only to maximize cumulative rewards but also to
satisfy safety constraints. This problem can be formalized as
a Constrained Markov Decision Process (CMDP), defined by
a tuple (S,A,P,R,C), where S is the state space,A is the action
space, P(s|s,a) is the state transition probability,R(s,a) is the
reward function,C(s,a) is the cost function used to quantify
safety constraints.

The cumulative rewards could be presented as the equation
below.

J(7) = Eropirim) [Z vtr(st,at)] ) (1)

t=0

The objective of CMDP is to find a policy 7 that max-
imizes the cumulative reward while satisfying the safety
constraint.J.(7) is the cumulative constraints similar to re-
ward, and J. () should satisfy the constraint d; each.

Tre1 — arg max J(mw
k1 g max (m) .
st Jo(m)<d; i=1,...,m.

3.2 Reach Avoid Theory

To quantify safety of game, we introduce Reach-Avoid the-
ory, which provides a theoretical guidance for getting to tar-
get and avoiding the obstacles at the same time. The key part
is to defines the Failure Set, Safe Set, Target Set and Reach-
Avoid Set.

(1) Failure Set and Safe Set

Failure Set represents the set of states where the UAV en-
ters an unsafe condition, typically including collisions with
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Figure 1: System Framework

obstacles or exceeding mission boundaries. It can be pre-
sented by the zero-sublevel set of a Lipschitz-continuous
function g(s) as

s € Failure Set < ¢(s)>0. 3)

On the contrary, the safe set is the complement set of the fail-
ure set, which means agent could remain safe all the time. It
could be presented as followed.

s € Safe Set < g(s) <O0. 4)

(2) Target Set

Target Set represents the set of states coming from trajec-
tory leading to the target. It can also be presented by the
zero-sublevel set of a Lipschitz-continuous function [(s) as

s € Target Set < 1(s) < 0. )

(3) Reach-Avoid Set

The reach-avoid value quantifies the probability that the
UAY, starting from state s, can reach the target set while
avoiding the Failure Set:

RA™(Target; Safe) := {s; € Safe Set | g5, (0) = s¢,

vt' € [0,T —t], 97 (t') ¢ Failure Set}.
(6)

4 Methodology

The overview of our system framework is shown in Figure 1 .
The basic structure is recovery reinforcement learning archi-
tecture, which contains one safe critic discriminator and two
policy structure. The safe critic is used to judge the safe con-
dition of the near states, with a multi-step reach avoid value
learned by the agent. The two policy are responsible for se-
lecting actions for maximum reward or keeping in safe states.

When the agent get observation from the environment, the
safety discriminator determine the current state (safe or un-
safe) using a state-safe value M SRisk,,(s:). Based on the
value, the UAV selects either the target policy (for task com-
pletion) or the recovery policy (for avoiding entering a dan-
gerous state) and interacts with the environment. After the
interaction, the UAV receives new observations, and the pro-
cess repeats, forming a closed-loop control that ensures both
safety and task efficiency in dynamic environments.

4.1 Extendable Multi-Step Reach-Avoid Theory

Reach avoid theory could provide a safe guidance for a de-
terministic Markov Decision Process (MDP). However, the
current theory just provide a safe guidance for single policy,
which is not suitable for recovery reinforcement learning.

This part firstly provide an illustration of safe guidance for
recovery reinforcement learning, which could be extended to
multi-policy reinforcement learning as well. Based on the
theory, we further offer a multi-step method of reach-avoid
value, which could significantly improve the safety in high-
speed combat games.

Extendable Reach-Avoid Theory

As we mentioned in 3.2, the key point of reach avoid theory
is to find a set in which the state could lead agents get to the
target without offending constraints. In continuous environ-
ment, finding all states is impossible. So researchers [Hsu et
al., 2021] defined reach-avoid value in a finite time T for a
deterministic control policy 7 : S — A :

V™(s,T) = min max< (s max ¢g(sr) ¢, 7
( ) tel0...T] { ( t) T€[0.. T]g( )} )
where s represents state, ¢ and 7 represents separate moment
from 0 to T. Besides, the g(s) is failure set function in Equa-

tion 3 and the I(s) is target set function in Equation 5.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

From the equation above, if the reach-avoid value
V7™(s,T) > 0, it means that within the time 0 to T, there
exists one state when g(s) > 0, which indicates that the agent
violate the constraints. In contrast, if V™ (s,T) < 0 through
out the whole T, it means that the agent get to the target with-
out any violation of danger within the whole process, thus
provide a zero-constraint-violation theoretical guidance.

To extend this theory to recovery reinforcement learning,
we use V7 (s, T;) to present multi-strategy safe value.

As V™ (s) shows, the reach-avoid value is associated with
the strategy that agent uses. In recovery reinforcement learn-
ing, agent would switch policy to avoid get into dangerous
states, which means that we can not use Equation 7 to com-
pute data-based reach-avoid value. In other words, the reach
avoid value of the safe policy VV™=af< (s, T') and recovery pol-
icy V7recovery (g T') are not equal, which could be presented
as:

Vﬂi(&T) #Vﬂ-j(S:T)a 17&.] (8)

To provide zero-constraints-violation guidance for recov-
ery reinforcement learning, we extend the reach-avoid theory
from single deterministic strategy to more than two determin-
istic strategies and demonstrate safety of the whole process.
The concrete demonstration could be found in Appendix A.
And the extended reach avoid theory could be represented as:

RA™ (Target; Safe) := {s; € Safe Set | g7 (0) = 54,

Vt' € [ti + 1, tip1 — t], g7 (t') ¢ Failure Set},
©)
where g™ (s) is the i-th safe function in Equation 3, and t;
is the moment when 7; is switching to be used. Each g(s)
is a lipschitz-continuous function and the value of g*(s) and
g‘*1(s) at the switching point should be equal.

Having extended the reach-avoid theory to multi-strategy
scenarios, we could farther get the Bellman formulation of
the value V™ (s, T;). In Equation 10, number i represents the
different policy. I(s) is a lipschitz-continuous function, and
g™ (s) satisfy the constraint above.

V7™i(s,T;) = min max{l(st), max gm(sn)}.

tel0...T;] 7€[0...T3]
(10)

Multi-Step Reach-Avoid Value

Now that different reach avoid value V™ (s, T;) is connected
with its own policy, the training process should be separate
as well. Firstly, different tuples should be divided into their
own experience pool for training. The discounted reach-avoid
Bellman formulation suitable for learning with temporal dif-
ference learning could be written below.

VT (s) = (1 — ) max{l(s), g(s)}
+ 7y max {min {l(s),min V”'L(S/)} 79(5)} 7 (11)

acA
where s’ is the next state produced by the MDP upon taking
action a from state s.
However, as mentioned in introduction, caused by physical
limitations of high-speed vehicles, high-speed UAVs require
earlier obstacle avoidance decisions to prevent collisions due

to delayed reactions. Traditional usage of the reach-avoid val-
ues usually sets a threshold between the safe set and the fail-
ure set, which comes from experience and is hard to quantify.
Besides, it is always too close to the failure set for high-speed
aircrafts to avoid obstacles and too late to take recovery pol-
icy, probably leading to a crash for the aircrafts.

Considering the inertial and limited maneuverability, we
introduce a multi-step reach-avoid value calculation method.
As shown above, V7i(s,T;) have relations with states and
policy, thus we use a function Multi-Step Risk(MS Risk)
to estimate the reach-avoid value in several steps. If
MS Risk;(s:) qualifies the unsafe threshold, which means
that in n steps later the agent would get into a danger-
ous state without switching policy, the agent will take
the recovery policy to avoid this danger. The connection
betweenM S Risk, ' (s;) and V™ (s44,) could be demon-
strated in appendix B.

MS RiskT™ (s;) = V™ (S14n). (12)

As for the concrete number of n, it is a trade-off between
accuracy and computational resource.

4.2 Masked-Attention Recovery Strategy

In high-speed UAV adversarial games, the spatiotemporal
distribution of obstacles is highly random and complex. Spa-
tially, obstacles may appear sparsely or densely within certain
area. Temporally, some obstacles may currently be within the
observation space but disappear after the UAV passes, while
others may enter the observation space as the UAV moves
closer, leading to dynamic input of policy network. This
spatiotemporal uncertainty poses significant challenges to the
UAV’s recovery strategy.

To address the spatiotemporal uncertainty, we propose an
masked-attention recovery strategy. This strategy tackles the
challenges in two aspects:

Handling Temporal Dynamic Observation
Since the number of obstacles in the observation space varies
over time, traditional fixed-dimensional input methods strug-
gle to handle such variable-length inputs. To address this, we
use a padding-mask method to convert variable-length inputs
into fixed-length inputs. The specific steps are as follows:
Padding and Masking: Let the maximum number of obsta-
cles be N,,q;. For each time step, if the current number of
obstacles n<N,,qz, the remaining positions are padded with
zero vectors, and a binary mask M is generated

1
M, ="
B

Finishing masking, a shared neural network f(x) encodes
each obstacle feature into a feature embedding h; = f(x;).

exp(e;) - M;
> =1 €xp(e;) - M;

A learnable query vector q computes the attention weights for
each feature embedding e; = ¢ T h;, and the mask M is used
to ignore padding values.

if the ¢-th obstacle exists,

13
if the i-th obstacle is a padding value. (13)
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The weighted feature embeddings are aggregated into a
fixed-length global feature representation z.This approach en-
sures that the output z has a consistent dimension regardless
of the number of input obstacles n, enabling direct input to
the subsequent reinforcement learning network.

N
i=1

Handling Spatial Distribution Uncertainty

In environments with multiple nearby obstacles, the UAV
needs to prioritize avoidance based on the urgency of each ob-
stacle. We use the attention mechanism to assign an urgency
weight to each obstacle, enabling targeted avoidance. With
the help of the attention framework, the agent could avoid the
obstacles based on the weighted urgency.

To improve training effectiveness, we adopt a curriculum
learning approach motivated by [Yu et al., 2023], gradually
transitioning from simple to complex scenarios. Specifically,
training starts with sparse obstacles and low-speed scenarios,
and the density of obstacles and UAV speed are gradually in-
creased. This progressive training method enables the net-
work to master obstacle avoidance capabilities from simple
to complex scenarios.

5 Experience
5.1 Training Sets

The training of our proposed method consists of three parts:
Pursuit Network, Multi-Step Safety Discriminator, and Re-
covery Network. The details of each part are as follows.

Pursuit Policy Reward

The Pursuit Network is designed to enable the UAV to pur-
sue adversarial targets effectively. It is implemented using
the Deep Deterministic Policy Gradient (DDPG) algorithm,
which combines Actor and Critic networks to learn a policy
that maximizes cumulative rewards.

The reward function is carefully designed to guide the UAV
toward the target, consisting of 3 components, including dis-
tance reward, angle reward and boundary reward which ref-
erences to paper [Zhao et al., 2024a]. Distance reward en-
courages the agent get close to the opposite agent, which take
use of the matrix game theory. Angle reward consists the an-
gle between own UAV and opposite UAV, aiming to make the
UAV heading to the opposite UAV. Boundary reward prevents
the UAV from flying out of bounds by imposing a penalty
when it flys too high or too low. The whole reward could be
presented as followed:

R= w1 Rdistance + WZRangle + WSRboundarya (16)

where w1, ws, and ws are weight coefficients. This reward
design ensures that the UAV could have great performance at
gaining advantages against the opposite agent in the game.

Safety Discriminator Loss

The Multi-Step Safety Discriminator is designed to assess the
risk of state-action pairs under the Pursuit policy, enabling
the UAV to identify and avoid unsafe states. Motivated by

[Ren er al., 2023], it is implemented as a multi-layer percep-
tron (MLP) and trained using supervised learning. The loss
function is defined as the mean squared error between the pre-
dicted and true risk values:

N

1 .
= Z (VrRA(Siyn) — MSRiskra(s;))?,
i=1

Ldiscriminator

a7

where Via(Si4n) is the ground truth risk value in n steps
later, and M SRiskpra(s;) is the predicted value.

According to the equation 10, V™ (s) is dependent on the

safe set function g(s) and target set function [(s). In the high-

speed UAV combat game, we first provide failure set func-
tions g(s) V™i(s):

dobstacle > dsafea

0 ;
g\s) = (dsafe—dobstacte)
( ) { - afedm;:m < y dobstacle<dsafe7

(18)
where d is the distance between uav and the obstacle, and
dsq ge represents the safe boundary of agent, which means that
if d<dsq¢e, the agent get into the failure set. We set dq ¢ as
1000m in the recovery task. Meanwhile, the function I(s) of
target set:

d
I(s) = tanh log —2"9¢* (19)
dsuccess
where dyqrqe¢ represents the distance between the agent and
target agent, and dsyccess means that the agent is close
enough to the target and get the task accomplished. In the

training process, we set dgyccess as 300m.

Recovery Policy Reward

The recovery network is designed to enable the UAV to re-
covery from unsafe states. Similar to [Qu er al., 2024], the
training objective is to minimize risk, with the loss function
defined as the expected cumulative risk cost over time:

Rrecove'r‘y = ]E [Z ’th(stv at)] ) (20)

t=0

where C'(s¢, a) is the risk cost function, and -y is the discount
factor. To satisfy the reach avoid guidance [Kim et al., 2023],
we use g(s) from Equation 18 as the C(s, at), and 7y as 0.95.

5.2 Baselines

For the experimental settings, we consider four algorithm as
the baselines below:

1. Our MSMAS-RL Method: Our recovery RL with multi-
step safety discriminator and masked-attention recovery
policy.

2. Pursuit Only: The pursuit network for target chasing.

3. Negative Rewards: Incorporates safety constraints as
negative rewards into pursuit policy.[Qu et al., 2023]

4. Primal-Dual Method: DDPG with constraints using La-
grangain optimization. [Brunke et al., 2022]
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(a) Pursuit-Only

(b) MSMAR-RL

(c) Pursuit-Only

(d) MSMAR-RL

Figure 2: Performance Test. (a) The agent uses only pursuit policy. It could tail the target uav without avoiding obstacles. (b) The agent
uses our MSMAR-RL method and carefully avoids all the obstacles while chasing the target uav. (c) The agent uses pursuit policy only. It
could tail the target uav without avoiding the cylindrical obstacles. (d) The agent uses our MSMAR-RL method and greatly avoids all the

cylindrical obstacles while chasing the target uav.

5.3 Evaluation Metrics

In high-speed UAV adversarial games, the objectives of the
UAV include the following two aspects:

1) Completing the Adversarial Task: Successfully locking
onto the adversarial UAV and completing the mission.

2) Obstacle Avoidance and Safe Flight: During the pursuit,
the UAV must avoid obstacles to prevent collisions.

Based on these objectives, we designed the following
three evaluation metrics to comprehensively assess the per-
formance of the agent. More details could be found in Ap-
pendix C.

1. Success Rate: The task success rate measures the per-
centage of missions in which the UAV successfully locks
onto the adversarial UAV and completes the task.

numsuccess

Ratesuacess 8 (21)

nuUMtotal

2. Safety Rate: The safety rate measures the average prob-
ability of violating safety rules (colliding with obstacles)
while completing the mission.

NumStepdanger

Ratesgpe =1 — 22)

NumSteptotal .

Besides, to evaluate the zero-constraint-violation ability
of our algorithm, we introduce a zero-danger-rate:

NumEpisodesqfe 23)

Rate d = ;
zero danger NumEp’LSOdetOtal '

where the episode means single whole game.

5.4 Training Analysis
The training process was divided into three stages:

1. Pursuit Task: The maximum steps per episode were set
to 200, with a total training duration of 15,000 steps.

2. Safety Discriminator Training: The training duration
was 10,000 steps.

3. Recovery Policy Training: The policy was trained until
it converged to a low constraint violation.
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Figure 3: Training Record. Horizontal axis represents training steps.

As showed in Figure 3(a), the pursuit task network which
aims to fetch the opposite uav, gradually converged to a high
reward. In Table 2, the pursuit policy could get a high suc-
cess rate. The second training stage in Figure 3(b), the safe
discriminator experienced a decrease of loss, showing a great
performance in predicting dangerous value in several steps
later. Within the training stage of recovery policy in Figure
3(c), 3(d), the reward gradually climbed up and danger counts
decreased, showing the safe ability of agent.

5.5 Testing Analysis

Firstly, we test the target-pursuit obstacle-avoidance ability
in a random environment compared to the training environ-
ment. On the one hand, we use random initial seed to put our
uav, opposite uav and obstacles in a random place and attitude
within a certain range. On the other hand, when comparing
the ability of baselines algorithm, we set the same random
seed to let the experience repeatable.

In Figure 2(a), the agent use the pursuit-only policy to com-
plete the task. The agent could quickly get to the target with-
out avoiding the obstacles, which could lead to horrible crash.
Compared to this method, our MSMAR-RL algorithm could
avoid the obstacles all time long and finally catch the oppo-
site agent showing in Figure 2(b). Figure 2(c) and 2(d) use
cylindrical obstacles to simulate buildings.
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Multi-step Module  Attention Module  Success Rate ~ Safe Rate  Zero-Danger-Rate
v v 61.91% 99.02 % 80.95%
v 57.14% 98.93% 85.71%
v 47.62% 97.56% 38.10%
42.86% 97.94% 33.33%
Table 1: Ablation Test
The performance of baselines algorithm are shown in Ta-
ble 2. Our method gets the highest success rate and safe rate o " —0.1 AR
among the baselines at the cost of success time. The pursuit- 6 R oa i / ‘
only method is good at chasing the target, but always offend M | R
the constraints. Negative reward method put too much atten- 3 VALY -0.7
tion on avoiding obstacles, leading a totally loss of chasing o - SO -1.0
ability. Traditional primal dual optimization method performs 0 20k 40k 60k 80k 0 20k 40k 60k 80k

well in safe target, but gets a decrease in success rate.

Method Success Rate  Safe Rate  Success Time
MSMAR-RL 61.91% 99.02 % 87s
Pursuit-Only 61.91% 86.33% 49s

Negative Reward 0 100% 00
Primal Dual 47.62% 97.85% 124s

Table 2: Baselines Comparison

5.6 Ablation Studies

The chapter would set experience to evaluate the function of
multi-step safe discriminator and the attention part.

Multi-Step Safe Discriminator
In this experiment, we removed the multi-step safety estima-
tion module and used only a single-step safety discriminator.
In Table 1 above, with the similar success rate, our
MSMAR-RL method have a much better performance in
zero-constraint-violation rate than the method without multi-
step safe discriminator, which is critically essential for flight
safe scenario. And as shown in Figure 4, method with multi-
step module could lead to a faster and better performance
in training process. Besides, MSMAR-RL performes a bit
worse in zero-constraint violation than that without attention
module, this may be a cost of dynamic input of attention
modules. These results demonstrate that the multi-step safety
discriminator, through multi-step prediction of potential haz-
ardous states, enables the UAV to take avoidance actions in
advance, thereby significantly reducing constraints violation.

Attention-based Mechanism

In the experiment without the Attention mechanism, we re-
moved the Attention mechanism from the recovery network
and used fixed-dimensional inputs.

Compared to the method without attention, MSMAR-RL
has higher convergence rate than that without attention mech-
anism(red and orange curve). However, without a correct safe
discriminator, the attention module would lead to a concus-
sion in training process(blue curve in Figure 4). This may
occur because that the attention module provide better learn-
ing ability to the agent, but exploration would lead to dan-
ger caused by the maneuverability limitation of the agent.

(a) Dangerous Counts

(b) Recovery Rewards

Figure 4: Ablation Experience Curves. In the figure, red curve is our
MSMAR-RL method. Orange curve is the ablation method without
attention module. Blue curve is the ablation method without multi-
steps discriminator module. Green curve is the method without these
two modules. Purple and brown curves use LSTM and RNN to re-
place attention module. Horizontal axis represents training steps.

With the multi-steps module, the concussion is much less,
which demonstrates the greatness of the multi-step safe dis-
criminator. Besides, compared with Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM) (brown
and purple curve), our attention mechanism converges faster,
demonstrating the rapid adaptability to dangerous situations.

6 Conclusion

This paper proposes a zero-constraint-violation recovery re-
inforcement learning framework for high-speed UAVs in dy-
namic adversarial environments, addressing the challenge of
balancing safety and task efficiency under strict constraints.
The framework introduces three key innovations: (1) a dual-
policy approach that separates target pursuit and obstacle
avoidance, simplifying training in multi-objective scenarios;
(2) an extendable multi-step reach-avoid strategy, providing
safety guarantees and enabling early danger detection; and (3)
an attention-based recovery strategy, which enhances adapt-
ability to dynamic obstacles and improves training efficiency.
Experimental results demonstrate the framework’s effective-
ness in achieving robust and safe decision-making for high-
speed UAVs in complex gaming environments, surpassing ex-
isting methods in task completion rate, safety, and efficiency.

Future research directions include extending the frame-
work to more complex scenarios. Additionally, exploring
multi-UAV safe collaboration and recovery strategies will be
crucial for advancing the field. Further optimization of com-
putational efficiency and the development of adaptive learn-
ing mechanisms will also be essential to enhance real-time
performance and adaptability in unpredictable environments.
This study lays the foundation for safer and more efficient
UAV control strategies in adversarial settings.
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