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Abstract
Recent advances in explainable deep reinforcement
learning (DRL) have provided insights into the
reasoning behind decisions made by DRL agents.
However, existing methods often overlook the sub-
jective nature of explanations and fail to consider
human cognitive styles and preferences. Such ig-
norance tends to reduce the interpretability and rel-
evance of the generated explanations from a hu-
man evaluator’s perspective. To address this issue,
we introduce human cognition into the explain-
ing procedure by integrating DRL with attention
guidance in a novel manner. The proposed con-
cept proximal policy optimization (Concept-PPO)
learns to generate human-aligned explanations by
jointly optimizing the DRL performance and the
discrepancy between generated explanations and
human annotations. Its key component is a spe-
cially designed spatial concept transformer that
can enhance explaining efficiency by premasking
decision-irrelevant information. Experiments on
the ATARI benchmark demonstrate that Concept-
PPO achieves better policies than its black-box
counterparts, and user studies confirm its superior-
ity in generating human-aligned explanations com-
pared to existing explainable DRL methods.

1 Introduction
A critical impediment to the effective application of deep re-
inforcement learning (DRL) methods in real-world decision-
making scenarios is that they infer in a latent space spawned
by a series of neural layers rather than in a manner that is ex-
plicit and understandable to humans. It is difficult for practi-
tioners to analyze the connections between input observations
and outcome actions of DRL agents. This nontransparency
and unpredictability hinders most DRL methods from real-
world applications, particularly for those requiring cautious
decision and verifiability.

Efforts have been made to achieve explainable reinforce-
ment learning (XRL). Saliency-based XRL methods [Si-

† Corresponding author.

Saliency Map Human AlignedObservation Relational RL

Game 
Entities SlimeDinosaurHero SlimeRecognized 

Concepts Hero Dinosaur

Figure 1: A frame of the CoinRun game from OpenAI Procgen
benchmark showing the superiority of aligning explanations with
human cognition. Light-color layers are used to indicate important
patches that are recognized by agents. Three colors in the legend are
used to represent the recognized concepts.

monyan et al., 2014; Mott et al., 2019; Atrey et al., 2020]
explain policies by highlighting critical regions for decision-
making in visual inputs. Because salient pixels are irrele-
vant to high-level concepts that human explainers depend on,
saliency-based explanations are often hard to interpret from
a human perspective. To explain with high-level concepts
inherently, relational learning is employed to identify both
the regions crucial to a DRL agent’s decisions and the high-
level concepts these regions relate to [Zambaldi et al., 2019;
Jiang and Luo, 2019; Karia and Srivastava, 2022]. The expla-
nations derived, despite in a human-understandable form, are
often impaired by misinterpreted concepts, as there are no ex-
emplary supervisions to guide the generation of human mind
compatible explanations.

Figure 1 shows the aforementioned flaws of saliency-based
RL and relational RL, along with the ideal result obtained
when aligning explanations with the human mind. To be ex-
plained is a frame of the CoinRun game provided by Ope-
nAI’s Procgen benchmark [Cobbe et al., 2020]. There are
three visual game entities (see the left in the legend), and three
corresponding predefined concepts, namely Hero, Dinosaur,
and Slime, that need to be patch-wisely assigned to entities.
As human players always focus on visual entities when mak-
ing decisions, it is expected that an explainer will rightly as-
sociate predefined concepts with entities and make good use
of them to generate explanations. It can be seen that the
saliency map highlights important patches (light gray) that
affect the agent’s decisions but cannot associate these patches
with concepts. The explanation given by relational RL, al-
though based on concepts (it fills patches using the three col-
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ors in the legend), deviates from human prior knowledge (the
fill-colors are scattered and mismatched with game entities).
In contrast, the human-aligned explanation fills patches con-
taining game entities with the right color and right scale, sug-
gesting that the recognized concepts are compliant with the
human mind. The failure of saliency-based RL and relational
RL indicates that it is infeasible to learn human-aligned ex-
planations of decoupled representations without human su-
pervision and useful inductive bias [Locatello et al., 2019].

Inspired by concept transformer (CT) [Rigotti et al., 2022],
a recent method that generates human-aligned explanations
through attention guidance for image classification, we aim
to obtain human-aligned explanations for XRL. CT is trained
on both labeled data and human-annotated explanations by
jointly minimizing classification loss and explanation loss.
Such a scheme, however, cannot be directly applied to DRL.
This is because unlike learning from prepared training exam-
ples as supervised learning does, a DRL agent samples data
from the environment on the fly according to the policy that
is being learned. As the agent’s sample generation is outside
the annotator’s control, it is difficult to selectively annotate
explanations. Moreover, manual annotation for every roll-
out is infeasible because successive DRL frames only differ
slightly, making consecutive annotation repetitive and ineffi-
cient. Therefore, there is a dearth of supervising information
on explanations during the RL process.

To overcome this challenge, we propose to pretrain an at-
tention guider (AG) on a collection of game screens and their
corresponding human-annotated explanations. During XRL
training, the AG takes the game screen as input and generates
explanations that serve as ground truths to supervise the ex-
plaining process of the XRL agent. To focus on the few crit-
ical entities in observation for decision-making, we improve
the CT by breaking the explaining process into two stages:
masking patches that are irrelevant for decision-making and
associating unmasked patches with relevant concepts, result-
ing in a novel spatial concept transformer (SCT). Because ir-
relevant patches are masked out before computing the expla-
nation loss, the SCT avoids the dispersion of errors among all
concepts and patches. Unlike CT, which uses a single cross-
attention module that struggles with scaling, SCT facilitates
the use of more powerful networks for patch masking while
preserving the fidelity of explanation (i.e., the degree to which
the explanation reflects the decision and aim) [Rigotti et al.,
2022]. Theoretical analyses of the fidelity of SCTs explana-
tions are provided in Section 3.6.

Integrating AG and SCT with proximal policy optimiza-
tion (PPO) [Schulman et al., 2017] results in a novel XRL
method, termed concept PPO (Concept-PPO). Experimen-
tal evaluation on the ATARI benchmark [Bellemare et al.,
2013] demonstrates that Concept-PPO achieved competitive
or superior returns compared with those of vanilla black-box
PPO. Moreover, a user study involving several saliency-based
and relational XRL methods shows that Concept-PPO out-
performs baselines both in terms of objective alignment met-
rics and subjective user preferences. In summary, this study
serves as a meaningful attempt at empowering DRL with
practical explainability. Our contributions are threefold as
follows:

1. We are the first to achieve human-aligned explainability
in XRL via attention guidance. This is achieved by a
carefully designed pretraining strategy for AG that alle-
viates the burden of annotating successive DRL frames.

2. We propose a two-stage explanation framework, the
SCT, to facilitate supervision of XRL models. We the-
oretically demonstrate that it can preserve the fidelity of
the generated explanations.

3. We provide a concrete algorithm to learn human-aligned
explanations for XRL. The superiority of our method
was confirmed by a well-designed user study, which pro-
vides references for subsequent XRL research.

2 Related Works
To make the decision-making processes of DRL agents in-
terpretable to humans, a bunch of methods [Simonyan et al.,
2014; Mott et al., 2019; Atrey et al., 2020; Bertoin et al.,
2022; Beechey et al., 2023] turn to computer vision tech-
niques, such as saliency maps and attention maps [Chen et
al., 2023; Cornia et al., 2018; Judd et al., 2009], to high-
light critical regions in the observation that influence agents’
decisions. While useful for visualizing attention, these meth-
ods failed to associate these regions with meaningful high-
level concepts such as entities and relations, which the human
decision-making process relies on, thus limiting the sense and
explainability from a human evaluator’s perspective.

Relational RL methods [Zambaldi et al., 2019; Jiang and
Luo, 2019; Karia and Srivastava, 2022] explain agent policies
using high-level concepts and relationships. Although their
explanations are structured and semantic, these explanations
often misalign with human reasoning owing to two issues.
They lack explicit supervision for learning the semantics of
predefined high-level concepts, which hinders their ability to
generate intuitive explanations. Moreover, in methods that
attempt to automatically learn high-level concepts, resulting
concepts often have coupled or ambiguous semantics, further
diminishing the explainability of explanations.

Our study addresses these limitations by introducing a
framework that enables XRL agents to explain using pre-
defined high-level concepts. This allows agents to produce
human-aligned explanations that are intuitive, semantically
grounded, and practical for real-world applications.

3 Methodology
3.1 Framework
The SCT architecture, as illustrated in Figure 2, is composed
of four components: Vision Encoder, Patch Masking Mod-
ule, Concept Query Module, and Attention Guider. The in-
put is a sequence of frames in the form of RGB images
with height H and width W , each of which is referred to
as an image observation O ∈ RH×W×3. A set of learn-
able concept embeddings Ec = {eic ∈ Rdc , i ∈ 1, . . . , nc}
are also provided, where dc and nc denote the embedding
length and number of high-level concepts, respectively. The
output is an explanation Aexpl ∈ Rnp×nc corresponding to
the agent’s decision-making process in the form of cross-
attention scores [Vaswani et al., 2017], and a stochastic policy
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Figure 2: Anatomy of the proposed Spatial Concept Transformer for human-aligned explainability in reinforcement learning.
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Figure 3: An illustration of the mask vector that serves as a binary
indicator delineating the specific patches that are instrumental in the
agent’s decision-making process. Columns in the concept matrix
represent high-level concepts while rows for patches. For example,
the green highlighted patches in the information interpretation image
are explained as the concept Dinosaur, due to a confidence value of
1 at their intersection with the concept matrix.

Pr(·|O) ∈ Rna , where np is the length of the embedding se-
quence encoded by the Vision Encoder from O, and na is the
size of the action space defined by the task.

There is a preparatory step to train an Attention Guider
with a manually annotated dataset of human-desired expla-
nations (step (0) in Figure 2). During XRL training, taking
an input game frame as an observation, the SCT (1) extracts
features into a set of patch embeddings via the Vision En-
coder, (2) masks out patches irrelevant to the XRL agent’s
decision-making process via the Patch Masking Module, (3)
generates a concept matrix containing explanations by relat-
ing remaining crucial patches to predefined concepts via the
Concept Query Module, (4) supervises the generated mask
and the concept matrix using the pretrained Attention Guider,
and finally (5) outputs explanations by reshaping the concept
matrix, and likewise, (6) outputs an action distribution for
downstream RL. The key modules are detailed as follows.

3.2 Vision Encoder
The Vision Encoder encodes the RGB observation O into
a sequence of patch embeddings E = {ei ∈ Rdm |i =
1, . . . , np} to facilitate subsequent patch-wise operations;
here, each embedding in E corresponds to a patch in O; dm
is the dimension of the patch embeddings, and np is the total

number of patches. Specifically, np = (H ×W )/(sp × sp),
where sp denotes the patch size. For example, given an input
image of shape 210×160×3, a possible output of the Vision
Encoder is {ei ∈ R128|i = 1, . . . , 336}. This implies that O
is divided into 21 × 16 patches of 10 × 10, each of which is
encoded into a vector of length 128.

A specially designed convolutional neural network (CNN)
is employed to ensure that the Vision Encoder’s output
matches our desired patch division. The first n convolutional
layers are configured with a kernel size of 3, stride of 1, and
padding of 1 to capture low-level features while maintaining
the shape of the input. The final convolutional layer is con-
figured with a kernel size and stride of both sp, which should
be a common divisor of H and W . This results in a fea-
ture map M ∈ R

H
sp

×W
sp

×dm , which can be seen as H
sp

× W
sp

patch embedding of dm dimensions. Lastly, each patch em-
bedding undergoes a shared affine transformation to form the
outputE of the Vision Encoder. Such a setup allows us to per-
form attention operations at various granularities by dividing
the image into patches of different sizes, thereby establishing
a balance between precision and efficiency: smaller patches
offer more precision, while larger patches enhance learning
efficiency by reducing np.

3.3 Patch Masking

To identify important regions for decision-making, the Patch
Masking Module applies self-attention on input concept em-
beddings E to generate a mask vector m ∈ [0, 1]np . The
value of mp is an indicator of patch p’s contribution to the
agent’s decision. As shown in Figure 3, mp → 1 indicates
more inclination for the agent to consider patch p in making
decisions, while mp → 0 indicates the converse scenario.
Embeddings in E with small values in m are deemed irrele-
vant and masked to eliminate their influence on the decision-
making process.

Specifically, the input E of the Patch Masking Mod-
ule serves as queries Qnp×dm

Π , keys Knp×dm

Π , and values
V

np×dm

Π when performing self-attention:
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αΠp,p′ = softmax
(
QΠK

⊤
Π√

dm

)
p,p′

(1)

The obtained attention map is then averaged along patches
to derive the mask vector:

m =
1

np

np∑
p=1

AΠp, (2)

where AΠ = [αΠp,p′ ] ∈ Rnp×np and p, p′ ∈ 1, . . . , np.
AΠ is then multiplied by VΠ and the output matrixOdm×np

Π
to obtain np logits:

LogitΠ = [AΠVΠOΠ]. (3)

Applying the mask m to the logit LogitΠ by an element-
wise multiplication (Hadamard product here) gives the output
of Patch Masking Module:

OutΠ = m · LogitΠ. (4)

Such an operation drives logits corresponding to irrelevant
patches toward 0, ensuring that only information from critical
patches is involved in downstream processing.

3.4 Concept Querying
To associate a crucial patch p with a high-level concept c, the
Concept Query Module employs a cross-attention mechanism
to calculate the attention score αpc of the two. As shown in
Figure 3, αpc → 1 indicates a strong association between
the patch p and the concept c, while αpc → 0 indicates the
opposite. The output logits of the Concept Query Module are
transformed into the agent’s action distributions through a lin-
ear operation, which preserves the explainability of attention
scores as suggested by a previous study [Alvarez-Melis and
Jaakkola, 2018] and confirmed via our theoretical analysis in
Section 3.6.

Specifically, by setting OutΠ as queries Qnp×dm

Λ and con-
cept embeddings Ec as keys Knc×dm

Λ and values V nc×dm

Λ ,
the concept querying is performed as follows:

αΛp,c = softmax(
QΛK

⊤
Λ√

dm
)p,c (5)

The cross-attention scores derived are organized into a con-
cept matrix AΛ = [αΛp,c] ∈ Rnp×nc , which is enforced to
align with human cognition by the supervision from Atten-
tion Guider, as detailed in Section 3.5. Applying shape trans-
formation on AΛ gives to the output explanation Aexpl.

Meanwhile, by mean pooling over the product of AΛ, VΛ,
and the output matrix OΛ ∈ Rdm×na , we obtain the action
execution probability distribution of the agent:

LogitΛi =
1

np

np∑
p=1

[AΛVΛOΛ]p,i (6)

where i ∈ 1, . . . , na and na is the size of action space.
The abovementioned linear average operation ensures that

the agent’s action distribution is strictly in accordance with
the concept matrix AΛ, or, shortly, it takes actions in an

explainability-preserving manner. To see the reason, we note
that Equation 6 indicates that given an input x, the conditional
probability of executing action i is given as follows:

Pr(i|x) = softmaxi

(
nc∑
c=1

βcγc(x)

)
(7)

where βc is defined as (βc)i = [VΛOΛ]c,i, and γc(x) =
1
np

∑np

p=1 αΛp,c represents the average contribution of con-
cept c to the final decision given the input x. As each βc
denotes the action execution distribution when the agent only
takes concept c for decision-making, we can obtain the over-
all action distribution by weighting βc with γc(x) and assem-
bling them all. The weighting term γc(x), representing the
contribution of concept c to decisions, provides faithful ex-
planations of the agent’s policy.

3.5 Attention Guider
To align explanation Aexpl = [apc]np×nc

with human cog-
nition, we pretrain an Attention Guider with a few annotated
game frames and use it to generate ground truth Aguide ∈
Rnp×nc according to the input observation to provide super-
vision signals for the Concept Query Module and the Patch
Masking Module. Specifically, for the Concept Query Mod-
ule, Apc

guide = 1 if the agent is expected to consider patch
p and associate it with concept c; otherwise, Apc

guide = 0.

For the Patch Masking Module, mp
guide = 1

(∑
cA

pc
guide

)
,

where 1(·) represents the indicator function. These two mod-
ules are jointly optimized during XRL learning using the fol-
lowing loss:

Lexpl = ∥m−mguide∥22 + λ∥Am−
Λ −Am−

guide∥
2
F (8)

where Am−
· denotes the attention scores of unmasked

patches, ∥ · ∥F is the Frobenius norm, and λ ≥ 0 is a
parameter balancing the contributions of the patch mask-
ing loss and concept query loss. Compared with a previ-
ous study that guides the predicted cross-attention map as a
whole [Rigotti et al., 2022], our approach ensures that only
unmasked patches in a frame contribute to the concept query
loss, thereby enhancing the density of effective supervision
signals.

To achieve human-aligned explainability without sacrific-
ing the performance on DRL tasks, we jointly optimize the
explanation loss and RL policy as follows:

L = Lrl + ψLexpl (9)
where Lrl denotes any loss in DRL methods (e.g., sum of the
value estimation loss and policy loss in PPO) and ψ ≥ 0 is a
coefficient balancing the contributions of Lexpl and Lrl.

3.6 Theoretical Analysis
We present theoretical analysis on the effectiveness of Patch
Masking Module and the fidelity of explanations given by
SCT. First, for the mask vector m, we claim that:
Proposition 1. The mask vector m can accurately mask
patches irrelevant to the decision-making process by caus-
ing their cross-attentions with any concept to approach to 0.
That is, when mp → 0, it guarantees that αΛp,c → 0 for any
concept c.
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PPO Concept-PPO

Pong 20.60 ± 0.49 20.20 ± 0.75
Seaquest 438.00 ± 9.80 770.00 ± 17.89
SpaceInvaders 1040.00 ± 24.49 1232.00 ± 39.19
Enduro 218.00 ± 82.70 336.00 ± 89.90
Assault 2852.00 ± 886.05 3415.00 ± 1167.12
BattleZone 17000.00 ± 5357.24 28200.00 ± 5004.00

Table 1: Episodic returns in 5 test episodes after 5× 106 time-steps
training on ATARI games.

This property ensures that patches considered irrelevant to
the decision-making process will not be processed by the fol-
lowing Concept Query Module. Moreover, we show that SCT
is guaranteed to be of fidelity for the explanation—a crucial
trait that is indispensable for XRL methods. We formalize the
fidelity of explanation provided by the SCT as:
Proposition 2. Any γc(x) in Equation (7) is a faith-
ful explanation of the stochastic policy. Specifically, by
decreasing γc(x) while keeping γc′ ̸=c(x) unchanged, the
difference between LogitΛ and βc is monotonically non-
decreasing. That is, when keeping γc′ ̸=c(x) unchanged,
DKL(βc∥LogitΛ)|γc(x)=Γ ≤ DKL(βc∥LogitΛ)|γc(x)=Γ−ϵ,
where 0 ≤ ϵ ≤ Γ and DKL is the Kullback-Leibler (KL)
divergence.

This indicates that as the explanation weight γc(x) for con-
cept c decreases, the difference between the overall action
distribution

∑nc

c=1 βcγc(x) and the action distribution βc that
considers only concept c is monotonically non-decreasing.
Therefore, γ(x) reflects the contribution of each concept and
provides faithful explanation of the agent’s policy.

4 Reinforcement Learning Performance
We employed PPO [Schulman et al., 2017] as our train-
ing framework. Specifically, we replaced the actor in PPO
with the proposed SCT to instantiate an explainable DRL
method named Concept-PPO. We demonstrated performance
improvement in RL by our Concept-PPO on six games using
the ATARI benchmark [Bellemare et al., 2013]. The com-
parison method was a normal PPO using CNN as the visual
head, along with two separate linear layers as the actor and
the critic, respectively. The same training procedure was used
for both Concept-PPO and normal PPO.

Table 1 presents the episodic returns of Concept-PPO and
normal PPO in 5 test episodes after 5 × 106 time-steps of
training. One can observe that in the Pong game, the per-
formance of Concept-PPO was comparable to that of normal
PPO, while in the other five games, the improvement was sig-
nificant (20% increase in return on an average). The high
returns of Concept-PPO validated our assumption that atten-
tion guidance helps DRL agent focus more on task-relevant
information and ignore distractors. The suboptimal perfor-
mance of Concept-PPO in the Pong game may be attributed
to the fact that compared with the graphics of the other five
games, the graphics of the Pong game are excessively simple
(e.g., fewer entities in a frame and fewer ornaments, which
are irrelevant to the task); thus, the improvement provided
via attention guidance was less than in the Pong game.

In addition to achieving superior RL returns, Concept-PPO
also generated human-aligned explanations. To evaluate, we

performed a comprehensive user study to evaluate its human-
aligned explainability on three of the six ATARI games.

5 User Study on Explainability
This user study aimed to evaluate the explanations of XRL
methods and the degree to which they aligned with human
cognition. In the evaluation, we paid attention to two factors:
1) how well the XRL agents identified crucial visual regions
that facilitated decision-making, and 2) how effectively they
related these regions to human-understandable concepts.

5.1 Study Setup
Concept-PPO was tested on three ATARI games (Pong,
SpaceInvaders, and BattleZone) against three established
XRL approaches, namely Jacobian-based saliency map
(JSM) [Zahavy et al., 2016], perturbation-based saliency map
(PSM) [Greydanus et al., 2018], and attention-augmented
(AA) [Mott et al., 2019]. JSM and PSM highlighted re-
gions that the RL agent focused on but did not relate them
to high-level concepts. AA linked focused regions with au-
tonomously discovered concepts using the multi-head atten-
tion mechanism. Their explanations for a single game frame
are shown in Figure 4. Notably, we merely duplicated AA’s
explanations according to its site1. Since AA employed four
attention heads, there were correspondingly four pieces of ex-
planations. More results and videos have been hosted on our
GitHub repository2.

We recruited 30 native English speaking participants from
prolific.co3 — a well-known crowd-sourcing platform for on-
line studies. A questionnaire was designed to assess human
participants’ perceptions of the generated explanations. Par-
ticipants were warmed up by introducing visual concepts of
the game, such as Player, Ball, Opponent, and Score Board.
By examining the answers to the first question Q1: “What
visual concepts in this game do YOU THINK are most im-
portant while playing?”, we captured participants’ subjective
perspectives on critical gameplay elements, i.e., a subset of
predefined visual concepts. They served as a reference for as-
sessing the alignment between human understanding and the
explanations provided by the XRL methods.

We then presented participants with videos that contained
explanations generated by XRL methods and asked them sev-
eral carefully designed questions as follows. For JSM and
PSM, the question was Q2: “Where do you think the RL agent
is focusing on?” Responses could include one or more prede-
fined visual concepts or the option “Some random and mean-
ingless regions”, which accounted for the case in which the
agent’s focus seemed arbitrary.

For AA, participants had to evaluate explanations provided
by its four attention heads individually, and answer the ques-
tion Q3: “What predefined concept do you think this attention
head is focusing on?” Options were to select predefined con-
cepts, or to choose Hard to tell if the regions attended could
not be clearly interpreted.

1https://sites.google.com/view/s3ta
2https://github.com/Bokai-Ji/AG-Policy
3https://www.prolific.com
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Figure 4: An example of explanations for a single frame of three games (Pong, SpaceInvaders, and BattleZone) given by four XRL methods
(JSM, PSM, AA, and Concept-PPO). AA renders its explanations through four attention heads (AA1, AA2, AA3, and AA4). Bright regions
are of high attentions, while distinct colors in Concept-PPO represent different high-level concepts that the agent associate these patches with.
The label “Bright Region” in PSM was not by the algorithm, but was post added for clarity.

Game Concept Human-Q1 XRL
JSM-Q2 PSM-Q2 AA-1-Q3 AA-2-Q3 AA-3-Q3 AA-4-Q3 Ours-Q2 Ours-Q4

Pong

Player* 71.4 78.6 78.6 7.1 28.6 14.3 10.7 78.6 86.7
Ball* 96.4 75.0 89.3 21.4 10.7 14.3 28.6 85.7 93.3
Opponent* 57.1 71.4 57.1 35.7 14.3 35.7 7.1 67.9 76.7
Score Board 10.7 46.4 67.9 0.0 3.6 3.6 10.7 7.1 -
Meaningless - 17.9 3.6 35.7 42.9 32.1 42.9 3.6 -

SpaceInvaders

Score Board 14.3 21.4 53.6 0.0 3.6 3.6 0.0 17.9 -
Command Ship* 46.4 28.6 25.0 7.1 0.0 7.1 0.0 46.4 55.2
Alien* 82.1 57.1 42.9 46.4 17.9 3.6 25.0 78.6 89.7
Laser* 67.9 75.0 78.6 3.6 46.4 21.4 10.7 71.4 79.3
Shield* 67.9 28.6 35.7 0.0 3.6 0.0 7.1 71.4 79.3
Player* 75.0 85.7 71.4 10.7 7.1 46.4 7.1 82.1 86.2
Meaningless - 3.6 10.7 32.1 21.4 17.9 50.0 14.3 -

BattleZone

Radar* 67.9 44.8 50.0 6.7 3.4 3.3 3.3 83.3 93.3
Cross Hair 75.0 27.6 6.7 0.0 10.3 10.0 3.3 20.0 -
Enemy* 85.7 27.6 30.0 3.3 6.9 10.0 3.3 76.7 86.7
Player 50.0 34.5 63.3 26.7 34.5 36.7 36.7 16.7 -
Score Board 17.9 24.1 30.0 26.7 17.2 13.3 13.3 16.7 -
Meaningless - 44.8 50.0 36.7 27.6 36.7 40.0 6.7 -

Table 2: A numerical summarization of the questionnaire results showing the percentage of participants who say “aye” for every question and
option. Each column corresponds to a question dedicated to a particular XRL method (AA has four columns for its four attention heads). And
each row represents a visual concept of the game which serves as an answer for the question (an exception is the extra option “Meaningless”
which is not a visual concept). For example, the number 74.1 in the column “Human” and the row “Pong-Player” stands for the percentage
of participants who selected “Player” as the answer to question Q1: “What visual concepts ...?” in the game Pong.

For Concept-PPO, after being shown the concepts that the
agent was trained to focus on, along with the correspond-
ing color coding for explanations, participants were asked the
same question as Q2, and Q4: “Among concepts that we wish
the RL agent to focus on, what concepts are correctly under-
stood by the RL agent (i.e., marked with the correct color in
the video)?” Options to the first question were identical to
those of JSM and PSM. And the answer to the second ques-
tion could include one or more visual concepts that Concept-

PPO had been trained to focus on.
Lastly, to assess user’s overall preference, we asked the

participants a question Q5: “Which of the four types of ex-
planation do you think best satisfies the criteria?”, and set
the criteria as “(1) It focuses on reasonable regions that align
with your opinion; (2) It effectively relates focused regions to
predefined concepts”. Q5 provided insights into participants’
subjective evaluation of the utility and clarity of explanations.

Through the evaluation of responses to these questions, we
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could obtain a measure of how well Concept-PPO provided
explanations that were more human-understandable and more
aligned to the human mind, and an insight into the subjective
preferences of participants.

5.2 Results and Analysis
Table 2 presents the results of the questionnaire by calculating
the percentage of participants who responded with “aye” for
every question and option.

Alignment with Human Attention
We first evaluated how well the XRL method identified re-
gions that human participants regarded as critical for game-
play. Visual concepts selected by >50% of participants when
answering Q1 formed a human reference set H. Similarly,
for JSM, PSM, and Concept-PPO, visual concepts selected
by >50% of participants when answering Q2 formed the cor-
responding XRL visual attention set R. Because no visual
concept was selected by >50% of participants when answer-
ing Q3, in the case of AA, we defined R as the union of
most selected region by its four attention heads. The de-
gree of alignment between XRL’s and human’s attentions
was measured by attention intersection over union (A-IoU):
[(R∩H)/(R∪H)] ∈ [0, 1]. A higher A-IoU value indicated
better alignment between the XRL and human cognition.

Figure 5a shows A-IoU values across different XRL meth-
ods and games. AA’s poor alignment was as per expecta-
tion, as it often focused on wide or meaningless regions that
lack clear conceptual relevance, as clearly shown in Figure 4.
JSM and PSM, as evidenced by their moderate A-IoU scores,
tended to be poorly aligned with humans as the underlying
graphic became complex. This was because they merely fo-
cused on regions with prominent low-level features (e.g., re-
gions with high contrast relative to the background) but not
task-relevant regions. In contrast, Concept-PPO achieved the
strongest alignment with human cognition, with A-IoU val-
ues of 1, 1, and 0.67 on the games Pong, SpaceInvaders,
and BattleZone, respectively. The strong human-aligned ex-
plainability of Concept-PPO attributed to enforced alignment
with human-annotated examples, which made the XRL agent
aware of human preferences for policy explanation.

Relating to Human-Understandable Concepts
We next evaluated how well Concept-PPO associated fo-
cused regions with human-defined concepts. The last column
named “Ours-Q4” in Table 2 shows the percentage of partic-
ipants who agreed that Concept-PPO correctly associated a
focused visual region with a human-defined concept when the
concept did appear in that region. Only concepts that human
annotators considered critical to gameplay were included in
this evaluation (marked using “*” in the table). The percent-
age of participants who thought Concept-PPO had success-
fully related critical regions with appropriate concepts was
moderately high (approximately 82% on an average), high-
lighting the effectiveness of learning the semantics of con-
cepts and leveraging them in decision-making. Notably, JSM,
PSM, and AA could not even perform this evaluation because
the former two did not relate visual regions to concepts and
the latter was ignorant of predefined concepts. This further

Pong

SpaceInvaders

BattleZone

0.2 0.4 0.6 0.8 1.0

(a) A-IoU

Pong

SpaceInvaders

BattleZone

20 40 60 80 100

JSM
PSM
AA 
Concept-PPO

(b) User preference

Figure 5: Evaluation results where the radial axis represents the at-
tention intersection over union (A-IoU) scores (left), and the per-
centage of testers who prefer Concept-PPO’s explanations (right).

demonstrated the advantages obtained by learning human-
aligned explanations for XRL in the proposed manner.

Subjective Preferences
The question Q5 listed in Section 5.1 evaluated testers’ pref-
erence for explanations given by four XRL methods. From
Figure 5b showing the preference in percentage, we can
see that Concept-PPO was overwhelmingly favored, with
>70% of participants selecting it as the most satisfactory
XRL method in games with simpler graphics (Pong and
SpaceInvaders) and >80% in more complex scenarios (Bat-
tleZone). In contrast, JSM and PSM were largely criticized
for the lack of high-level semantic connections, while AA
was deemed unhelpful because of its inability to provide
human-understandable explanations.

The aforementioned results indicate that Concept-PPO sig-
nificantly outperformed existing methods in terms of aligning
attention with human cognition and mapping focused regions
to predefined concepts. These strengths were reflected in both
objective alignment metrics and subjective user preferences,
highlighting the importance of incorporating human supervi-
sion into the development of XRL explanations.

6 Conclusion
We present an XRL method that incorporates attention guid-
ance to generate high-level human-aligned explanations in the
form of attention weights from unstructured visual inputs. By
pretraining an Attention Guider, we address the inefficiency
of manual annotation in RL tasks. We facilitate the atten-
tion guidance procedure by decoupling the guidance of ex-
planation generation into two stages: patch masking and con-
cept querying, resulting in an SCT. Integrating it with PPO
yields the Concept-PPO, which demonstrates competitive or
superior performance on the ATARI benchmark compared to
black-box PPO models while producing explanations that are
both precise and human-aligned. Our user study indicates
that participants preferred Concept-PPO’s explanations con-
siderably more than existing XRL approaches. These results
demonstrate the effectiveness of integrating human knowl-
edge to construct human-aligned XRL agents. In future work,
we wish to extend our method to provide long-term behav-
ioral explanations, which we believe is more challenging but
worthy of further study.
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