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Abstract

We consider fairness in submodular maximization
subject to a knapsack constraint, a fundamental
problem with various applications in economics,
machine learning, and data mining. In the model,
we are given a set of ground elements, each as-
sociated with a weight and a color, and a mono-
tone submodular function defined over them. The
goal is to maximize the submodular function while
guaranteeing that the total weight does not exceed a
specified budget (the knapsack constraint) and that
the number of elements selected for each color falls
within a designated range (the fairness constraint).

While there exists some recent literature on this
topic, the existence of a non-trivial approximation
for the problem — without relaxing either the knap-
sack or fairness constraints — remains a challenging
open question. This paper makes progress in this
direction. We demonstrate that when the number
of colors is constant, there exists a polynomial-time
algorithm that achieves a constant approximation
with high probability. Additionally, we show that
if either the knapsack or fairness constraint is re-
laxed only to require expected satisfaction, a tight
approximation ratio of (1—1/e—¢) can be obtained
in expectation for any € > 0.

1 Introduction

Submodular maximization is a fundamental problem in arti-
ficial intelligence and computer science, with continuous re-
search since the 1970s [Cornuejols et al., 1977; Nemhauser
and Wolsey, 1978]. The problem involves selecting a sub-
set of elements from a given set to maximize a submodu-
lar function defined over them. It captures a wide range of
tasks across various domains, such as clustering [Anegg et
al., 2020; Backurs et al., 2019; Chierichetti et al., 2017], fea-
ture selection [Amiridi et al., 2021; Bao et al., 2022; Yu et
al., 2016], movie recommendation [Avdiukhin et al., 2019;
Dutting et al., 2022; Haba et al., 2020], and so on. However,
recent studies [Celis et al., 2018; Halabi et al., 2023] have
found that in some data mining applications, traditional sub-
modular optimization algorithms may face a fairness issue.

The elements in the practical dataset often come from differ-
ent groups (e.g., people of varying ages or genders [Halabi
et al., 2023; Halabi et al., 2020; Wang et al., 2021]), but tra-
ditional algorithms do not account for this factor, leading to
an imbalance in the number of selected elements from each
group.

To address this issue, [Celis et al., 2018] introduces a group
fairness notion into submodular maximization. Specifically,
assuming that all given elements are partitioned into several
groups, a solution is considered fair if the number of selected
elements from each group falls within a specified range. One
of their results is incorporating this group fairness notion into
the classic cardinality-constrained submodular maximization
problem, which aims to select at most k£ elements that sat-
isfy the fairness constraints and maximize the submodular ob-
jective. They employ a well-known relax-and-round frame-
work [Calinescu et al., 2011] in submodular maximization
that first applies continuous greedy to obtain a fractional so-
lution and then designs a randomized rounding procedure to
produce an integral solution. They show that a tight approxi-
mation ratio of (1 — 1/e) can be obtained in expectation by a
relax-and-round approach.

In this paper, we explore a generalized version of the above
model. Note that in many applications [Kempe et al., 2003;
Krause et al., 2008; Lin and Bilmes, 2011], submodular max-
imization is often subject to a more general knapsack con-
straint rather than a simple cardinality limit, where each el-
ement has an associated weight, and the total weight of the
selected elements must not exceed a specified budget. There-
fore, we focus on optimizing fair solutions under a knapsack
constraint. This general constraint introduces new challenges
to fair submodular maximization. Selecting elements requires
simultaneously balancing their weights, group memberships,
and contributions to the submodular objective.

We notice that a recent study [Cui et al., 2024] also consid-
ers this generalized model. They focus on the streaming sce-
nario and demonstrate that if fairness constraints are allowed
to be violated by a factor of 1/2, a two-pass streaming algo-
rithm can achieve a constant approximation. Furthermore,
we find that directly extending the algorithm from [Celis
et al., 2018] to this general problem returns a (1 — 1/e)-
approximation fair solution, but at the cost of violating the
knapsack constraint. Nevertheless, to the best of our knowl-
edge, whether a non-trivial approximation exists when both
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fairness constraints and the knapsack constraint must be
strictly satisfied remains an open problem.

1.1 Problem Definition and Challenges

The problem of fair knapsack-constrained submodular max-
imization (FKSM) is formally defined as follows. There is a
ground element set £ = {ey,...,e,} and a monotone sub-
modular! function f : 2¥ — R defined over them. Each
element e € E has a weight w, and an associated color ..
Let group G; represent the set of elements of color 4, and
G = {Gy,...,Gy} be the collection of all groups. Each
group G; € @ is associated with an interval (I;,u;]. The
goal is to select an element subset S C E to maximize the
value of the function f, while ensuring that the total weight
of the selected elements does not exceed a given budget B,
ie,w(S):= ZeES w, < B, and that the number of selected
elements from each group G; lies within the range (1;, u;],
ie, l; < |SNG;| < u;. We call the former the knapsack
constraint and the latter the fairness constraints.

We refer to a special case of our model where the weight
of each element is 1, i.e., the knapsack constraint simpli-
fies to a cardinality constraint, as FKSM. Similarly, we re-
fer to another special case of our model where [; = —oo,
i.e., there is no lower bound on the number of elements se-
lected from each group, as FKSM. These two special cases
represent specific simplifications of the knapsack constraint
and the fairness constraints, respectively. Both of them have
been extensively studied in the literature [Celis et al., 2018;
Gu et al., 2023] and can achieve a (1—1/e—¢)-approximation
for any € > 0 using the relax-and-round framework. The
framework involves two steps: first, applying the continu-
ous greedy algorithm to generate a fractional solution {z. €
[0,1]}cck that satisfies the constraints and achieves an ap-
proximation ratio of (1 — 1/e); and second, employing ran-
domized pipage rounding to produce a feasible integral solu-
tion {y. € {0,1}}ccp.

However, things become more challenging when both con-
straints—the knapsack and fairness constraints—are enforced
without simplification, as prior methods are no longer ap-
plicable. While the first step of continuous greedy can still
generate a fractional solution that meets the constraints, the
second step of randomized pipage rounding encounters fea-
sibility issues. The main complication with the knapsack
constraint lies in the varying weights of the elements. Ran-
domized pipage rounding can only guarantee that the num-
ber of selected elements remains unchanged (i.e., > o Ye =
>~ Te), but cannot strictly enforce the total weight constraint.
This limitation explains why the problem becomes simpler in
FKSM , where all element weights are uniform.

On the other hand, although randomized pipage round-
ing cannot strictly enforce the total weight constraint, it
does ensure that the expected total weight satisfies the con-
straint: E[Y°_ weye] < B and the y variables are nega-
tively correlated. Using standard knapsack enumeration tech-

'A function f : 2 — R is submodular if for all A,B C E
we have f(A) + f(B) > f(AN B) + f(AU B); or equivalently
fl(Aue) = f(A) > f(BUe) — f(B) forall A C B C E and
e € E. The function is monotone if f(A) < f(B) forall A C B.

niques [Chekuri er al., 20091, it can be shown that, with high
probability (w.h.p.), > weye < (1 + €)B for any € > 0.
This result implies that we can scale the knapsack size down
by a factor of (1 + €) to B’ = B/(1 + €), run the algo-
rithm on the scaled instance, and obtain an integral solu-
tion that w.h.p. satisfies the original knapsack constraint:
YooWeye < (1 4+ €)B" = B. This knapsack scaling ap-
proach works well for FKSM , as the simplified fairness con-
straints exhibit a down-closed property and slightly reducing
the knapsack size only has a minor impact on the optimal ob-
jective. However, in the general FKSM problem, reducing the
knapsack size even slightly may render the instance infeasi-
ble. For example, consider an instance where the knapsack
capacity is just sufficient to satisfy the lower bounds in fair-
ness constraints. Any further reduction in capacity would re-
sult in the absence of feasible solutions, highlighting a critical
challenge in handling both knapsack and fairness constraints
simultaneously in the general FKSM setting.

1.2 Our Techniques and Results

This work makes progress in finding a non-trivial approxi-
mation for FKSM. To overcome the challenges mentioned
above, we propose a novel technique: knapsack truncating
and combine it with the randomized weighted pipage round-
ing. The knapsack truncating technique can reduce an FKSM
instance 7 to an FKSM instance Z (with the same ground ele-
ments and objective function) that satisfies the following two
desirable properties:

* Optimality Inheritance: There exists an optimal solution
of 7 that remains feasible for Z.

s Feasibility Extension: For any feasible solution S of Z,
there always exists a feasible solution .S of Z such that
f(8) = f(8)/2.

When the number of groups is constant, the reduction can
be performed in polynomial time. Therefore, leveraging this
technique and the algorithm for the FKSM problem, we have
the following:

Theorem 1.1. Given an FKSM instance with a constant num-
ber of groups, there exists a polynomial-time algorithm that
achieves an approximation ratio of % (1 — %) — € with prob-

ability at least 1 — % — eizfor any € > 0.

The other technique is a generalization of randomized pi-
page rounding, referred to as randomized weighted rounding.
The randomized weighted rounding technique has already
been applied to additive objective function cases in many pre-
vious works [Aziz et al., 2024; Gandhi et al., 2006]. During
this process, the weights of the elements are taken into ac-
count to guide the rounding. This method ensures that the to-
tal weight remains unchanged before and after rounding. Ad-
ditionally, for each element e, it guarantees that E[y.] = .,
where x. represents the fractional solution, and ¥, denotes
the rounded solution. We extend this technique to the sub-
modular function case and prove that all properties of pi-
page rounding (e.g., negative correlation, objective concen-
tration) still hold in randomized weighted pipage rounding
(Section 4.3), which might be useful for other problems. By
integrating this technique with the continuous greedy method,
we have the following:
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Theorem 1.2. Given an FKSM instance, if the fairness con-
straints are relaxed to be satisfied in expectation, there exists
a polynomial-time algorithm that returns a solution with an
expected approximation ratio of (1 — é) — e forany e > 0.

The above theorem shows that when the fairness con-
straints are relaxed to require expected satisfaction, an ap-
proximation ratio of 1 — 1/e — € can be achieved in expec-
tation. As mentioned earlier, the method from [Celis et al.,
2018] can be easily extended to FKSM. It guarantees a fair
solution with an expected approximation ratio of 1 — 1/e — e
while ensuring the knapsack constraint is satisfied in expecta-
tion (a detailed proof is provided in [Li et al., 2025]). There-
fore, we can conclude that if either the knapsack or fairness
constraint is relaxed to require only expected satisfaction, a
tight approximation ratio of 1 — 1/e — € can be achieved.

1.3 Other Related Works

Group fairness in submodular maximization has recently at-
tracted considerable attention. Various research efforts have
embraced the group fairness model, suggesting fair submod-
ular maximization algorithms that operate under a range of
constraints. These include the matroid constraint, applied
in both streaming and offline settings [Halabi er al., 2023;
Halabi et al., 2020; Halabi et al., 2024]. Fair submodular
maximization subject to a knapsack constraint is recently pro-
posed by [Cui et al., 2024] under the streaming setting. With-
out fairness, the problem just aims to maximize a monotone
submodular function subject to a knapsack constraint, which
admits a (17%)-approximati0n algorithm [Sviridenko, 2004].
[Kulik et al., 2009] studies submodular maximization subject
to a constant number of linear constraints and gives a (1 —
% — ¢) approximation algorithm. Further, if the fairness con-
straint only has an upper bound, then the problem becomes
the submodular maximization subject to a knapsack and par-
tition matroid constraint. A batch of works studies the inter-
section with p-matroid and g-knapsacks [Chekuri et al., 2014;
Feldman et al., 2023; Gu et al., 2023; Lee et al., 2009;
Mirzasoleiman et al., 2016]. The current best algorithm is
Q(1/(p + q))-approximation, which is given by [Gu et al.,
2023].

We also notice that a closely related work is the determinis-
tic weighted pipage rounding proposed by [Ageev and Sviri-
denko, 2004] for the max-coverage problem with knapsack
constraint. They show that the weighted pipage rounding al-
gorithm returns a (1 — % — ¢)-approximate solution. However,
since their rounding method is deterministic, it cannot be di-
rectly applied to ensure fairness in our problem. In our tech-
nique, a randomization procedure is introduced, which en-
ables us to maintain the fairness constraint in expectation, and
demonstrates that the produced random variables are well-
concentrated.

1.4 Roadmap

Section 2 states some terminology and prior results. In Sec-
tion 3, we introduce the knapsack truncating technique and
present a constant approximation algorithm for FKSM strictly
respecting knapsack and fairness constraints when the num-
ber of groups is constant. In Section 4, we consider the sce-
nario where fairness constraints are allowed to be satisfied

in expectation and show that a constant approximation can
be achieved by a randomized weighted pipage rounding ap-
proach. The paper finally concludes in Section 5.

2 Preliminaries

In this section, we introduce some terminology and prior re-
sults that will be used throughout this paper. A fractional vec-
tor x = {z, € [0,1]}ccp is called a fractional solution of an
FKSM instance if x is a point of the fair knapsack polytope
defined as follows.

Definition 2.1 (Fair Knapsack Polytope). A feasible frac-
tional solution is a point in the following polytope Prk:

{xe [O,l]E : Zweme < Bjl; < Z Te < uy,Vi € [k]}

eck ecG;

In the previous section, we mentioned that continuous
greed can return a fractional solution with a constant approx-
imation. However, the given submodular function f cannot
directly evaluate the objective value corresponding to a frac-
tional solution. A common approach in submodular maxi-
mization is to utilize the concept of multi-linear extension to
assess fractional solutions.

Definition 2.2 (Multilinear Extension). The multilinear ex-
tension of a submodular function f is a function F for x =
{ze € [0,1]}ccr where F(x) is equal to

RNI%(X)[f(R)] = Z <f(R) H Te H(l - xe))

RCE e€R  e¢R

where D(x) represents a probability distribution over ele-
ments, where each element is sampled independently with
probability x., and R is a random subset sampled from this
distribution.

It is shown by [Patel et al., 2021] that the problem admits a
PTAS when the objective is an additive function (i.e., f(.5) =

Y ecs f({e}) forany S C E).

Lemma 2.3 ([Patel et al., 2021]). When f is an ad-
ditive function, there exists an algorithm with running
time poly(n, k, %) that returns a solution S such that (i)
ZeGS f({e}) > (1 — 6) -OPT 4, (i) I; < ‘Sﬁ G2| < uy
foralli € [k], where OPT 4 is the optimal solution under the
additive function case.

The prior work [Calinescu et al., 2011] introduces a con-
tinuous greedy framework to address constrained submodu-
lar maximization problems. Their analysis shows that, given
any constraints, if the corresponding additive version (i.e., re-
placing the submodular objective with an additive function)
admits a (1 — €)-approximation algorithm, then combining
that algorithm with continuous greedy yields a (1—1/e —¢)-
approximate fractional solution. Therefore, using Lemma 2.3
as a subroutine, it is shown that the continuous greedy algo-
rithm returns a good fractional solution in polynomial time.
Lemma 2.4. Given any instance of FKSM, there is a polyno-
mial time algorithm that returns a point x € Ppg such that
F(z) > (1—1—¢€)-OPT forany ¢ > 0, where OPT is the
optimal objective value.
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3 Knapsack Truncating

In this section, we introduce the knapsack truncating tech-
nique and use it to prove the following theorem:

Theorem 1.1. Given an FKSM instance with a constant num-
ber of groups, there exists a polynomial-time algorithm that
achieves an approximation ratio of % (1 — %) — € with prob-

ability at least 1 — 1 — e%for any € > 0.

e
Given an FKSM instance, let S* denote an optimal solu-
tion for this instance. Since this section focuses on the set-
ting where the number of element groups is constant, through
polynomial-time enumeration, we can assume that we know
the following for each group G;:

¢ The number of elements selected from G; by S*, i.e.,
the value of y; := |S* N G,|.

e The number of elements among the top ; smallest-
weight elements in G; that are included in S*, i.e., the
value of 3; := |S* N L;(v;)|, where L;(y;) represents
the set of the ~; smallest-weight elements in G; (with
ties broken arbitrarily).

The reduction method is stated in Algorithm 1. From the
description, we observe that during the reduction, both the
cost of each element and the knapsack size are reduced. For
elements in L;(+y;), their costs are set to 0. For each element
w(Lz‘(%‘))*g(Li(ﬁi)) _ This

not in L;(~y;), the cost decreases by o
reduction amount can be interpreted as the average weight of
the +; — 3; largest elements in the subset L;(~y;). Since L;(y;)
is defined as the set of the ~y; elements in GG; with the smallest
weights, we always have each element’s new weight in the
reduced FKSM instance w, > 0.

Algorithmic Intuition. The purpose of knapsack truncat-
ing is to transform an FSMK instance into an FKSM instance
such that it can be addressed efficiently. A very natural idea
is to directly set all fairness lower bounds to zero. Clearly, in
this case, the optimality inheritance property (see its defini-
tion in Section 1.2 or the lemma below) would always hold.
However, the feasibility extension property is unlikely to be
satisfied, as it is possible that some weight-heavy elements
have already been selected, leaving no room to add more ele-
ments to meet the fairness lower bounds.

But we notice that things change if each group contains at
least ~y; elements with a weight of 0. In this scenario, the
fairness lower bounds are guaranteed to be met because these
zero-weight elements can be selected freely. This suggests
that to ensure feasibility extension, we must introduce zero
weights into the FKSM instance—some elements’ weights
need to be reduced to 0. Intuitively, reducing the weights
of elements in L;(7;) to zero should have the least impact
(as L;(~;) is the set of elements with the smallest weights).
Therefore, in our algorithm, we choose to let these ele-
ments become zero-weight. Once their weights are set to
0, the knapsack budget should be reduced accordingly by
> ;w(Li(7y;:)). This adjustment can be seen as reserving
space in the knapsack for elements in L;(v;), allowing them
to be freely selected later.

However, reducing the budget harms the optimality inher-
itance property, as the optimal solution may contain many

elements outside L;(-y;). To ensure that the optimal solution
from the original instance still remains feasible under the new
budget, we also need to reduce the weights of elements not in
L;(~;). Since FKSM and FKSM are not equivalent, we can-
not guarantee that all feasible solutions will satisfy the new
budget constraint after weight reduction. Nevertheless, based
on the characterization of the optimal solution provided by
{7, Bi}, we can carefully design the weight reduction strat-
egy to ensure that the optimal solution remains feasible in the
new FKSM instance.

Lemma 3.1. Given an FKSM instance 1, Algorithm 1 re-

duces it to an FKSM instance L (with the same ground ele-

ments and objective function) that satisfies the following:

(3.1a) Optimality Inheritance: The optimal solution S* of T
remains feasible for L.

(3.1b) Feasibility Extension: For any feasible solution S of
7, there always exists a feasible solution S of I such

that f(S) > f(S)/2.

Proof. We begin by proving the first property. We show that
S* satisfies both the fairness and budget constraints of the
reduced FKSM instance Z.

For the fairness constraints, according to the description
in Algorithm 1, each group G; in the original instance 7 is
split into two groups: L;(v;) and G; \ L;(7;), with corre-
sponding fairness upper bounds of 3; and ; — f3;, respec-
tively. Due to the definitions of ~; and j3;, we directly have
|5* N Li(yi)| = Bi and [S* 0 (Gi \ Li(v))| = v — Bi.
Therefore, S* satisfies the fairness constraints of Z.

For the budget constraint, we have

w(S*) = Y w(S* N Li()) + w(S* N (G \ Li()))
i€ k]
= Zw(S* N Li(vi)) — w(S* N Li(7:))
i€ (k]
+w(S* N (Gi \ Li(v:)))
— (7 — Bi) - w(Li(%,)yz : ;}fLZ(@))
(Definitions of ., ~y; and (3;)

< B=Y  w(Li(v))

1€ K]
+ 3 w(Li(B) — w(S* N L))
i€ k]

(Feasibility of S* for 7)

<B,
where the last inequality follows from the definition of 5, the
fact that L;(3;) is the top (; smallest-weight elements in G,
and that |S* N L;(y;)| = B;. Thus, S* remains feasible for Z.
_ For the second property, given a feasible solution S for
Z, we construct a solution following the procedure described
in Algorithm 2. We first prove the feasibility and then ana-
lyze its objective value. The algorithm ultimately selects the
solution with the larger objective value between S and L(7).
Since L(7) is clearly feasible, the following focuses on prov-
ing the feasibility of S. By the algorithm’s construction, S
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Algorithm 1 Knapsack Truncating

Input: An FKSM instance characterized by T = (f,{we,0c}eer; {li, itick,

{vi> Bitiew
Output: A reduced FKSM instance.

// Split each group into two groups according to parameter 7;,

B) and a corresponding parameter set

B; in the reduced instance

1: for each group index ¢ € [k] do

2 for each element e € G; do

3 ife ¢ L;(v;) then

4 Set its new color d. < i + k and weight @,  w, — w(Li(%))fE”i(Li(ﬂi)).
5: else ~

6: Keep its color J. < 7 unchanged and set its new weight w, < 0.

7 end if

8 end for

9: end for

/I Construct the upper limit for each new group
10: for each new group index i € [2k] do
11: if 7 < k then

12: Set u; <+ [;.

13: else

14: Set u; < Yi — ﬂz
15: end if

16: end for

// Construct the new budget
17: Set the new budget: B < B — >,y w(Li(7i))

18: return Z = (f, {we, 0c }ecr, {Ti }icjon), B).

Algorithm 2 Feasibility Extension

Input: A feasible solution S of the reduced FKSM instance.
Output: A feasible solution S of the original FKSM in-
stance.
1: for each group index i € [k] do
2: Set S <= SN (G;\ Li(7:))-
3: Add elements from L;(y;) t
weight until |S N G;| = ;.

4: end for
Let L(y) := Uie[k] Li(vi)

6: return arg max{f(S), f(L(y))}.

o0 S in increasing order of

bed

satisfies the fairness constraints in Z, as elements are added to
S until |[SNG;| = ~; foreach i € [k]. The proof of the budget
constraint relies on the fact that elements are added in increas-
ing order of weight (in Line 3 of Algorithm 2). Intuitively,
this ensures that the average weight among any subset of

these elements is at most (2 (7’)) w(L (%) For notational
simplicity, let x; :== [S N (G, \ L (%))\ for each i € [k], and
due to Line 3 in Algorithm 2, we have |SNL;(v;)| = 75 — Ki-
Thus, the value of w(.S) is equal to

Y w(SN(Gi\ Li(w)) +w(S N Li(x))

1€[k]

Z (SN (Gi\ Li(7i))) + w(S N Li(7:))
€[k]

+ K- w(LZ(%)) :Z(Lz(ﬁz))
<B+) -w )) +w(S N Li(vi))
i€ (k]
+ K w(Li(%)) :;).(Li(ﬁi))
(Feasibility of S for Z)
<B+ > —w(Li(y)) + w(Li(B:))
i€ (k]
4 (= ki — By - (Li(%» : Z.(Li(ﬂi))
by w(Li(%‘D —Z(Li(ﬁi))

:B’

where the last inequality uses the fact that, by the algorithm’s
construction, SN L(~y;) consists of the ; — x; smallest-weight
elements in L(;). ~
To prove the objective value guarantee, we observe that S
can be partitioned into two parts: S N L(y) and S\ L(y),
which are subsets of L(y) and S, respectively. Since f is
monotone and submodular, we can complete the proof:

£(S) < F(SNL(y) + F(S\ L(3)) (Submodularity)
< f(L(y)) + £(S) (Monotonicity)

< 2-max{f(L(7)), f(5)} -
O
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Lemma 3.1 demonstrates a desirable reduction from
FKSM to FKSM . The last piece in proving Theorem 1.1 is to
use an existing algorithm to handle FKSM .

Lemma 3.2 ([Chekuri et al., 2009]). For the FKSM prob-
lem, there exists a polynomial time algorithm that returns an
approximation ratio of 1 — % — € with probability at least

l—l—e%foranye>0.

€

Proof of Theorem 1.1. The theorem can be easily proven us-
ing the above lemmas. We first reduce the given FKSM in-
stance using Algorithm 1, then apply the algorithm provided
in [Chekuri ef al., 2009] to the reduced FKSM instance. Fi-
nally, we use Algorithm 2 to produce a feasible solution for
the original problem. Lemma 3.2 ensures that we can obtain
a solution with an approximation ratio of 1 — % — € with high
probability in the reduced instance, while the two properties
from Lemma 3.1 guarantee that the solution constructed by
Algorithm 2 will have at most a 1/2 decrease in its approxi-
mation ratio, which completes the proof. O

4 Randomized Weighted Pipage Rounding

In this section, we apply randomized weighted pipage round-
ing to the submodular function case and aim to establish the
following theorem.

Theorem 1.2. Given an FKSM instance, if the fairness con-
straints are relaxed to be satisfied in expectation, there exists
a polynomial-time algorithm that returns a solution with an
expected approximation ratio of (1 — %) — eforany e > Q.

Algorithm 3 Randomized Weighted Pipage Rounding

Input: An instance with (f,{we,dc}eer, {li; uiticpk), B)
and a fractional solution x

Qutput: A rounded solution y.
1: Initialize solution y < x.
2: while there are two elements p, ¢ with y,,y, € (0,1) do
3: Let 81 < min{y,, (1 — yq) - %‘j}
4: Let o < min{l — y,,y, - =L }.
5

Wp
With probability 5225

Set y, < yp — 01 and y, < yg + 01 - 1%1’
6: Otherwise:

Set y, < yp + 02 and y, < yg — 2 - :Z—Z
7: end while
8: returny.

The description of the generalized rounding algorithm is
provided in Algorithm 3. Note that in the classic pipage
rounding [Calinescu et al., 2011] for cardinality constraint,
91 and J5 are set to min{y,, (1 — y4)} and min{1 — y,, y, }.
respectively. And, the coordinates y,, and y, always change
at the same rate. However, in the weighted version, we utilize
the element weights to guide the rounding process, ensuring
that the knapsack constraint is always satisfied. We begin by
showing several properties of weighted pipage rounding.

4.1 Rounding Properties

In this subsection, we discuss the properties of weighted pi-
page rounding from three perspectives: the knapsack con-
straint (Lemma 4.1), the fairness constraints (Lemma 4.2),
and the objective guarantee (Lemma 4.3).

Lemma 4.1 (Knapsack Satisfaction). Y ., wey. < B.

Lemma 4.2 (Expected Fairness Satisfaction). For each group
G, l; < E[ZeeGi ye] < uj;.

Lemma 4.3 (Objective Guarantee). In any iteration, we have
E[F(y)] = F(x).

The first two lemmas can be easily proven by performing
some mathematical calculations based on the probability dis-
tribution defined in Algorithm 3. Due to space limitations, we
defer their detailed proofs to [Li et al., 2025].

In the following, we focus on proving the third lemma.
During the proof, we build on an existing result (Lemma 4.4)
to generalize the convexity of a submodular function’s mul-
tilinear extension (Lemma 4.5) and then use this convexity
property to complete the proof.

Lemma 4.4 ([Calinescu et al., 2011]). Let F : [0,1]F —
R be the multilinear extension of a set function f : 2F —
R>o.

(4.4a) ‘?;I; = 0 holds at any point in [0,1]F for any i € E.
(4.4b) If f is submodular, then O°F < 0 holds at any

69;“‘3353-
point in [0,1]F foralli,j € E

Lemma 4.5 (Convexity of Multilinear Extension). Let e; de-
note the vector with a value of 1 in the i-th dimension and 0
in all other dimensions. If f is a monotone submodular func-
tion, then its multilinear extension is convex along the line
(cie; — cje;) for any i,j € E and constants c;,c; > 0, i.e.,
the function 5 (X) := F(a+c;\e;—c;\e;) is a convex func-
tion for any a € [0,1)¥,i,j € F and constants c;, c; = 0.

Proof. To show the function F73(-) is a convex function, it
is sufficient to show the second derivative of F} is non-
negative. We define the function g(\) := a+c¢;\e; — ¢;he;.
Note that g()\) is a set of functions. For each e € F, define
g.(A) as the e-th function of g(A), i.e., g.(A\) = a, for all
ec E\{i,j}, 9:(\) =a; +chand gj(A) = aj — ¢; A So,
F} is a composition function: F§ = F(g1()),...,9.(N)).
For simplicity, let A := a+c;\e; — cjAe;. By the chain rule,

U5 _§NOF On_( OF _ OFY)
oA _e:1 agz o\ B laxi jaxj A.

Differentiating one more time and by the chain rule again,

d*F3 ,0*F PFE - ,0°F
= | ¢ 55 —2¢¢ + 55 ‘ .
ON? 03 Or;0x; 7 0x3 | la

2 pa
Since ¢;, ¢; > 0 and by Lemma 4.4, we get daféj > (0. Thus,

F(a+ c;\e; — cjAe;) is a convex function of . O
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Proof of Lemma 4.3. Let y*) denote the solution y in iter-
ation . We prove the lemma inductively by showing that
E[F(y*tD)) | y®] > F(y®). Assume that y**+1 and
y(®) differ at p, g-th coordinates. Let e, denote the vector
with a value of 1 in the ¢-th dimension and O in all other
dimensions. By the description of Algorithm 3, y(**+1) be-

comes y(t) —01-ep+01- %Z - e, with probability 51(3352 , and
y ;e — by 5—:) - €, with probability 61‘1162. Define

function H(\) := F(y® + X-e, — w2 X-eg). Then,

E[F(y"D) | y®)]

0o 01
51 + 65 ( 1)+61+52 (32)
0o - 01 01 - 09
>H( - L 45
- ( 51+52+51+52> (Lemma 4.5)
=H(0)=F(y").
O

4.2 Constant Approximation with Relaxed
Fairness

This subsection proves Theorem 1.2. In Lemma 2.4, we
demonstrate that the continuous greedy technique can always
yield a fractional solution x with an approximation ratio of
(1 — 1/e — €). Subsequently, we apply Algorithm 3 to
round x into a solution y. Using Lemma 4.1, Lemma 4.2
and Lemma 4.3, we can guarantee that y satisfies the knap-
sack constraint, (expected) fairness constraints, and maintains
the objective value.

However, it is worth noting that the proof does not con-
clude here. The solution y is not guaranteed to be integral.
Due to the different rates at which y. increases or decreases
during the rounding process, ) y. may no longer be an in-
teger. In fact, y is a nearly integral solution, where “nearly”
means that at most one element has a fractional y. € (0, 1),
while the remaining components are integers.

Lemma 4.6. The solution y returned by Algorithm 3 is a
nearly integral solution. Let z := {2, = |ye|}lecr. We
have integral solution z satisfies the knapsack constraint and
(expected) fairness constraint.

Proof. Tt is easy to see that y is a nearly integral solution be-
cause if there were at least two fractional components, Algo-
rithm 3 would continue iterating in the while loop. Since z. is
the floor of each vy, it follows that z, < y.. By Lemma 4.1,
we can verify the satisfaction of the knapsack constraint:
2ieen WeZe < Y eepWele < B.

For the fairness constraints, the continuous greedy process
ensures that the 1 norm of the fractional solution within any
group is an integer, i.e., Zeeci ze > 1; + 1. By Lemma 4.2,

the expected £; norm of y also satisfies E[Y ... ve| € [li +

1,u;]. Furthermore, since y is nearly integral, the rounding
process decreases the £1 norm by less than 1. Hence, for each
group G;, we have:

Zye*1< Zze§ ZyeéE

ecG; ecG; ecG;

Z Z;| c (ll,ul]

ecG;

O

Proof of Theorem 1.2. Using the above lemmas, we obtain
an integer solution z that satisfies the knapsack constraint
and the expected fairness constraints. The last step is to an-
alyze the objective value of z. According to the knapsack
enumeration technique applied in [Chekuri e al., 2009], we
can always ensure, through a polynomial-time enumeration
process, that all elements selected via the relax-and-round
method contribute only a small constant 7 to the objective
function value. Namely, removing any single element reduces
the objective value by at most a factor of (1 + ). Therefore,
F(z) differs from F'(y) by at most a factor of (1 + 7). Fur-
thermore, Lemma 4.3 implies that the expected approxima-
tion ratioof zis 1 — 1/e —e. O

4.3 Further Discussion

In this subsection, we discuss some additional properties of
the randomized weighted pipage rounding, which we believe
to be of independent interest. Notably, we observe that the
negative correlation and objective concentration properties,
previously established in the classic pipage rounding, still
hold in the weighted version.

Lemma 4.7 (Negative Correlation). The random variables in
{Ye }oc g are negatively correlated, which means that for any

SCE:E [Hees ye] < HeESE[ye]'

Lemma 4.8 (Objective Concentration). If the objective func-
tion [ has a marginal value at most 1, for any 0 € (0, 1), we
have Pr[F(y) < (1 — §)F(x)] < exp(—§? - F(x)/2).

We remark that when generalized to the weighted pipage
rounding, many prior properties still hold, but the original
proofs are no longer applicable. Since the algorithm now
moves the fractional solution along the line e, — e - % rather

than the specific direction e, — e, all relevant proofs need to
be extended. For example, when proving the objective con-
centration lemma, it is necessary to establish a more general
property of the concave pessimistic estimator (see [Li ef al.,
2025] for details).

5 Conclusion

In this paper, we consider the problem of fair submodular
maximization under a knapsack constraint. We introduce
two novel techniques: knapsack truncating and randomized
weighted pipage rounding, and apply them to derive fair so-
lutions with good approximations. Several directions for fu-
ture research remain open. For example, when the number
of groups is non-constant, it still remains an open question
if a non-trivial approximation can be achieved. Investigating
whether our proposed techniques can be further extended to
this more general setting, or if entirely new techniques are re-
quired to resolve this open problem, is an interesting direction
for future work.
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