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Abstract

Integrating dynamics into graph neural networks
(GNNs) provides deeper insights into the evolu-
tion of dynamic graphs, thereby enhancing the
temporal representation in real-world dynamic net-
work problems. Existing methods extracting crit-
ical information from dynamic graphs face two
key challenges, either overlooking the negative im-
pact of redundant information or struggling in ad-
dressing the distribution shifting issue in dynamic
graphs. To address these challenges, we propose
MaskDGNN, a novel dynamic GNN architecture
that consists of two modules: First, self-supervised
activeness-aware temporal masking mechanism se-
lectively retains edges between highly active nodes
while masking those with low activeness, effec-
tively reducing redundancy. Second, adaptive fre-
quency enhancing graph representation learner am-
plifies the frequency-domain features of nodes to
capture intrinsic features under distribution shift-
ing. Experiments on five real-world dynamic graph
datasets demonstrate that MaskDGNN outperforms
state-of-the-art methods, achieving an average im-
provement of 7.07% in accuracy and 13.87% in
MRR for link prediction tasks.

1 Introduction
Dynamic graphs are prevalent in real-world systems, captur-
ing the evolving relationships and interactions within com-
plex networks [Kazemi et al., 2020]. For instance, in social
networks [Song et al., 2019; Ma et al., 2020], they model dy-
namic user interactions such as friendship formation and in-
formation diffusion. In transportation networks [Kumar et al.,
2019; Wu et al., 2019b], they reflect real-time traffic patterns,
with nodes and edges representing locations and their chang-
ing connectivity. Similarly, in e-commerce networks [Sharma
et al., 2023; Zhang et al., 2022], they track temporal shifts in
user behaviors, such as browsing, purchasing, and reviewing
products. These networks are characterized by temporally
evolving nodes and edges, exhibiting rich temporal features

∗Yanwei Yu is the corresponding author.

that are essential for understanding network dynamics. An-
alyzing these properties provides valuable insights into the
behavior and evolution of complex systems, enabling more
accurate predictions and informed decision-making.

Compared to static graph methods [You et al., 2021;
Hassani and Khasahmadi, 2020; Yu et al., 2022; Fu et al.,
2023], dynamic graph approaches are more adept at cap-
turing the temporal evolution of nodes and edges, offer-
ing enhanced expressive power for modeling complex real-
world interactions. Existing dynamic graph neural networks
(DGNNs) [Xue et al., 2022] can be broadly categorized
into continuous and discrete models. On the one hand,
continuous DGNNs [Tian et al., 2023; Rossi et al., 2020;
Cong et al., 2023; Poursafaei et al., 2022] capture fine-
grained temporal information by transforming dynamic graph
data into time series and employing temporal encoders, such
as Transformers, to model dynamic patterns [Yu et al., 2023;
Xu et al., 2020]. These approaches excel in capturing de-
tailed temporal dynamics by leveraging powerful temporal
encoders. Discrete DGNNs [Liu et al., 2021], on the other
hand, employ more lightweight designs, focusing on cap-
turing dynamic dependencies without relying on continuous
time series. Early models such as EvolveGCN [Pareja et al.,
2020], DGNN [Manessi et al., 2020], and DySAT [Sankar
et al., 2020] utilize recurrent networks or temporal encoders
to capture the temporal evolution of graphs. More recent
models, including Roland [You et al., 2022], WinGNN [Zhu
et al., 2023] and DyTed [Zhang et al., 2023], replace these
traditional temporal encoders with techniques such as meta-
learning [Finn et al., 2017], sliding window strategies, and
disentangling methods. These approaches offer significant
improvements in performance, enabling real-time processing
while maintaining high predictive accuracy.

Despite significant advancements in dynamic graph learn-
ing, two key challenges persist: (1) Existing methods tend
to overlook the negative impact of redundant information on
dynamic graphs. Many methods rely on extensive histori-
cal information, overemphasizing low-activeness nodes and
infrequently changing edges which may lead to redundant in-
formation. This reduces the model’s ability to focus on key
interactions and harms its predictive performance. Emphasiz-
ing the dynamic changes of highly active and critical nodes is
crucial for improving learning effectiveness. (2) Most exist-
ing methods struggle in addressing the distribution shifting
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issue on dynamic graphs. The temporal structure distribu-
tion in dynamic graphs evolves over time, caused by changes
in node relationships. For instance, in a Bitcoin trading net-
work, traders typically follow certain patterns based on mar-
ket trends, but a sudden shift in focus, such as a major news
event or a market crash, can dramatically alter trading behav-
iors. Existing models struggle to adapt to these shifts, hinder-
ing their ability to capture evolving interactions and compro-
mising predictive accuracy.

To address these challenges, we propose MaskDGNN, a
novel dynamic graph neural network that reduces the negative
impact of redundant information and captures intrinsic fea-
tures under distribution shifting. MaskDGNN consists of two
main components: (1) Self-supervised activeness-aware tem-
poral masking module: It identifies and retains edges between
highly active nodes while masking edges between nodes with
low activeness. By comparing successive graph snapshots,
this strategy filters out redundant information, ensuring the
model focuses on the most relevant interactions, thereby im-
proving predictive accuracy. (2) Adaptive frequency enhanc-
ing graph representation learner: This module addresses the
feature capture issue under the temporal structure distribution
shifting challenge in dynamic graphs by leveraging Fourier
transforms to enhance the graph’s temporal features. It iden-
tifies and emphasizes the key frequency components in active
node representations, allowing the model to better adapt to
distribution shifts, such as sudden changes in trading patterns
or behaviors. Additionally, a sliding window strategy aggre-
gates long-term dependencies, improving robustness and cap-
turing macro-level structural changes across graph snapshots.

Our contributions are summarized as follows:

• We propose MaskDGNN, a novel dynamic graph neu-
ral network architecture that integrates a self-supervised
activeness-aware temporal masking module with an adap-
tive frequency enhancing graph representation learner. This
design reduces redundant information while capturing in-
trinsic features under distribution shifting, significantly im-
proving link prediction accuracy.

• We introduce an activeness-aware masking mechanism that
compares each node’s activeness between consecutive time
steps, retaining edges of highly active nodes and masking
low-activity ones, effectively filtering out redundancy and
focusing on key temporal interactions.

• Extensive experiments on five real-world dynamic graph
datasets show that MaskDGNN outperforms state-of-the-
art methods, with average improvements of 7.07%, 2.62%,
13.87%, and 7.31% in Accuracy, AUC, MRR, and Re-
call@10, respectively.

2 Related Work
2.1 Dynamic Graph Neural Networks
Research on DGNNs [Yang et al., 2024; Kazemi et al.,
2020] mainly focuses on capturing the dynamic changes in
graph structures and their temporal dependencies to enhance
the ability of dynamic graph representation learning. Exist-
ing DGNNs can be classified into two types based on how
time is recorded: discrete DGNNs and continuous DGNNs

[Wang et al., 2021; Jin et al., 2022; Kachole et al., 2023;
Trivedi et al., 2019]. This paper primarily discusses the
related work in discrete DGNNs. Early works such as
EvolveGCN [Pareja et al., 2020] and DGNN [Manessi et
al., 2020] leverage the combination of recurrent networks
(GRU [Cho et al., 2014] or LSTM [Hochreiter and Schmid-
huber, 1997]) with GCN parameters and the integration of
long short-term memory networks with graph convolutional
networks. DGT [Cong et al., 2021] and DySAT [Sankar et al.,
2020] are based on Transformers [Vaswani, 2017] and are de-
signed to capture dynamic graph information. MTSN [Liu et
al., 2021] models the local higher-order structures and tempo-
ral evolution of dynamic networks by learning the motif struc-
ture of the graph. Dyngraph2vec [Goyal et al., 2020] adopts
a deep architecture combining dense and recurrent layers to
learn temporal dynamics in dynamic graphs. Recent studies
further optimized dynamic graph modeling frameworks. For
instance, DyTed [Zhang et al., 2023] proposes a disentangled
representation learning approach that leverages contrastive
learning to distinguish between temporal and invariant fea-
tures. DRLAN [Liu et al., 2020] introduces a hybrid offline-
online architecture for updating node embeddings in large-
scale attributed dynamic networks. ROLAND [You et al.,
2022] is a general framework from the perspective of meta-
learning, enabling the transformation of static GNNs into dy-
namic GNNs. WinGNN [Zhu et al., 2023] utilizes a sliding
window mechanism to reduce parameter size, alleviating the
computational and storage burdens of long sequences. SILD
[Zhang et al., 2024] employs Fourier transforms to achieve
different frequency separation. STDGL [Liu et al., 2024b]
designs time-aware auxiliary tasks that incorporate local and
global connectivity information.

2.2 Self-Supervised Masked Graph Models
With the growing use of graph neural networks (GNNs) in
areas like social networks, recommendation systems, and
bioinformatics, graph masking strategies become essential
for highlighting key structures during training. These strate-
gies mask certain nodes or edges to guide the model in fo-
cusing on critical graph information and reconstructing the
masked parts, improving its understanding of graph struc-
tures. Initially introduced in computer vision by MAE [He
et al., 2022], the concept is extended in GraphMAE [Hou et
al., 2022], which masks node features to generate compact
graph representations. S2GAE [Tan et al., 2023] integrates
masking with graph autoencoders, setting the stage for future
developments. MaskGAE [Li et al., 2023] enhances graph
structure capture by using random walks to determine mask-
ing positions, while Bandana [Zhao et al., 2024] introduces
edge masking with a continuous range [0, 1], balancing struc-
tural preservation and flexibility. Finally, StructMAE [Liu
et al., 2024a] employs progressive masking based on struc-
tural scoring to improve the model’s ability to reconstruct key
graph structures.

3 Preliminaries
Definition 1 (Discrete-Time Dynamic Graphs). Given a dy-
namic graph dataset, we define a discrete-time dynamic
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Figure 1: The overall architecture of the proposed MaskDGNN.

graph as a sequence of snapshots G = {G1, G2, . . . , GT },
where T denotes the total number of snapshots. Each snap-
shot at time t, i.e., Gt = (Vt, Et), consists of a node set Vt

and an edge set Et ⊆ Vt × Vt. The adjacency matrix At ∈
R|Vt|×|Vt| represents the edges in Et, and Xt ∈ R|Vt|×f de-
notes the node feature matrix at time t, where f is the dimen-
sionality of the node features.

Problem. The task of link prediction involves learning a
function f that predicts the presence of an unobserved edge
at time t+ 1, based on the node features and graph structure
from the previous snapshots:

f :
(
{G1, G2, . . . , Gt},Xt

)
−→ E t+1. (1)

4 Methodology
In this section, we provide a detailed description of our pro-
posed MaskDGNN. The overall architecture of MaskDGNN
is shown in Fig. 1, which consists of two key components: (1)
Self-Supervised Activeness-aware Temporal Masking Mod-
ule, and (2) Adaptive Frequency Enhancing Graph Represen-
tation Learner.

4.1 Self-Supervised Activeness-aware Temporal
Masking Module

We propose a temporal masking mechanism that dynamically
evaluates node activeness at each time step and selectively
masks less active edges. This approach enhances dynamic
graph representation learning by preserving critical structural
updates while filtering out redundant information.

Node Activeness Score Calculation
To better focus on key and active nodes while minimizing in-
terference from redundant nodes, we introduce a node active-
ness score At

vi
to evaluate each node. This score determines

edge retention or masking: edges between high-activeness
nodes are retained, while those between low-activeness nodes
are masked with a certain probability. Specifically,At

vi
is de-

fined as the sum of two components: the node dynamics score
Dt

vi
and the node significance score Stvi

.
The node dynamics score Dt

vi
quantifies the extent of

changes in a node’s edges over time. It is computed by com-
paring the node’s edge changes between the current graph Gt

and the previous time step graph Gt−1, along with the ratio
of the node degree at the previous time step. The specific
definition is as follows:

Dt
vi

=


λ ·

∆|N t
vi
|√

deg(vi)t−1 + η
, if vi ∈ Gt−1,

λ ·
∆|N t

vi
|√

∆|N t
vi
|+ γ

, if vi /∈ Gt−1,

(2)

where vi ∈ Gt, and the calculation of the node dynam-
ics score Dt

vi
depends on whether vi exists in Gt or not.

deg(vi)
t−1 denotes the degree of node vi in Gt−1, η and γ

are introduced to control the weight of the dynamics score for
existing and newly added nodes, λ is a parameter that adjusts
the influence of ∆|N t

vi
| on the dynamics score, and ∆|N t

vi
|

is calculated as:

∆|N t
vi
| = |N t

vi
⊕N t−1

vi
|

= |(N t
vi
−N t−1

vi
) ∪ (N t−1

vi
−N t

vi
)|,

(3)
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where ⊕ denotes the symmetric difference operator, N t−1
vi

and N t
vi

are the edge sets of node vi at time step t− 1 and t,
respectively.

The node significance score Stvi
measures the influence of

node vi in the current graph Gt, which is computed using the
PageRank algorithm Rank(·) to evaluate the global impor-
tance of each node within the graph:

Stvi
= Rank(vi) =

1− d

N
+ d

∑
vj∈N t

vi

Rank(vj)

|N t
vj
|

, (4)

where d is the damping factor (typically set to 0.85), and N
is the total number of nodes. The first term models random
jumps to any node in the graph, while the second term aggre-
gates contributions from the node’s neighbors.

Finally, the node dynamics score Dt
vi

and the node signifi-
cance score Stvi

are weighted and fused by control parameter
α, resulting in a comprehensive node activeness score At

vi
.

This score integrates both node dynamics and global impor-
tance, providing a more holistic representation of the node’s
significance in the dynamic graph as follows:

At
vi

= αDt
vi
+ (1− α)Stvi

. (5)

Self-Supervised Temporal Masking
Self-supervised graph masking has been widely explored for
static graphs, where masked structures help capture essential
features and patterns. Building on this, we propose a self-
supervised temporal masking module for dynamic graphs, us-
ing node activeness scores to guide the masking of redundant
edges. Specifically, the mask probability pteij for the edge
between nodes vi and vj at time step t is defined as follows:

pteij = 1−Mean(At
vi
,At

vj
), (6)

where At
vi

and At
vj

represent the activeness scores of nodes
vi and vj , and Mean(·) represents the mean pooling opera-
tion. Edges with low pteij can be considered redundant and
are more likely to be masked.

To ensure that the total number of masked edges aligns
with the desired masking ratio, the adjusted mask probabil-
ity p̂teij for each edge is derived by scaling the original mask
probability:

p̂teij = min

(
pteij ×

⌊Nedges × p⌋∑Nedges
i=1 pteij

, 1

)
, (7)

where Nedges is the total number of edges, and p is the overall
proportion of masked edges in the graph Gt. The final deci-
sion to mask each edge at time t is determined by the adjusted
mask probability p̂teij :

Mask(etij) = 1− Uij , where Uij ∼ B(p̂teij ), (8)

where Uij is a random variable following a Bernoulli dis-
tribution B(p̂teij ). If Uij = 1, the edge etij is not masked
(Mask(etij) = 0); if Uij = 0, the edge etij is masked
(Mask(etij) = 1).

After masking operation on each snapshot, we obtain the
masked graph set Gm = {G1

m, G2
m, . . . , GT

m} and the re-
tained graphs set Gr = {G1

r, G
2
r . . . , G

T
r } , noted that Gt

m ∪
Gt

r = Gt.
Unlike previous models directly discard masked edges,

The self-supervised loss for the masked edges treats them as
positive samples, preserving the link information in the orig-
inal graph and ensuring the model comprehends the overall
graph structure.

Lt
ssl = −

∑
eij∈Et

m

ytu,v log ŷ
t
u,v, (9)

where Etm represents the set of masked edges at time t, and
treated as positive samples in the training process. Here, ytu,v
is the ground-truth label for the edge eij at time t, and ŷtu,v is
the predicted result.

4.2 Adaptive Frequency Enhancing Graph
Representation Learner

We propose this module to enhance dynamic graph represen-
tations through spectral-temporal processing. It transforms
node embeddings via FFT, applies learnable frequency filters
to capture intrinsic features under distribution shifting, and
employs a sliding window to capture long-term dependencies
through gradient aggregation.

Graph Convolutional Encoder
We feed the retained graph Gr into a l-layer decoupled GCN
[Wu et al., 2019a] to ensure the model focuses on the more
critical information:

H
(l)
t = ÂH

(l−1)
t W

(l)
h , (10)

where H(l)
t ∈ Rn×d is the representation of the nodes derived

at l-th layer at time t, Â = D−1/2AD−1/2 denotes the nor-
malized adjacent matrix given that A is the adjacent matrix
with self-loops and D is the corresponding diagonal degree
matrix, and W(l) is a learnable parameter matrix at l-th layer.

Adaptive Frequency Enhancing Layer
Inspired by FreeDyG [Tian et al., 2023], we enhance key
frequency components in the graph representations using
Fourier-based modulation. Given the l-th layer GNN output
H

(l)
t ∈ RL×d at time t, we first apply the 1D Fast Fourier

Transform (FFT) along the temporal dimension:

H(l)
t = F

(
H

(l)
t

)
, (11)

where F denotes the 1D FFT, and H
(l)
t ∈ C⌈

L
2 +1⌉×d repre-

sents the frequency components of H(l)
t , with C denoting the

complex number domain.
Next, we adaptively enhance the frequency components

by multiplying them element-wise with a learnable complex
number tensorW ∈ C⌈

L
2 +1⌉×d:

Ĥ(l)
t =W · H(l)

t , (12)

where (·) represents element-wise multiplication, and Ĥ(l)
t ∈

C⌈
L
2 +1⌉×d denotes the enhanced frequency components.
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Finally, we apply the inverse FFT to transform the en-
hanced frequency components Ĥ(l)

t back into the time do-
main:

Ĥ
(l)
t ← F−1

(
Ĥ(l)

t

)
, (13)

where F−1 denotes the inverse 1D FFT, converting the com-
plex number tensor back into a real number tensor. Then, a
residual connection and dropout are applied to the resulting
tensor:

H
(l)
t ← H

(l)
t +Dropout

(
Ĥ

(l)
t

)
. (14)

Then, we predict the probability of edge from node u to
node v through a multi-layer perceptron (MLP):

ŷtu,v = MLP(Concat(h
(l)
u,t,h

(l)
v,t)), (15)

where ŷtu,v is the predicted label at time t, h(l)
u,t and h

(l)
v,t are

the feature embeddings of nodes u and v, obtained from Hl
t.

Sliding Window Gradient Aggregation
Inspired by WinGNN [Zhu et al., 2023], we also adopt a slid-
ing window gradient aggregation strategy to model long-term
dependencies in dynamic graphs. This strategy utilizes two
parameter layers: inter-window parameters Θwi and intra-
window parameters θwi

t . At each time step t, the inner pa-
rameters θwi

t are updated using snapshot-specific gradients,
while the outer parameters Θwi are updated by aggregating
the inner gradients at the end of each window wi. Based on
the label data ytu,v on Gt within window wi, we can obtain
the train loss via cross-entropy loss:

Lwi

Gt = Lt
ssl −

∑
(u,v)∈Et

r

ytu,v log ŷ
t
u,v

−
∑

(u,v)∈Et
neg

(1− ytu,v) log(1− ŷtu,v),
(16)

where Lt
ssl is the self-supervised loss term, which includes

contributions from the masked edges Etm, treated as positive
samples. The second term computes the loss for the retained
edges Etr, using true labels ytu,v and predicted probabilities
ŷtu,v . The third term calculates the loss for negative samples
Etneg. The gradient aggregation process is defined as:

θwi
t+1 ← θwi

t + τ ·
∂Lwi

Gt

∂θwi
t

, (17)

where θwi
t represents the model parameters at time step t

within sliding window wi, Lwi

Gt is the loss function for the
snapshot at time t within wi, and τ is the learning rate for θ.

The gradient aggregation across multiple snapshots in the
sliding window wi is computed as follows:

∇Lwi =

t0+lw∑
t=t0

∂Lwi

Gt

∂θwi
t

· ζt, (18)

where ∇Lwi denotes the aggregated gradient over the win-
dow, and ζt represents the weight assigned to each snapshot.

For the next window, the inter-window parameters Θwi+1

are updated as follows:

Θwi+1 = Θwi + β · ∇Lwi + β ·
∂Lwi

Gt

∂θwi
t

, (19)

where β is the learning rate for Θ, and Θwi represents the
outer parameters in window i.

5 Experiments
In this section, we perform model evaluation to investigate
the effectiveness of our MaskDGNN1 and baseline methods
on five real-world datasets. Our experiments aim to answer
the research questions as follows:
• RQ1: What is the performance of our MaskDGNN as com-

pared to various state-of-the-art social relationship infer-
ence methods?

• RQ2: How do the key components contribute to the perfor-
mance?

• RQ3: How do the key hyperparameters influence the per-
formance of the proposed MaskDGNN?

Dataset #Nodes #Edges #Snapshots
Bitcoin-Alpha 3,783 24,186 226
Bitcoin-OTC 5,881 35,592 262
UCI-Message 1,899 59,835 28
MOOC 7,144 411,749 30
Wiki-Talk 1,140,149 7,833,140 73

Table 1: Summary of dataset statistics.

5.1 Datasets
In our experiments, we evaluate the performance of all meth-
ods using five publicly available real-world datasets: Bitcoin-
Alpha, Bitcoin-OTC [Kumar et al., 2016], UCI-Message
[Panzarasa et al., 2009], MOOC [Kumar et al., 2019], and
Wiki-Talk [De Rijke, 2017]. Notably, Wiki-Talk is a large-
scale dynamic graph dataset comprising 1 million nodes and
7 million edges, which serves as a robust benchmark to as-
sess the scalability and performance of our model in handling
large-scale dynamic graphs. Detailed statistical information
for all datasets is provided in Table 1.

5.2 Baselines
We compare our MaskDGNN with five baselines:
• EvolveGCN [Pareja et al., 2020]: It captures the evolution

of GCN parameters by using sequence models like GRU or
LSTM to encode parameters at each time step.

• DGNN [Manessi et al., 2020]: It employs a stacked en-
coder to model node dynamics by leveraging LSTM on the
representations encoded by GNNs.

• dyngraph2vec [Goyal et al., 2020]: It captures temporal
transitions in dynamic graphs through an auto-encoder ar-
chitecture that integrates dense and recurrent layers.

1https://github.com/heyimingheyiming/MaskDGNN
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Dataset Metric EvolveGCN DGNN dyngraph2vec ROLAND WinGNN MaskDGNN %Improv.

Bitcoin-Alpha

Accuracy 51.99±0.25 OOM. OOM. 66.21±2.76 85.44±0.78 *95.54±0.44 11.82%
AUC 63.71±1.03 OOM. OOM. 90.21±1.18 92.13±0.62 *97.82±0.31 6.18%
MRR 3.28±0.28 OOM. OOM. 14.52±0.65 23.20±6.61 *31.53±3.19 35.86%
Recall@10 7.06±1.19 OOM. OOM. 31.25±2.28 66.75±4.12 *77.16±1.83 15.60%

Bitcoin-OTC

Accuracy 50.48±0.03 54.08±0.68 58.29±4.55 86.60±0.52 87.25±1.57 *90.98±0.55 4.29%
AUC 55.38±1.66 59.13±6.49 62.12±10.75 90.07±1.30 91.86±0.74 *94.25±0.38 2.62%
MRR 11.27±0.58 15.16±0.58 35.39±2.50 16.54±1.22 38.31±1.81 *42.76±1.95 11.62%
Recall@10 20.58±1.65 31.09±2.16 58.29±6.74 41.77±3.39 73.93±1.30 *76.20±1.83 3.07%

UCI-Message

Accuracy 59.85±2.54 50.91±0.05 50.88±3.11 81.83±0.64 84.73±1.36 *87.29±1.28 3.02%
AUC 71.99±1.83 52.19±0.56 54.30±1.14 91.81±0.31 93.63±0.89 *96.04±0.37 2.57%
MRR 8.17±0.23 1.52±0.01 17.84±0.49 11.84±0.26 22.10±1.21 *24.91±1.72 12.71%
Recall@10 14.37±0.49 4.56±0.73 36.22±1.67 25.14±0.92 40.83±1.19 *45.78±1.33 12.12%

MOOC

Accuracy 75.80±0.86 OOM. OOM. 89.12±0.32 87.39±0.14 *98.78±0.05 10.84%
AUC 87.05±0.51 OOM. OOM. 94.91±0.16 98.72±0.03 99.76±0.06 1.05%
MRR 7.81±0.63 OOM. OOM. 52.97±3.74 60.16±1.42 *63.65±0.83 5.80%
Recall@10 15.92±0.93 OOM. OOM. 84.52±1.47 95.23±0.59 *97.86±0.16 2.76%

Wiki-Talk

Accuracy OOM. OOM. OOM. 71.43±11.87 89.48±0.12 *94.31±0.14 5.40%
AUC OOM. OOM. OOM. 83.12±13.15 98.43±0.03 99.12±0.02 0.7%
MRR OOM. OOM. OOM. 26.09±10.43 33.48±0.72 *34.60±1.18 3.35%
Recall@10 OOM. OOM. OOM. 45.12±14.35 61.52±1.03 *63.37±1.36 3.01%

Table 2: Performance comparison of all models on five real-world datasets. “%Improv.” represents the performance gain of the best result
compared to the second-best result. The best results are highlighted in bold, and the best among the baselines is underlined. ”OOM.”
indicates an out-of-memory error encountered during model execution in our environment, and * indicates statistical significance (p-value <
0.05) between MaskDGNN and the second-best baseline.

• ROLAND [You et al., 2022]: It offers a universal frame-
work to adapt any static GNN to dynamic settings through
meta-learning, by treating node embeddings as hierarchical
states and recursively updating them over time.

• WinGNN [Zhu et al., 2023]: It enhances ROLAND by in-
corporating a sliding window mechanism to reduce model
size, alleviating computational and storage demands in
long-sequence scenarios.

5.3 Experiment Settings and Evaluation Metrics

In our evaluation, we use Accuracy (Acc for short), Area
Under the Curve (AUC for short), Mean Reciprocal Rank
(MRR for short), and Recall@10 (R@10 for short) to quan-
tify the performance of different methods. For the baselines,
we adopt the parameter settings recommended in their respec-
tive papers and further fine-tune them to achieve optimal per-
formance. In our model, the node embedding dimension d is
set to 64, the mask ratio p ranges from 10% to 40% depend-
ing on the dataset, the node dynamics score ratio α is set to
0.7, and the window size w is determined based on the snap-
shot length, typically ranging from 4 to 8 for each dataset.
The parameters λ, η, and γ are set to 1.0, 2.0, and -0.5, re-
spectively. The learning rate for θ, denoted by τ , is 0.008,
while the learning rate for Θ, denoted by β, is set to 0.01.
The dropout rate is fixed at 0.1, and the Graph Convolutional
Encoder consists of 2 layers. To prevent overfitting, we apply
early stopping during validation with a patience of 10. Ex-
periments for each method are conducted ten times, and the
average results are reported. All experiments are performed
on four RTX 3090 GPUs with 24GB of memory.

5.4 Experiment Results
Performance Comparison (RQ1)
We evaluate the performance of MaskDGNN and all base-
lines in link prediction tasks on five real-world datasets. Ex-
perimental results are shown in Table 2. The best results are
highlighted in bold, and the second-best ones are underlined.

As shown in Table 2, MaskDGNN outperforms all models
across all metrics. For instance, on the Bitcoin-Alpha dataset,
it boosts MRR by 35.86% and improves R@10, AUC, and
Acc by 15.60%, 11.82%, and 6.18%, respectively. On the
UCI-Message dataset, MaskDGNN surpasses the second-best
model by 12.71% in MRR and 12.12% in R@10. This
strong performance is due to its ability to capture intrinsic
features during distribution shifts, enabling adaptation to dy-
namic graph changes, particularly in datasets with high node
activeness and rapid fluctuations like Bitcoin-Alpha and UCI-
Message. On the MOOC dataset, with higher edge density,
MaskDGNN achieves 98.78% in Acc and 99.76% in AUC,
benefiting from the combined effect of the node activeness-
aware masking and adaptive frequency enhancing strategies.
Overall, MaskDGNN shows significant improvements across
four key metrics, with average gains of 7.07% in Acc, 2.62%
in AUC, 13.87% in MRR, and 7.31% in R@10, highlighting
its robustness and effectiveness.

MaskDGNN also performs robustly on large-scale dy-
namic graphs. On the Wiki-Talk dataset, which contains over
1 million nodes and 7 million edges, most baseline mod-
els fail due to out-of-memory (OOM) issues. In contrast,
MaskDGNN not only runs successfully but also achieves
93.30% in Acc and 99.12% in AUC. It leverages its node
activeness-aware masking mechanism to remove a significant
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(a) Bitcoin-Alpha
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(b) UCI-Message

Figure 2: The comparison of MaskDGNN and its variants on
Bitcoin-Alpha and UCI-Message datasets, where Acc and AUC are
represented using the left vertical axis, while MRR is shown using
the right vertical axis.

proportion of redundant edges (about 30%-40%), reducing
the graph size and avoiding memory issues. Additionally, it
adopts an adaptive frequency enhancing strategy, optimizing
the graph data by capturing important frequency components,
which enhances its ability to capture temporal features under
distribution shifting.

Ablation Study (RQ2)
To analyze the effectiveness of the key components in our
model, we conduct the following ablation studies:

• w/o A removes the mask rate node-activeness scores and
conducts random mask mechanism.

• w/o Mask removes the self-supervised activeness-aware
temporal masking module.

• w/o FE removes the frequency enhancing layer.

We evaluate the contribution of each key component in
MaskDGNN by individually removing them and analyz-
ing their impact on performance on the Bitcoin-Alpha and
UCI-Message datasets. As shown in Figure 2, when the
node activeness-aware temporal masking mechanism is re-
placed by random masking (w/o A), there is a signifi-
cant performance drop, especially in Acc (from 95.54%
to 91.52% in Bitcoin-Alpha, and from 87.29% to 83.40%
in UCI-Message). This phenomenon highlights the crucial
role of activeness-aware masking in prioritizing key tempo-
ral patterns. Similarly, the removal of the self-supervised
activeness-aware temporal masking module (w/o Mask) re-
sults in an even more pronounced performance degradation,
with MRR dropping from 31.53% to 14.15% in Bitcoin-
Alpha and from 24.91% to 21.27% in UCI-Message. This
further emphasizes the module’s effectiveness in filtering out
redundant information and focusing on key temporal changes.
Additionally, removing the frequency-enhancing graph rep-
resentation learner (w/o FE) reduces MRR to 23.24% in
Bitcoin-Alpha and to 21.72% in UCI-Message, demonstrat-
ing the module’s ability to capture intrinsic features under
distribution shift. These results collectively confirm that the
activeness-aware temporal masking module and the adap-
tive frequency-enhancing graph representation learner are key
to MaskDGNN’s superior performance, enabling it to effec-
tively capture important temporal dynamics while suppress-
ing redundant information.

0% 10% 20% 30% 40% 50%0.7

0.8

0.9

1.0

0.2

0.4

0.6
Acc AUC MRR R@10

(a) Mask ratio p

0.5 0.6 0.7 0.8 0.9 1.0

0.85

0.90

0.95

0.2

0.4

0.6
Acc AUC MRR R@10

(b) Node dynamics score ratio α

16 32 64 128 256 5120.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

Acc AUC MRR R@10

(c) Embedding dimension d

4 6 8 10 12 14
0.6

0.8

1.0
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0.4
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Acc AUC MRR R@10

(d) Sliding window size w

Figure 3: Hyper-parameter impact of mask ratio p, node dynamics
score ratio α, embedding dimension d, sliding window size w on
UCI-Message dataset, where Acc and AUC are represented using
the left vertical axis, while MRR and R@10 are shown using the
right vertical axis.

Parameter Sensitivity Analysis (RQ3)
We investigate the sensitivity of four main parameters in the
UCI dataset: mask ratio p, node dynamic score ratio α, em-
bedding dimension d, and sliding window size w.

Mask ratio p. Figure 3a shows that the model achieves
optimal performance at 10% masking, with stable results
between 10% and 30%. Beyond 40%, performance drops
sharply, indicating that while 10%-30% of edges are redun-
dant, excessive masking may omit critical information. An
appropriate mask ratio helps focus on essential features.

Node dynamics score ratio α. As shown in Figure 3b, the
best performance occurs at α = 0.7, with a slight drop at α =
0.5, highlighting the importance of balancing node dynamics
with global importance.

Embedding dimension d. Figure 3c shows performance im-
proves up to d = 128, then declines. Smaller d fails to capture
enough information, while larger d adds computational cost
without benefit.

Sliding window size w. Figure 3d shows that MaskDGNN
performs best with w = 8, effectively capturing long-term
dependencies. Larger w increases cost without notable gain,
so selecting an appropriate w balances performance and effi-
ciency.

6 Conclusion
In this work, we propose a self-supervised dynamic graph
neural network named MaskDGNN that combines a self-
supervised activeness-aware temporal masking mechanism
with an adaptive frequency enhancing graph representation
learner. MaskDGNN effectively reduces redundant informa-
tion and captures intrinsic temporal features under distribu-
tion shifting. Extensive experiments on five real-world dy-
namic graph datasets demonstrate the superiority and effec-
tiveness of our model.
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