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Abstract
Federated learning is a machine learning paradigm
that enables decentralized clients to collaboratively
learn a shared model while keeping all the train-
ing data local. While considerable research has fo-
cused on federated image generation, particularly
Generative Adversarial Networks, Variational Au-
toencoders have received less attention. In this
paper, we address the challenges of non-IID (in-
dependently and identically distributed) data envi-
ronments featuring multiple groups of images of
different types. Non-IID data distributions can
lead to difficulties in maintaining a consistent la-
tent space and can also result in local generators
with disparate texture features being blended dur-
ing aggregation. We thereby introduce FissionVAE
that decouples the latent space and constructs de-
coder branches tailored to individual client groups.
This method allows for customized learning that
aligns with the unique data distributions of each
group. Additionally, we incorporate hierarchical
VAEs and demonstrate the use of heterogeneous
decoder architectures within FissionVAE. We also
explore strategies for setting the latent prior dis-
tributions to enhance the decoupling process. To
evaluate our approach, we assemble two compos-
ite datasets: the first combines MNIST and Fash-
ionMNIST; the second comprises RGB datasets of
cartoon and human faces, wild animals, marine
vessels, and remote sensing images. Our exper-
iments demonstrate that FissionVAE greatly im-
proves generation quality on these datasets com-
pared to baseline federated VAE models.

1 Introduction
Generative models have attracted increasing attention in re-
cent years due to their impressive ability to generate new
data across various modalities, including images [Ho et al.,
2020], texts [Touvron et al., 2023], and audios [Borsos et al.,
2023]. As these models, like other deep learning systems,

∗Corresponding author: x.xie@swansea.ac.uk
∗Code and Suppl. Mat.: github.com/Rand2AI/FissionVAE

require substantial amounts of data, concerns regarding data
privacy have elevated among regulatory authorities and the
public. Unlike the traditional centralized learning paradigm,
which collects all data on a single computer system for train-
ing, federated learning allows private data to remain on the
owner’s device. In this paradigm, local devices train mod-
els independently, and a central server aggregates these mod-
els without accessing the individual data directly. Although
this distributed approach enhances privacy protection, it also
introduces unique challenges not encountered in centralized
systems. Since data remains distributed across various client
devices, the training samples are not guaranteed to be identi-
cally distributed. This can lead to inconsistencies in learning
objectives among clients, resulting in degraded performance
when these models are aggregated on the server.

In the context of FL with non-IID data, generative mod-
els such as Generative Adversarial Networks (GANs) [Good-
fellow et al., 2014] and Variational Autoencoders (VAEs)
[Kingma and Welling, 2014] face additional challenges.
These models involve sampling from a latent distribution, and
the generator or decoder trained on client devices may de-
velop differing interpretations of the same latent space. This
discrepancy can lead to difficulties in maintaining a consistent
and unified latent space, resulting in ambiguous latent repre-
sentations. A further challenge arises from the role of the
generator or decoder, which are tasked with mapping latent
inputs to the sample space by synthesizing the shape, texture,
and colors of images. Aggregating generative models trained
on non-IID image data can produce artifacts that appear as a
blend of disparate image types, because generators trained on
non-IID local data capture the characteristics of varied visual
features. Specifically for GANs, another problem arises from
local discriminators, which may provide conflicting feedback
that hinders model convergence. With the limited data avail-
able in FL settings, discriminators can quickly overfit to the
training samples [Karras et al., 2020]. If an updated genera-
tor from the server produces images of classes not present in a
client’s local dataset, the local discriminator might incorrectly
label well-generated images as fake, simply because they do
not match the local data distribution. This mislabeling can
significantly impede the generator’s ability to synthesize re-
alistic images.

Existing research on generative models for non-IID data
in federated learning (FL) has primarily focused on GANs.
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MDGAN [Hardy et al., 2019] proposes exchanging local dis-
criminators among clients during training. This strategy al-
lows discriminators to access a broader spectrum of local
data, thereby avoiding biased feedback to the generator. The
authors of [Yonetani et al., 2019] uses the local discriminator
that gives the highest score to a generated sample to update
the global generator, promoting the idea that local discrimina-
tors should only judge samples from familiar distributions. In
[Xiong et al., 2023], the authors aggregate generators at the
group level for client groups sharing similar data distributions
before performing a global aggregation, then the global gen-
erator is aggregated similar to [Yonetani et al., 2019]. Both
[Yonetani et al., 2019] and [Xiong et al., 2023] involve send-
ing synthesized samples back to local clients, which could
potentially increase the risk of compromising client data pri-
vacy.

Studies employing VAEs solely for image generation pur-
poses are less common. The works in [Chen and Vikalo,
2023] and [Heinbaugh et al., 2023] utilize VAEs to produce
synthetic images that assist in training global classifiers. In
[Chen and Vikalo, 2023], the global decoder generates mi-
nority samples for local classifiers by sampling from class
means with added noise. The approach in [Heinbaugh et
al., 2023] treats converged local decoders as teacher mod-
els and uses knowledge distillation to train a global generator
on the server side without further local updates. While this
decoder can produce useful samples for classification tasks,
it risks overfitting to the potentially flawed output from local
decoders and lacks generative diversity, which is crucial for
high-quality image generation. Recent studies [Bohacek and
Farid, 2023] [Shumailov et al., 2024] have shown that gen-
erative models trained on generated samples instead of real
data are prone to collapsing. VAEs are also widely used in
collaborative filtering tasks for recommendation systems [Po-
lato, 2021; Zhang et al., 2024; Li et al., 2025]. These mod-
els typically learn user embeddings from interaction vectors
using a standard Gaussian prior, and decode into item-score
distributions for ranking. In contrast, image generation tasks
require decoding into high-dimensional pixel space, where is-
sues such as latent space ambiguity and domain-specific tex-
ture blending and arise, which are not present in collaborative
filtering. As such, the architectural and modeling considera-
tions in our work are fundamentally different.

In response to the challenges posed by non-IID data in fed-
erated image generation, we introduce a model named Fis-
sionVAE. This model is specifically tailored to environments
featuring multiple groups of images of different types. To
mitigate the problem of mixed latent space interpretation, Fis-
sionVAE decomposes the latent space into distinctive priors,
hence adapting to the diverse data distributions across differ-
ent image types. We further refine this approach by investi-
gating strategies for encoding the prior Gaussians. Addition-
ally, to prevent the blending of unrelated visual features in
the generated outputs, FissionVAE employs specialized de-
coder branches for each client group. This method not only
accommodates the unique characteristics of each data sub-
set but also enhances the model’s generative capabilities in
highly heterogeneous environments. The primary contribu-
tions of our research are detailed as follows:

1. We introduce FissionVAE for federated non-IID image
generation. In FissionVAE, we decompose the latent space
according to the distinct data distributions of client groups.
This approach ensures that each client’s data are mapped to
its corresponding latent distribution without the adverse ef-
fects of averaging dissimilar distributions during aggregation.
Moreover, by implementing separate decoder branches for
different groups of data, FissionVAE allows for specialized
generation tailored to different image types, which is crucial
for preserving the distinct visual features of different image
types during the generative process.

2. We explore various strategies for encoding Gaussian pri-
ors to enhance the effectiveness of latent space decomposi-
tion. We further extends FissionVAE by introducing the hi-
erarchical inference architecture. We demonstrate that with
the decomposed decoder branches, it is feasible to employ
heterogeneous decoder architectures in FissionVAE, allowing
for more flexible model deployment on clients.

3. We validate FissionVAE with extensive experiments on
two composite datasets combining MNIST with FashionM-
NIST, and a more diverse set comprising cartoon and human
faces, animals, marine vessels, and remote sensing images.
Our results demonstrate improvements in generation quality
over the existing baseline federated VAE.

The remainder of the paper is organized as follows: In
Section 2, we describe the baseline FedVAE model and the
FissionVAE variants we propose. Section 3 presents the ex-
perimental setup, including the configuration details and an
analysis of the results. Finally, we conclude the paper in Sec-
tion 4 with a summary of our findings and a discussion on
potential future directions.

2 Investigating Strategies for Non-IID Image
Generation with VAEs

In this section, we describe our methodology for exploring
VAE configurations tailored for generating images under non-
IID conditions in a federated learning framework. For back-
ground on FL and VAEs, please refer to the supplementary
material. We specifically address scenarios where clients are
categorized based on distinct data distributions. For illustra-
tive purposes, we consider the case where some clients ex-
clusively possess hand-written digit images from the MNIST
dataset, while others maintain only clothing images from the
FashionMNIST dataset. We follow to the standard federated
learning framework, wherein a central server is tasked with
aggregating updates from the clients and subsequently dis-
tributing the updated model back to them. FedAvg [McMa-
han et al., 2023] is employed for server-side aggregation.
Each client retains a subset of data representative of its re-
spective group and conducts local training independently. A
more practical scenario with RGB images and a larger num-
ber of client groups is explored and discussed in the experi-
ments section (Section 3).

2.1 FedVAE
A straightforward strategy for implementing VAEs in feder-
ated learning is using a unified encoder-decoder architecture.
In this configuration, all clients share a common latent space
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FissionVAE with 
Decoupled Latent Space and Branching Decoders

Vanilla FedVAE FissionVAE with 
Decoupled Latent Space

Figure 1: Qualitative results of the baseline FedVAE and proposed FissionVAEs. As we further decoupling the latent space and decoders in
the federated environment, the quality of generated images is improved.

(often predefined as the normal distribution N (0, 1)) and the
central server indiscriminately aggregates client models at the
end of each training round. This approach is named FedVAE
in [Jiang et al., 2023] for trajectory data generation. Fig. 2
illustrates this baseline training scheme.

Client Group A

Central Server

FedAvg(A, B)FedAvg(A, B)

Encoder Decoder

Client Group B

Encoder Decoder

Encoder Decoder

Figure 2: An illustration of baseline FedVAE. The encoder and the
decoder of the VAE are aggregated through FedAvg regardless of
their client groups.

Despite the simplicity of this strategy, it present significant
challenges in the non-IID scenario. Specifically, employing a
single prior distribution for the latent space does not account
for the distinct data distributions across different clients. En-
coders from different client groups may map their uniquely
distributed data into the same region of the latent space. Con-
sequently, client decoders might interpret this shared latent
space differently, leading to inconsistencies or even conflicts
among client models during aggregation at the server. Figure
1 shows randomly generated samples produced after training
the federated Vanilla VAE on the combined dataset of MNIST
and FashionMNIST. These samples clearly exhibit artifacts
that appear to blend features of handwritten digits with cloth-
ing items, indicating the aggregation conflicts inherent in this
method.

2.2 FissionVAE with Latent Space Decoupling
To address the conflicting latent space issue identified above,
we propose decomposing the latent space according to differ-
ent data groups, while maintaining a unified architecture for

the encoder and decoder. This approach corresponds to the
architecture shown in Fig. 3.

Client Group A

Central Server

FedAvg(A, B)FedAvg(A, B)

Encoder Decoder

Client Group B

Encoder Decoder

Encoder Decoder

Figure 3: An illustration of FissionVAE with Latent Space Decou-
pling. The latent variables are forced to follow their respective group
prior distributions. The model is aggregated the same way as the
baseline FedVAE.

When decoupling the latent space, the encoder maps the in-
put data to different distributions based on the client’s group.
For instance, MNIST client may map to N (−1, 1) and Fash-
ionMNIST clients to N (1, 1). The KL divergence in the
ELBO for this model is given by:

DKL(N (µq,σq||N (±1, 1)) =
1

2
Σk

i=1[σi+µ2
i ∓2µi−log σi]

(1)
Here, µq and σq represent the encoder’s estimates for the
parameters of the latent code’s distribution, and k is the di-
mension of the latent code.

Figure 1 shows randomly generated amples produced af-
ter training the FissionVAE with latent space decoupling on
the Mixed MNIST dataset. While the quality of reconstructed
images are improved compared to the baseline FedVAE, the
generated images still exhibit a mixture of handwritten digits
and clothing items, even when explicitly sampling from their
respective latent distributions. This suggests that while de-
composing latent encoding helps improving reconstructions,
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Central Server

FedAvg(A, B)

FedAvg(A)

FedAvg(B)
FedAvg(A, B)

Encoder Encoder

Decoder

Decoder Decoder

Decoder

Client Group A

Encoder Encoder

Decoder

Decoder Decoder

Decoder

Client Group B

Encoder Encoder

Decoder

Decoder Decoder

Decoder

Figure 4: An illustration of Hierarchical FissionVAE. This FissionVAE architecture extends to allow two levels of latent variables. The latent
variable z1 can be either learned or predefined. As input from different groups has been separated by z1, the latent variable z2 is set to follow
the standard normal distribution.

the unified decoder still blends features due to the aggregation
of model weights from diverse visual domains. This observa-
tion motivates the architecture described in the next section,
where the decoder is also split based on client groups.

2.3 FissionVAE with Group-specific Decoder
Branches

Non-Hierarchical FissionVAE Building on the concept in-
troduced by FissionVAE with latent space decoupling, we
further refines non-IID data generation by incorporating de-
coder branches specific to each data group while maintaining
a unified encoder. This design allows the central server to ag-
gregate the encoder updates agnostically of the client groups,
whereas decoder branches are aggregated specifically accord-
ing to their corresponding groups. In addition, this approach
also offers flexibility in the choice of the prior latent distribu-
tion p(z) for each group to exert more explicit control over
the data generation through the decoder. Figure 5 illustrates
this branching architecture.

Figure 1 also includes randomly generated samples pro-
duced after training the FissionVAE with decoder branches.
The results indicate a significant reduction in the blending
feature issue in previously discussed VAE architectures.
Hierachical FissionVAE Next, we show that the branching
architecture can be enhanced by integrating hierarchical in-
ference [Kingma et al., 2016] [Sønderby et al., 2016] to
the federated learning framework, which enables the use of
deeper network structures to capture more complex data dis-
tributions. Fig 4 depicts the FissionVAE with two levels of
hierarchical inference. In this architecture, the first encoder
module estimates q(z1|x) from the input data, then the sec-
ond encoder module estimates q(z2|z1) based on the first
level latent code. The decoder reverses the encoding process,
which estimates p(z1|z2) based on z2 to reconstruct z1, and
subsequently reconstructs the original input x by estimating
p(x|z1).

Following the convention in hierarchical VAEs, we assume
conditional independence among the latent codes.Then the
ELBO for this hierarchical VAE is expressed as (refer to sup-

FedAvg(A, B)

Central Server

FedAvg(A)

FedAvg(B)

Client Group A

Encoder

Decoder

Decoder

Client Group B

Encoder

Decoder

Decoder

Encoder

Decoder

Decoder

Figure 5: An illustration of FissionVAE with Decoder Branch De-
coupling. This FissionVAE creates decoders specific to client groups
and enforces constraints for latent variable priors. The encoder is
aggregated across groups while the group-specific decoder is only
aggregated from local models within the corresponding group.

plementary material for derivation),

ELBOH = Eqϕ(z1|x)[log pθ(x|z1)]
− Eqϕ(z1|x)[DKL(qϕ(z2|z1)||p(z2))]

− Eqϕ(z2|z1)[DKL(qϕ(z1|x)||pθ(z1|z2)] (2)

In the equation above, the first term is the reconstruction term
as it is the expectation of the log-likelihood for the input sam-
ples under the distribution estimated from the encoded z1, the
second term is the prior matching term which is enforcing the
encoded z2 to conform the prior distribution z2 ∼ N (0, 1),
and the last term is the consistency term which requires z1
from either the encoder or the decoder to be consistence. In
practice, we find that adding the reconstruction loss from z2
to x is also crucial for generating meaningful samples. Op-
tionally, perceptual losses such as the VGG loss [Ledig et
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al., 2017] or the structural similarity index measure (SSIM)
[Wang et al., 2004] loss can be used to promote the fidelity of
reconstructed images. However, no significant improvement
is observed in our experiments. Therefore no perceptual loss
is included in our implementation. The final loss function for
the hierarchical and branching FissionVAE then becomes,

L = Eqϕ(z1|x)[DKL(qϕ(z1|zx)||p(z1))]
− Eqϕ(z2|z1)[log pθ(x|z1, z2)]− ELBOH (3)

Here we minimize the KL divergence for z1 only when the
prior distribution for z1 is explicitly defined, otherwise the
model learns the latent distribution by itself.

The proposed hierarchical FissionVAE also allows hetero-
geneous decoder architectures for each client groups, as each
decoder branch is trained and aggregated independently. This
flexibility is particularly advantageous in federated learning
environments, where clients often possess varying computa-
tional resources. Client groups with more resources can im-
plement deeper and more complex network structures, while
groups with limited computational capacity can utilize lighter
models.
Complexity of FissionVAE FissionVAE’s space complex-
ity grows linearly with the number of clients, due to group-
specific decoder branches. Time complexity per client fol-
lows standard feedforward model training. While we use
smaller batch sizes to encourage better latent space explo-
ration, this does not change asymptotic complexity.

3 Experiments
3.1 Datasets and Evaluation Metrics
We evaluated the proposed federated VAEs using two com-
posite datasets. Mixed MNIST combines MNIST [LeCun
and Cortes, 2010] and FashionMNIST [Xiao et al., 2017], di-
viding samples into two client groups (one per dataset) with
10 clients each. Training samples were evenly distributed
within each group, and the default test sets served as evalua-
tion benchmarks. An equal number of images were generated
using the global model for comparison.

CHARM is a more diverse dataset combining five domains:
Cartoon faces [Churchill, 2019], Human faces [Karras et al.,
2018], Animals [Xian et al., 2019], Remote sensing images
[Helber et al., 2019], and Marine vessels [Gundogdu et al.,
2016], using preprocessed square images from Meta-Album
for AwA2 and MARVEL. Images were resized to 32 × 32,
and each domain was represented by 20 clients, with 20,000
images for training and 5,000 for evaluation. As with Mixed
MNIST, the global model generated evaluation samples.

For Mixed MNIST, encoders and decoders used Multi-
Layer Perceptrons (MLPs). On CHARM, encoders q(z1|x)
and decoders p(x|z1) were convolutional, while q(z2|z1)
and p(z1|z2) used MLPs. Client participation followed
a Bernoulli distribution: B(0.5) for Mixed MNIST and
B(0.25) for CHARM. Hyperparameters included learning
rates of 1× 10−3 (Mixed MNIST) and 1× 10−4 (CHARM),
with 70 and 500 training rounds, respectively. Clients per-
formed 5 local epochs per round with a batch size of 32. Cen-

tralized settings used 70 epochs for Mixed MNIST and 250
for CHARM.

Evaluation metrics included Fréchet Inception Distance
[Heusel et al., 2017] and Inception Score [Salimans et al.,
2016] for generation quality, and the negative log-likelihood
(NLL) of the ELBO for reconstruction performance. IS
was computed using an ImageNet-pretrained Inception model
[Szegedy et al., 2016].

3.2 Results and Analysis
Here we present the following experiments: we first evaluate
the overall generative performance of the proposed VAE ar-
chitectures in both federated and centralized settings, then we
explore strategies for encoding the prior distribution p(z1),
and lastly we showcase the use of heterogeneous decoder ar-
chitectures in our FissionVAEs. For experiments investigat-
ing different generation pathways of hierarchical VAEs and
the effect of reconstruction losses, please refer to our supple-
mentary material.

Overall Performance
The overall performance of the proposed FissionVAE mod-
els is summarized in Table 1, and generated examples are
shown in Fig. 6. In addition to the FedVAE baseline, a
Deep Convolutional GAN (DCGAN) [Radford et al., 2016]
trained via FedGAN [Rasouli et al., 2020] is used for com-
parison. Since GAN does not directly model the likelihood of
data, NLL is not evaluated for FedGAN. Also, FedGAN on
CHARM suffers from severe mode collapse, therefore per-
formance evaluation is not available on this dataset. Notably,
the performance of all models on the CHARM dataset is less
robust compared to the Mixed MNIST dataset. This discrep-
ancy arises because the CHARM dataset, encompassing RGB
images from diverse domains, presents a more complex and
realistic federated learning scenario. The dataset’s diversity,
coupled with a lower local data availability and participation
rate among clients, poses greater challenges to federated gen-
erative models.
Latent Space Decoupling vs Decoder Branches As shown
in Table 1, both latent space decoupling and group-specific
decoder branches improve image quality (lower FID, higher
IS). Decoder branches alone yield larger gains, highlighting
the negative impact of mixing decoders trained on non-IID
data.

FissionVAE+L moderately improves upon FedVAE by par-
titioning the latent space by client group, helping the decoder
better distinguish domain-specific features and reducing rep-
resentation overlap. Fig. 6 shows that while FissionVAE+L
enables group-specific sampling, shared decoder aggregation
still causes artifacts such as blended features.

FissionVAE+D, with a unified encoder and domain-
specific decoder branches, greatly reduces visual blending.
The encoder functions like a routing module akin to Mixture-
of-Experts, which directs inputs to group-specific latent dis-
tributions. As decoders remain distinct during aggregation,
texture mixing is avoided, producing cleaner outputs (Fig. 6).

FissionVAE+L+D combines both latent space decoupling
and decoder branches. As shown in Table 1, Fission-
VAE+L+D yields marginal gains on Mixed MNIST but out-
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Model
Mixed MNIST CHARM

Federated Centralized Federated Centralized
FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓

FedGAN 118.52 2.39 - 91.08 3.18 - - - - - - -
FedVAE 117.03 2.29 0.23 40.59 3.62 0.18 167.18 1.57 40.80 89.26 2.57 46.99

FissionVAE+L 64.99 2.83 0.22 39.27 3.03 0.18 155.81 1.73 43.49 86.19 2.53 51.45
FissionVAE+D 40.78 3.01 0.26 34.76 3.05 0.25 120.39 2.16 33.07 63.25 2.95 36.76

FissionVAE+L+D 42.11 3.04 0.25 34.39 3.08 0.20 109.10 2.27 33.29 50.30 2.89 40.14
FissionVAE+H+L+D 47.72 2.98 0.30 28.82 3.16 0.24 107.69 2.32 27.46 74.59 2.58 27.09

Table 1: Evaluation of proposed FissionVAEs on the Mixed MNIST and CHARM dataset. +L is for decoupled latent space. +D is for
branching decoders. +H is for the hierarchical architecture. Best results in are in bold. Second best results are underlined. ↑ denotes the
higher the better, while ↓ means the lower the better.

FedVAE 
(baseline federated VAE)

FissionVAE + L 
(FissionVAE with Decoupled Latent Space)

FissionVAE + D
(FissionVAE with Decoupled Decoder Branches)

FissionVAE + L + D
(FissionVAE with Decoupled Latent Space and Decoder Branches)

Figure 6: Qualitative results of image generation with FissionVAEs on the CHARM dataset. Best viewed in color.

performs FissionVAE+D on CHARM. Enforcing latent space
decoupling yields different outcomes depending on the num-
ber of client groups. For Mixed MNIST (2 groups), the FID
is lowered due to the extra latent constraints. However, as the
number of client groups increases on CHARM (5 groups),
explicit latent space decoupling provides more direct signal
to the VAE to identify the intra-group difference, resulting an
improved FID. In Fig. 6 it can be observed that images gener-
ated by FissionVAE+L+D are sharper than the ones generated
by FissionVAE+D.
Hierarchical FissionVAE As discussed in Section 2, here we
consider a hierarchical VAE with two levels of latent vari-
able. In Table 1, the architecture FissionVAE+H+L+D per-
forms the best on the CHARM dataset and falls behind its
non-hierarchical counterpart on the Mixed MNIST dataset.
The hierarchical VAE employs multiple levels of latent repre-
sentations, which refines the model’s ability to capture and re-
construct complex data distributions more faithfully. The per-
formance degradation on simpler datasets like Mixed MNIST
suggests that the hierarchical approach might introduce un-
necessary redundancy without proportional gains in perfor-
mance.

Decoupling the Prior of z1
Explicitly decoupling the latent space for different client
groups improves the ability of VAEs to generate images that

Model Prior p(z1)
Mixed MNIST CHARM
FID ↓ IS ↑ FID ↓ IS ↑

FissionVAE+L+D

identical 40.78 3.01 120.39 2.16
one-hot 42.01 3.02 113.82 2.25

symmetrical 41.79 2.95 - -
random 43.26 3.00 111.77 2.47
wave 42.11 3.04 109.10 2.27

FissionVAE+H+L+D

identical 55.91 2.96 122.16 2.30
one-hot 53.22 2.97 121.33 2.29

symmetrical 58.21 3.03 - -
random 53.99 2.94 124.91 2.23
wave 53.68 2.94 118.56 2.24

learnable 47.72 2.98 107.69 2.32

Table 2: Evaluation of Generation Performance with z1 Priors

align with the true data distribution (Table 1). We explore sev-
eral priors for the latent distribution, modeled as multivariate
Gaussians with customizable means and identity covariance
matrices and evaluate them in Table 2. Details regarding the
formal definition of priors can be found in the supplementary
material.

In non-hierarchical VAEs, z1 represents the sole latent
variable, while in hierarchical VAEs, z1 is controlled, with
z2 following a standard normal distribution N(0, 1). Base-
line priors are identical across client groups. Other prior
variations include one-hot encoding, symmetrical positive
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Decoder Architecture
on the FashionMNIST Branch

MNIST FashionMNIST Overall
FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓ FID ↓ IS ↑ NLL ↓

Homogeneous 46.73 2.41 0.38 61.81 2.92 0.61 47.72 2.98 0.30
Deeper MLP 49.54 2.38 0.33 60.95 2.90 0.78 48.79 2.95 0.39

Deeper MLP + Conv 48.21 2.38 0.38 65.82 2.99 0.60 50.16 3.00 0.30

Table 3: Evaluation of FissionVAE+H+L+D with Heterogeneous Decoder Architectures on the Mixed MNIST

and negative integers, random vectors, wave encodings (with
grouped 1’s in dimensions corresponding to client groups),
and a learnable approach unique to hierarchical VAEs. The
learnable approach dynamically aligns priors but sacrifices
direct sampling from p(z1). Hierarchical FissionVAE often
underperforms non-hierarchical variants when predefined pri-
ors are used due to increased uncertainty from additional la-
tent layers. However, the learnable approach excels in cap-
turing complex distributions dynamically. In simpler datasets
like Mixed MNIST, identical priors suffice, but explicit latent
encoding becomes crucial as client group diversity increases,
as seen with CHARM. Among prior definitions, symmetrical
priors often lead to divergence on CHARM, as their means
may exceed neural network initialization ranges. One-hot and
random approaches show comparable results but are less con-
sistent than wave encoding, which clearly distinguishes group
priors without out-of-range values.

Group-level Privacy
In the presence of hierarchical VAEs, it is possible to incorpo-
rate the encoder qϕ(z2|z1) into the generation process, that
is, we can first sample the latent code z1 from its prior dis-
tribution, then feed it to the subsequent encoder qϕ(z2|z1)
and the decoders pθ(z1|z2) and pθ(x|z1) to obtain the syn-
thesize a generated sample. On the Mixed MNIST dataset,
we observe that swapping the prior distributions of the two
client groups in the such a generation pathway leads to ev-
ident mode collapse, shown in Figure 7. This suggests that
the group-level privacy may be preserved by maintaining the
confidentiality of prior distributions. This strategy ensures
that high-quality samples are generated only when the cor-
rect prior distribution is used, while mismatched distributions
yield unrecognizable outputs. This phenomenon is more pro-
nounced in both hierarchical and non-hierarchical Fission-
VAEs on the Mixed MNIST dataset than on the CHARM
dataset, likely due to the simpler, more uniform nature of the
Mixed MNIST data compared to the diverse and colorful im-
age types in CHARM, which pose greater challenges in sat-
isfying complex latent distribution constraints. Evaluation on
other generation pathways are presented in the supplementary
material.

Heterogeneous Decoders in FissionVAE
As discussed in Section 2, the decoupling of decoders for
client groups allow for the use of heterogeneous architec-
tures in FissionVAE. The Mixed MNIST dataset, with its rel-
atively simple and grayscale colors, can be generated from
both fully connected (MLP) and convolutional layers. In con-
trast, the more complex and colorful images in the CHARM
dataset predominantly require convolutional layers for ef-
fective generation. Table 3 details the performance evalu-

Sampling z1 from

Corresponding Group Prior

Sampling z1 from

Swapped Group Prior

Figure 7: In hierarchical FissionVAE, when the prior distribu-
tion p(z1) of the MNIST and FashionMNIST groups are swapped,
the generation pathway q(z1) → qϕ(z2|z1) → pθ(z1|z2) →
pθ(x|z1) leads to sever mode collapse, suggesting potential group-
level privacy preserving through protected prior distribution.

ation of various decoder architectures. The term ’homoge-
neous’ refers to identical architectural configurations across
all decoder branches, namely a three-layer MLP for each de-
coder modules. In the ‘Deeper MLP’ configuration, we add
two additional fully connected layers to both pθ(z1|z2) and
pθ(x|z1). Meanwhile, we completely replace the decoder
pθ(x|z1) from MLP to a series of transpose convolution lay-
ers in the ‘Deeper MLP + Conv’ configuration. The results
indicate a gradual reduction in overall FID scores as the de-
coder architecture becomes more heterogeneous. However,
the integration of convolutional layers does not improve gen-
eration performance over the MLP models, underscoring that
while heterogeneous architectures are feasible, they can dis-
rupt the convergence of the VAE due to mismatches in archi-
tecture and the model’s weight space.

4 Conclusion
We presented FissionVAE, a generative model for federated
image generation in non-IID data settings. By decoupling the
latent space and employing group-specific decoder branches,
FissionVAE enhances generation quality while preserving
the distinct features of diverse data subsets. Experiments
on Mixed MNIST and CHARM datasets demonstrated sig-
nificant improvements over baseline federated VAE models,
with heterogeneous decoder branches and wave-encoded pri-
ors proving particularly effective. Future work includes im-
proving the stability of heterogeneous decoder branches, en-
abling cross-modality data generation, and developing scal-
able strategies for handling an increasing number of client
groups in real-world federated learning scenarios.
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