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Abstract
Linear Discriminant Analysis (LDA) is a classi-
cal supervised dimensionality reduction algorithm.
However, LDA focuses more on global structure
and overly depends on reliable data labels. For data
with outliers and nonlinear structures, LDA can-
not effectively capture the true structure of the data.
Moreover, the subspace dimension learned by LDA
must be smaller than cluster number, which limits
its practical applications. To address these issues,
we propose a novel unsupervised LDA method
that combines centerless K-means and LDA. This
method eliminates the need to calculate cluster cen-
troids and improves model robustness. By fus-
ing centerless K-means and LDA into a unified
framework and deducing the connection between
K-means and manifold learning, this method cap-
tures the local manifold structure and discrimi-
native structure. Additionally, the dimensional-
ity of the subspace is not restricted. This method
not only overcomes the limitations of traditional
LDA but also improves the model’s adaptability
to complex data. Extensive experiments on seven
datasets demonstrate the effectiveness of the pro-
posed method.

1 Introduction
Nowadays, high-dimensional data has become ubiquitous due
to the development of data collection, posing significant chal-
lenges in data processing and analysis. High-dimensional
data increases the computational complexity of data pro-
cessing and may result in the curse of dimensionality and
overfitting problem [Chen et al., 2013]. Therefore, dimen-
sionality reduction attracts increasing attention for handling
high-dimensional data, and numerous dimension reduction
methods [Wang et al., 2020; Kambhatla and Leen, 1997;
Ma and Zhu, 2013] are developed, including both unsuper-
vised methods and supervised methods.

The most popular unsupervised dimensionality reduction
methods are principal component analysis (PCA) [Wold et
al., 1987], locality preservation projection (LPP) [He and

∗Corresponding Author

Niyogi, 2003], and Neighborhood Preserving Embedding
(NPE) [He et al., 2005]. PCA leverages linear transformation
to map high-dimensional data into a low-dimensional sub-
space by maximizing the sample variance, which fully pre-
serves the information of the original data and simultaneously
reduces the dimension. However, PCA mainly focuses on
maximizing the overall variance of the projected data [Nanga
et al., 2021] but ignores the local information between sam-
ples, which results in performance degradation in some cases.
Compared with PCA, LPP/NPE can retain local features in
the original data by considering the relationship between ad-
jacent samples. Besides, as their non-linear version, Lapla-
cian Eigenmaps (LE) [Belkin and Niyogi, 2003] and Locally
Linear Embedding (LLE) [Roweis and Saul, 2000] can bet-
ter capture nonlinear structures in the data. However, without
the instruction of labels, these methods generally cannot well
exploit the discriminant information of the original data.

Linear discriminant analysis (LDA) [Fisher, 1936] is a
classical supervised dimension reduction method, which
seeks a projection matrix by enforcing the projective inter-
class distance to be larger and the intra-class distance to be
smaller. LDA helps to extract the discriminant features of
samples during dimension reduction, which is beneficial for
improving classification performance. Besides, since LDA
focuses on differences between clusters and concentrates less
on local variations and noises, it performs better when data is
corrupted with noise or outliers. However, LDA requires re-
liable data labels for dimension reduction, while large-scale
data annotation can be costly and challenging [Zhang et al.,
2020; Heck et al., 2016], which limits the practical applica-
tion of LDA.

To mitigate this issue and meanwhile maintain the advan-
tages of LDA, several unsupervised LDA methods are pro-
posed [Wang et al., 2014; Deng et al., 2019]. Niijima et
al. [2008] extended Laplacian LDA (LLDA) [Tang et al.,
2006] to unsupervised cases and developed an LLDA-based
recursive feature elimination (LLDA-RFE), which is able to
handle high-dimensional data efficiently. LDA–UEL lever-
ages unsupervised ensemble learning to guide LDA for un-
supervised dimension reduction [Deng et al., 2019]. Ding et
al. [2007] developed LDA-Km by combining the LDA and
K-means into a coherent framework. LDA-Km leverages K-
means to generate cluster labels to guide the LDA to adap-
tively select the subspace with the most discriminative fea-
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tures. Similarly, Wang et al. [2023] developed an unsuper-
vised LDA (Un-LDA) method by jointly performing cluster-
ing and subspace learning. Wu et al. developed a general
framework for dimensionality reduction of k-means cluster-
ing [Wu et al., 2020]. However, it relies on K-means to guide
LDA for feature selection, while K-means suffers from sensi-
tivity to the cluster centroid initialization, which significantly
affects the clustering results and makes it less robust to out-
liers.

To address these problems, we propose a novel unsuper-
vised LDA method for dimension reduction using centerless
K-means. In this method, we unify centerless K-means and
LDA in a general framework, which guides LDA in selecting
subspaces most appropriate for clustering with cluster labels
generated by centerless K-means. The adopted centerless K-
means compute the clustering labels with the pairwise dis-
tance of samples rather than the distance between samples
and centroids. Thus, it eliminates the requirement of com-
puting centroids and improves the robustness of clustering.
Besides, we use the learned label matrix to construct simi-
larity matrix and the within-cluster scatter matrix for LDA,
which simultaneously maintains the neighboring relationship
and cluster structure relationship of LDA. Moreover, the di-
mension of the learned subspace is not limited to cluster num-
ber. The main contributions of the work can be summarized
as follows:

• We propose a novel unsupervised linear discriminant
analysis method by fusing centerless K-means and LDA
into a unified framework, which simultaneously exploit
discriminative structure and local neighbor structure.

• We employ centerless K-means to guide LDA, which
avoids the calculation to cluster centroid and improves
model robustness. Additionally, we introduce Butter-
worth filter distance to build distance matrix, which is
able to handle nonlinear data.

• We conducted extensive experiments and comparisons
on seven benchmark datasets, whose results clearly
demonstrate the superiority of our method.

2 Related Work
2.1 Linear Discriminant Analysis
Given a set of input data xi(i = 1, 2, ..., n) ∈ Rd×1 and
the projection matrix W ∈ Rd×t, LDA aims to separate
the n samples of different classes in the new feature space
yi = W⊤xi as much as possible, and the samples of the
same class are as close as possible, to obtain samples with
greater discriminability. For multiple classification problems,
normalize all samples so that their mean is 0 and suppose that
there are m classes, mk is the number of samples of the k-th
class and uk represents the mean of class k, the optimization
objective of LDA is

max
W

tr(W⊤SbW)

tr(W⊤SwW)
(1)

where the between-class scatter matrix

Sb =
m∑

k=1

mkuku
⊤
k , (2)

the within-class scatter matrix

Sw =
m∑

k=1

∑
xi∈Ak

(xi − uk)(xi − uk)
⊤

(3)

and there is the total scatter matrix

St = Sb + Sw =
n∑

i=1

xix
⊤
i (4)

Bringing Sb = St−Sw into Eq. (1), then it can be rewritten
as follows:

max
W

tr(W⊤StW)

tr(W⊤SwW)
(5)

2.2 K-means Clustering
As we all know, K-means clustering is to find the points clos-
est to the centroid of the cluster and then group them together
until each sample is closest to the corresponding centroid of
the cluster, let A1,A2, · · · ,Am denotes m different clusters,
its optimization problem is as follows:

min
A1,A2,··· ,Am

m∑
k=1

∑
xi∈Ak

||xi − uk||22 (6)

With simple algebra, we have:

min
A1,A2,··· ,Am

m∑
k=1

∑
xi∈Ak

||xi − uk||22

= min
A1,A2,··· ,Am

tr

m∑
k=1

∑
xi∈Ak

(xi − uk)(xi − uk)
⊤

= min
A1,A2,··· ,Am

tr(Sw)

(7)

Thus, we can see Eq. (6) is equal to tr(Sw),

2.3 Unsupervised LDA
Both K-means clustering and LDA rely on minimizing the
intra-class distance between samples and centroids. Given a
linear projection y = W⊤x, the within-class scatter distance
in the subspace can be expressed as:

min
A1,A2,··· ,Am

tr(W⊤SwW)

= min
A1,A2,··· ,Am

m∑
k=1

n∑
i=1

||W⊤xi −W⊤uk||22
(8)

where Sw represents the within-class scatter matrix, xi is the
i-th sample, uk is the mean of the k-th cluster, and W is the
projection matrix.This is equivalent to performing K-means
clustering in the subspace. This connection between LDA
and K-means allows for the implementation of unsupervised
LDA. Ding et al. [2007] and Wang et al. [2023] leveraged
this relationship, integrating K-means clustering with LDA
to propose the following optimization model:

max
W,Ak

tr(W⊤StW)
m∑

k=1

∑
xi∈Ak

||W⊤xi −W⊤uk||22
(9)
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This unsupervised LDA model employs K-means and is
sensitive to cluster centroid initialization. Different initializa-
tions of cluster centroids yield distinct clustering outcomes,
and the cluster centroids are susceptible to the influence of
noisy data points, which can compromise the accuracy and
robustness of the resulting clustering. Therefore, selecting
appropriate cluster centroids is essential for achieving supe-
rior clustering performance. Furthermore, suboptimal initial-
ization can result in the algorithm converging to local op-
tima or negatively impacting its convergence rate [Arthur and
Vassilvitskii, 2007; Celebi et al., 2013]. Another significant
limitation is that it is still a global subspace learning method
and does not consider the local manifold structure, which is
important for clustering. To address these challenges, our
method combines centerless K-means with LDA to elimi-
nate the need to calculate the cluster centroid and mitigating
the impact of noise on the clustering performance. Besides,
we employ the pseudo labels to construct similarity matrix,
which retains the discriminative structure and simultaneously
exploit the local manifold structure.

3 Proposed Methodology
3.1 Motivations and Objectives
We first introduce the following Theorem 1 to implement the
centerless K-means, which is the basis of our method.
Theorem 1. Given a set of input data X =
{x1,x2, . . . ,xn} ∈ Rd×n, assuming there are m clus-
ters, where uk represents the mean of k-th cluster, Ak

represents the optimized k-th cluster, and S is the similarity
matrix, there is

min
A1,A2,··· ,Am

m∑
k=1

∑
xi∈Ak

||xi − uk||22

= min
A1,A2,··· ,Am

n∑
i=1

n∑
j=1

||xi − xj ||22Sij

(10)

where

Sij =

{
1, xi and xj belong to the same cluster
0, others

(11)

Proof: Let uk = 1
mk

∑
xi∈Ak

xi, mk represents the number

of samples in the k-th clusters, Eq. (6) is expanded as follows:

min
m∑

k=1

∑
xi∈Ak

||xi − uk||22

=min tr
m∑

k=1

∑
xi∈Ak

(xixi
⊤ − 2ukxi

⊤+ukuk
⊤)

=min tr
m∑

k=1

(
∑

xi∈Ak

xixi
⊤ − 2mkuku

⊤
k +mkuku

⊤
k )

=min tr

m∑
k=1

(
∑

xi∈Ak

xixi
⊤ − uk(mku

⊤
k ))

=min tr
m∑

k=1

∑
xi∈Ak

(xixi
⊤ − ukxi

⊤)

(12)

Similarly, the right side of Eq. (10) is expanded as follows:

min
n∑

i=1

n∑
j=1

||xi − xj ||22Sij

=min
m∑

k=1

∑
xi∈Ak

∑
xj∈Ak

||xi − xj ||22

=min tr
m∑

k=1

∑
xi∈Ak

∑
xj∈Ak

(xixi
⊤ − 2xjxi

⊤ + xjxj
⊤)

=min tr
m∑

k=1

∑
xi∈Ak

∑
xj∈Ak

(2xixi
⊤ − 2xjxi

⊤)

=min tr
m∑

k=1

∑
xi∈Ak

(2mkxixi
⊤ − 2mkukxi

⊤)

=min tr
m∑

k=1

∑
xi∈Ak

(xixi
⊤ − ukxi

⊤)

(13)
With Eq. (12) and Eq. (13), Theorem 1 is proved. From

Theorem 1, we can conclude that, for the objective func-
tion of K-means, we can use the pairwise distance between
neighbor samples to replace the distance between samples
and the cluster centroid for optimization, under the condition
where the similarity matrix S constructed from cluster labels.
Specifically, suppose the matrix F ∈ Ind is a discrete and
sparse cluster indicator matrix where each row fi represents
the cluster label of i-th sample. If i-th(i = 1, 2, . . . , n) sam-
ples belong to k-th(k = 1, 2, . . . ,m) cluster, then Fik = 1,
otherwise, Fik = 0. Because a sample belongs to only one
cluster, so each row has only one element that is 1, and the
rest of the elements are 0. Then, we can calculate Sij by
Sij = ⟨fi, fj⟩. By introducing a discrete label matrix F, the
K-means in Eq. (6) is equivalent to:

min
F∈Ind

n∑
i=1

n∑
j=1

||(xi − xj)||22Sij (14)

By replacing K-means objective with Eq. (14), it can avoid
the sensitivity to centroid initialization and improve the ro-
bustness of clustering. We can then rewrite the within-cluster
scatter distance in Eq. (8) as follows:

min tr(W⊤SwW)

=min

m∑
k=1

∑
xi∈Ak

||W⊤(xi − uk)||22

=min
n∑

i=1

n∑
j=1

||W⊤(xi − xj)||22Sij

(15)

By substituting Eq. (15) into Eq. (5), we obtain our un-
supervised LDA model that integrates centerless K-means
clustering and LDA dimensionality reduction into a unified
framework.

max
W,F

tr(W⊤StW)
n∑

i=1

n∑
j=1

||W⊤(xi − xj)||22Sij

, s.t.F ∈ Ind
(16)
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This framework enables simultaneous clustering and di-
mensionality reduction without requiring the input of true la-
bels. In other words, we can obtain both the cluster indicator
matrix F and the projection matrix W at the same time. By
simplifying Eq. (16) and substituting Sij = ⟨fi, fj⟩ into it, we
can obtain our final objective function:

max
W,F

tr(W⊤XX⊤W)
n∑

i=1

n∑
j=1

||W⊤(xi − xj)||22 ⟨fi, fj⟩
, s.t. F ∈ Ind

(17)

Since there are two variables W and F in Eq. (17) that
need to be solved, we utilize the optimization techniques de-
scribed in [Wang et al., 2015; Xu et al., 2016] to implement
an alternating optimization strategy. This approach allows us
to iteratively update each variable. The specific steps for op-
timizing each variable are in the following subsection.

3.2 Optimization
(1) Fix F to solve W.

When F is fixed, the similarity matrix Sij is also fixed,
solving Eq. (17) is equivalent to solving

max
W

tr(W⊤XX⊤W)

tr(
∑
i

W⊤xi

∑
j

Sijx⊤
i W −

∑
i

∑
j

W⊤xiSijx⊤
j W)

(18)

Define Laplacian matrix of S as L = DS − S, where DS

is the degree matrix of S, which is a diagonal matrix and
its diagonal element is defined by (DS)ii =

∑
j Sij . Thus,

Eq. (18) can be written as

max
W

tr(W⊤XX⊤W)

tr(W⊤XDSX⊤W −W⊤XSX⊤W)

=max
W

tr(W⊤XX⊤W)

tr(W⊤XLX⊤W)

=max
W

tr(W⊤StW)

tr(W⊤SlW)

(19)

where Sl = XLX⊤. From Eq. (19), we can see that its de-
nominator is the objective of LPP, which makes our method
capable of exploiting local manifold structure.

According to [Fisher, 1936], Eq. (19) can be solved by the
Lagrange multiplier method StW = λSlW, which performs
eigenvalue decomposition on Sl

−1St to obtain the target pro-
jection matrix W. However, obtaining an exact solution
through eigenvalue decomposition directly using the trace ra-
tio form is challenging, and the results may not converge. To
address this issue, we transform the trace ratio problem into
a trace difference problem [Wang et al., 2007]. By introduc-
ing a hyperparameter λ, the trace ratio problem described in
Eq. (19) can then be reformulated into the following trace dif-
ference form for effective resolution:

max
W

tr[W⊤(St − λSl)W] (20)

According to Eq. (20), we only need to perform eigenvalue
decomposition on St − λSl. Then, we order the eigenvalues

Algorithm 1 The whole process of solving problem (17)
Input: A set of input data X; hyperparameter λ
Initialization: W: setting an identity matrix to the first t
rows; F: setting an identity matrix to every m rows
Output: Projection matrix W ∈ Rd×t, cluster indication ma-
trix F ∈ Rn×m

1: while not converge do
2: Update F by solving Eq. (25);
3: Update W by solving Eq. (20);
4: end while
5: return Projection matrix W, cluster indicator matrix F

and take the t eigenvectors corresponding to the first t largest
eigenvalues to compose the matrix W.
(2) Fix W to solve F.

Since the matrix W is fixed, tr(W⊤XX⊤W) is a con-
stant, Eq.(12) become

min
fi∈Ind

n∑
i=1

n∑
j=1

||W⊤(xi − xj)||22 ⟨fi, fj⟩

= min
F∈Ind

tr(F⊤DF)

(21)

where distance matrix D is expressed in terms of square Eu-
clidean distance Dij = ||yi − yj ||22 = ||W⊤(xi − xj)||22. In
addition to square Euclidean distance, we also introduce the
Butterworth filter distance from [Lu et al., 2024] to obtain the
distance matrix D, i.e.,

(Dij)btw =

√
1

1 + (
Gij

Ω )
4 (22)

where Ω is a hyperparameter, and G is the similarity matrix,
whose computation method is referred to [Lu et al., 2024]. By
using the Butterworth filter distance to reduce the influence
of outliers and deal with nonlinear data more effectively, the
clustering effect of our method can be effectively improved.
In the experimental part of Section 4, we can see that the
clustering effect of Butterworth filter distance is better than
that of Euclidean distance.

Because each row of the matrix F is independent and each
row has only two discrete values of 0 and 1, in which only one
element is 1 and the rest is 0, it is difficult to directly obtain
its optimal solution. [Lu et al., 2023; Gao et al., 2023; Pei et
al., 2023] proposed a good solution, first fixed the other rows,
and then solved line by line to find the position of element 1
to get the whole cluster indicator matrix F. The concrete-
solving process is as follows:

When solving i-th row fi of the cluster indicator matrix F,
the problem (21) can be rewritten as

min
fi∈Ind

∑
i,j

Dijtr(f
⊤
i fj) ⇔ min

fi∈Ind
fi(

∑
i̸=j

Dijf
⊤
j ) (23)

Substituting Dii = 0 into Eq. (23), it becomes

min
fi∈Ind

fi(
∑
j

Dijf
⊤
j ) ⇔ min

fi∈Ind
fi(F

⊤di) (24)
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where d⊤
i = (Di1 Di2 · · · Din) ,Dii = 0, so the opti-

mal solution to problem (21) can be expressed as

Fij =

{
1, j = min

j
(F⊤di)

0, others
(25)

The whole algorithm flow of solving the problem (17) is
shown in Algorithm 1.

3.3 Computational Complexity Analysis
Our algorithm flow is mainly divided into two parts: one is to
solve the calculation matrix F according to Eq. (25), and the
other is to solve the matrix W according to the eigenvalue
decomposition of Eq. (20). The computational complexity
of the former is O(n2m), while the latter, St − λSw is a
symmetric matrix, so the symmetric QR algorithm is used for
the real symmetric matrix, so its time complexity is O(d3). If
T is the number of iterations, then the total complexity of our
algorithm is O(T (d3 + n2m)). Although the complexity of
each iteration is O(d3), our algorithm can converge after no
more than 5 iterations, that is, T ≤ 5. Moreover, our method
can obtain a better clustering result.

4 Experiments
To validate the effectiveness of our proposed model, we have
extensively tested it on a Toy dataset and a diverse set of seven
benchmark datasets. Moreover, we selected ten comparison
methods. Our experiments were conducted on a Windows 11
desktop computer with a 13th Gen Intel(R) Core(TM) CPU,
and MATLAB R2023a.

4.1 Experiment on Noises Dataset
To evaluate the noise resistance and robustness of our pro-
posed method, we designed a two-dimensional noises dataset
comprising 2 clusters and 43 samples. As shown in Fig-
ure 1.(a), there are 20 samples in the Cluster 1 and 23 samples
in the Cluster 2, the three samples far from the centroid of the
Cluster 2 are noises. The Figure 1.(b) is the clustering labels
of the K-means method on the noises dataset, and the Fig-
ure 1.(c) is the labels of our method on the noises dataset.
K-means is to minimize the distance between samples and
their nearest cluster centroids. However, due to the influence
of cluster centroid calculations, K-means tends to merge two
clusters that are originally close to each other, while group-
ing distant noise samples into a single cluster. In contrast,
our method calculates the distances between sample pairs,
thereby avoiding the computation of cluster centroids. This
approach enhances the clustering performance in the presence
of noise and demonstrates superior robustness.

4.2 Experimental Settings
Datasets: We selected seven benchmark datasets to ver-
ify the performance of our proposed method, which are
FaceV5 [Team, 2009], Isolet [Fanty and Cole, 1990],
JAFFE [Lyons et al., 1999], MSRC V2 [Winn and Jojic,
2005], ORL [Cai et al., 2010], UMIST [Hou et al., 2013]
and Yaleface [Georghiades et al., 1997]. The details of these
benchmark datasets are shown in Table 1.

(a) True label (b) K-means (c) Ours

Figure 1: Visualization of the labels of K-means and our method on
the noise database.

Dataset Samples Features Classes Types

FaceV5 2500 256 500 Image
Isolet 1560 617 26 Voice

JAFFE 213 676 10 Image
MSRC V2 210 576 7 Image

ORL 400 1024 40 Image
UMIST 575 1024 20 Image
Yaleface 165 1024 15 Image

Table 1: Information of datasets

Metrics: To evaluate the performance of our algorithm,
We employed three widely accepted clustering evaluation
metrics: Accuracy (ACC), Normalized Mutual Information
(NMI), and Purity. Higher values of these metrics indicate
superior clustering performance.
Comparison methods:

We selected five clustering methods without dimension re-
duction, i.e., regularized k-means (RKM) [Lin et al., 2019],
Ksum [Pei et al., 2023], Ksum-x [Pei et al., 2023], K-
means [Hartigan and Wong, 1979], CDKM [Nie et al., 2022]
for comparison. Besides, to effectivelyly evaluate model
performance, we also compare our method with another
five clustering methods with subspace learning, including
two methods of dimensionality reduction before clustering:
PCA [Turk and Pentland, 1991]+K-means and LPP [He and
Niyogi, 2003]+K-means, and three unsupervised LDA meth-
ods: LDA-Km [Ding and Li, 2007], Un-RTLDA, and Un-
TRLDA [Wang et al., 2023].

4.3 Clustering Performance
The experimental results of our proposed method and ten
comparison methods in seven benchmark datasets are shown
in Table 2. Our proposed method can achieve the best cluster-
ing result for the ORL dataset when λ is 0.08, and the remain-
ing six datasets FaceV5, Isolet, JAFFE, MSRC V2, UMIST
and Yaleface have the best clustering performance when λ
is equal to or close to 0.05. Moreover, the different dimen-
sions of the subspace will also affect the clustering results, so
We sequentially select the subspace dimensions ranging from
150 to the dimension d of data X with an interval of 20 for
traversal. In both the comparison methods and our method, to
ensure accuracy, we repeat the experiment ten times and then
take the maximum value.

In the tables, we use two different distance measures,
square Euclidean distance and Butterworth filter distance, to
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Methods Metric K-
means RKM Ksum Ksum-x PCA LPP LDA

-Km
Un-RT
LDA

Un-TR
LDA CDKM Ours Ours

(btw)

FaceV5
ACC 0.7633 0.8540 0.9676 0.9620 0.7792 0.7640 0.8096 0.7644 0.8196 0.8422 0.9664 0.9688
NMI 0.9369 0.9563 0.9893 0.9857 0.9366 0.9393 0.9516 0.9247 0.9556 0.9624 0.9877 0.9899

Purity 0.8114 0.8640 0.9709 0.9659 0.8192 0.8116 0.8404 0.7864 0.8512 0.8796 0.9688 0.9704

Isolet
ACC 0.5776 0.7186 0.6856 0.6593 0.6513 0.6994 0.7160 0.7872 0.3660 0.6014 0.7385 0.8109
NMI 0.7406 0.7785 0.7727 0.7721 0.7699 0.8166 0.8209 0.8339 0.5386 0.7561 0.8137 0.8413

Purity 0.6265 0.7186 0.6979 0.6775 0.6795 0.7333 0.7526 0.8038 0.3923 0.6478 0.7590 0.8109

JAFFE
ACC 0.7085 0.8310 0.8789 0.8930 0.8873 0.9765 0.9577 0.9671 0.9155 0.7108 0.9859 1.0000
NMI 0.8010 0.8159 0.8764 0.9013 0.9135 0.9740 0.9484 0.9625 0.9225 0.7981 0.9816 1.0000

Purity 0.7455 0.8310 0.8789 0.8977 0.8873 0.9765 0.9577 0.9671 0.9155 0.7441 0.9859 1.0000

MSRC V2
ACC 0.6052 0.6286 0.7524 0.6852 0.6905 0.7238 0.7286 0.6714 0.7524 0.6657 0.8286 0.8667
NMI 0.5280 0.5612 0.6110 0.5753 0.6026 0.6245 0.5841 0.5482 0.6383 0.5693 0.7069 0.7527

Purity 0.6276 0.6333 0.7524 0.6910 0.7190 0.7238 0.7286 0.6905 0.7524 0.6795 0.8286 0.8667

ORL
ACC 0.5198 0.5000 0.6337 0.5877 0.5525 0.5500 0.5675 0.6625 0.6075 0.5507 0.6450 0.7375
NMI 0.7234 0.7143 0.7940 0.7690 0.7334 0.6917 0.7463 0.8159 0.7723 0.7529 0.7950 0.8462

Purity 0.5705 0.5200 0.6562 0.6060 0.6025 0.5875 0.6100 0.6975 0.6450 0.6090 0.6750 0.7525

UMIST
ACC 0.4339 0.4209 0.4209 0.4296 0.4643 0.4574 0.4991 0.4974 0.5009 0.4210 0.4783 0.6348
NMI 0.6410 0.5963 0.619 0.6377 0.6252 0.6620 0.6737 0.6932 0.6852 0.6404 0.6402 0.7652

Purity 0.5110 0.4400 0.4553 0.4715 0.5183 0.5635 0.5530 0.5687 0.5617 0.5043 0.5252 0.6748

Yaleface
ACC 0.3812 0.4485 0.4339 0.4418 0.4727 0.4000 0.4545 0.4727 0.4848 0.3964 0.4848 0.5091
NMI 0.4389 0.5099 0.4975 0.5018 0.5082 0.4298 0.5084 0.5210 0.5265 0.4779 0.5418 0.5318

Purity 0.4030 0.4848 0.4733 0.4915 0.4727 0.4242 0.4727 0.4970 0.5030 0.4188 0.4909 0.5273

Table 2: Clustering performances of comparison methods on seven datasets. The best results are highlighted in Bold.

(a) True label (b) RKM’s label (c) Ksum’s label (d) K-means’s label (e) CDKM’s label (f) Ours label

Figure 2: Visualization of the clustering effect of our method and five comparison methods RKM, Ksum, Ksum-x, K-means, and CDKM on
the JAFFE database.

(a) JAFFE (b) Isolet (c) MSRC V2 (d) ORL (e) UMIST (f) Yaleface

Figure 3: The clustering performances of our method with λ varying on the Isolet, JAFFE, MSRC V2, ORL, UMIST and Yaleface datasets.

verify the performance of our method, where ”ours” repre-
sents the results of square Euclidean distance and ”ours(btw)”
represents the results of Butterworth filter distance. The an-
chor rate and Ω of FaceV5, JAFFE, MSRC V2, ORL, UMIST
and Yaleface datasets are 0.08 and 0.01, while the anchor rate
and Ω of Isolet datasets are 0.08 and 0.001. It can be seen that
our method has obvious advantages when using Butterworth
filter distance and can achieve better results.

When Euclidean square distance is used, the clustering re-
sults of Isolet, JAFFE, MSRC V2, ORL, UMIST and Yale-
face are better than those of the five pure clustering algo-
rithms, which shows that our method effectively improves the
performance of clustering. At the same time, on the seven
benchmark data, we also conducted the experiment of dimen-
sionality reduction before clustering, and the results are as
follows: PCA+K-means and LPP+K-means in the three ta-
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(a) JAFFE (b) Isolet (c) MSRC V2 (d) ORL (e) UMIST (f) Yaleface

Figure 4: The values of the objective function on JAFFE, Isolet, MSRC, ORL, UMIST and Yaleface datasets.

bles. Our method has the same better effect, because our
method is not a simple method of dimensionality reduction
before clustering, but a unity of both, and adopts a centerless
clustering method. Therefore, our method breaks through the
limitations of traditional dimension reduction clustering and
improves the clustering effect.

LDA’s two unsupervised expansion methods, LDA-Km
and Un-RTLDA, Un-TRLDA, show high clustering results on
seven benchmark datasets, though the Un-TRLDA method is
difficult to converge on the dataset Isolet, so the clustering ef-
fect on this dataset is not accurate, which also shows that the
combination of clustering process and subspace selection pro-
cess, and the method of data clustering and subspace selection
at the same time can effectively reduce the dimension disas-
ter and greatly improve the clustering effect. However, after
using Butterworth filter distance, the clustering performance
of our method exceeds all the above comparison methods.
This is because Butterworth filter distance adopts the nonlin-
ear mapping method and uses prior adjacency graph informa-
tion, which can better process data and mine data information,
thus improving the clustering accuracy more effectively.

4.4 T-SNE Visualization
Figure 2 shows the results of T-SNE visualizations of differ-
ent algorithms on the JAFFE dataset, each of which divides
the JAFFE dataset into ten clusters. The Figure 2.(a) shows
the true labels of the JAFFE dataset, and the Figure 2.(b)-(e)
show the labels obtained by the comparison clustering algo-
rithms, and the Figure 2.(f) shows the visualization of our
method. It can be observed that our method distinctly sep-
arates ten samples with clear boundaries, whereas the four
comparative algorithms all tend to group samples that are
close but belong to two different clusters into one. This is
because our method incorporates LDA for dimensionality re-
duction, performing clustering in the subspace to enhance
clustering performance. Additionally, by calculating the dis-
tances between sample pairs rather than the distance from
samples to cluster centroids, our approach is better equipped
to handle nonlinear data.

4.5 Parameter Analysis
Figure 3 illustrates the impact of the parameter λ, with values
of 0.0001, 0.001, 0.01, 0.1, and 1, on the clustering perfor-
mance across six datasets. By examining the three evalua-
tion metrics ACC, NMI, and Purity, it is evident that vari-
ations in λ affect the clustering performance on Isolet and
MSRC V2 datasets. Different datasets exhibit varying trends

in these metrics as λ increases, indicating that the sensitiv-
ity of clustering performance to λ values differs among the
datasets. These findings suggest that selecting an appropri-
ate λ value is crucial to optimize clustering performance in
specific datasets.

4.6 Convergence Analysis
Furthermore, an experiment was conducted to assess the con-
vergence of our method by observing the objective function
across multiple iterations on six benchmark datasets. The
experimental results, depicted in Figure 4, indicate that our
method consistently reaches a stable objective function value
with minimal iterations across diverse datasets, thus affirming
its strong convergence performance.

5 Conclusion
In this paper, we propose a novel unsupervised discrimina-
tive dimension reduction method that successfully integrates
the centerless K-means algorithm with Linear Discriminant
Analysis (LDA) into a unified framework. This approach
not only eliminates the reliance on cluster centroids, which
is common in traditional clustering algorithms, thereby en-
hancing the robustness of the model, but also explores the
local neighborhood structure of the data. Additionally, we
construct a similarity matrix using a learnable label matrix,
which maintains both the neighboring relationships and the
cluster structure relationships. Furthermore, by incorporat-
ing the Butterworth filter distance to handle nonlinear data,
the applicability of the model is further enhanced. The ex-
perimental results of our framework on multiple benchmark
datasets demonstrate the method’s excellent performance in
unsupervised dimension reduction and clustering tasks, ef-
fectively capturing both the discriminative structure and the
local neighborhood structure of the data.
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