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Spotlighting Partially Visible Cinematic Language for Video-to-Audio Generation
via Self-distillation

Feizhen Huang , Yu Wu , Yutian Lin∗ and Bo Du∗

School of Computer Science, Wuhan University
{feizhenhuang, wuyucs, yutian.lin, dubo}@whu.edu.cn

Abstract

Video-to-Audio (V2A) Generation achieves signif-
icant progress and plays a crucial role in film and
video post-production. However, current methods
overlook the cinematic language, a critical com-
ponent of artistic expression in filmmaking. As a
result, their performance deteriorates in scenarios
where Foley targets are only partially visible. To
address this challenge, we propose a simple self-
distillation approach to extend V2A models to cin-
ematic language scenarios. By simulating the cine-
matic language variations, the student model learns
to align the video features of training pairs with
the same audio-visual correspondences, enabling
it to effectively capture the associations between
sounds and partial visual information. Our method
not only achieves impressive improvements under
partial visibility across all evaluation metrics, but
also enhances performance on the large-scale V2A
dataset, VGGSound.

1 Introduction
Video-to-Audio (V2A) Generation [Luo et al., 2024; Wang et
al., 2024b; Wang et al., 2024a; Du et al., 2023], which gen-
erates corresponding audio directly from silent videos, has
significant applications in film and video post-production.

During live filming, capturing clean sound is often chal-
lenging due to ambient noise interference, the faintness of
certain sounds, and other factors. As a result, most sounds
must be recreated in post-production. As illustrated in Fig-
ure 1, the process of adding relevant and synchronized sound
effects to silent videos is known as Foley [Ament, 2014].
Traditional Foley requires skilled Foley artists to reproduce
different sounds by manipulating various objects. The suc-
cess of this process heavily depends on the artist’s exper-
tise and experience. Moreover, due to the vast array of
sound categories and manipulable objects, this process is
labor-intensive and time-consuming. This complexity hinders
large-scale replication and individual video creation. In con-
trast, V2A Generation [Luo et al., 2024; Wang et al., 2024b;

∗Corresponding author.

clinking

footsteps

crushing

dripping heartbeat

Clean audio without noise

Very faint sounds Difficult to record in reality

Using props when recording

clash of swords

Traditional Foley

V2A Generation

gunshot

fracture

Figure 1: Foley is the process of adding sound effects to silent
videos, playing an essential role in film/video production due to fac-
tors illustrated in the pink boxes. Traditional Foley relies on skilled
Foley artists to manually reproduce sounds, whereas V2A Genera-
tion can directly generate corresponding audio from silent videos,
providing a more efficient and convenient solution.

Wang et al., 2024a; Du et al., 2023] offers an appealing al-
ternative by automatically generating corresponding audio di-
rectly from silent videos. This innovative approach alleviates
the burden on human labor and offers a more scalable and
faster solution for both individuals and companies.

Significant progress has been made in V2A Generation.
SpecVQGAN [Iashin and Rahtu, 2021] leads the way in au-
dio generation for open-domain videos. Diff-Foley [Luo et
al., 2024] stands out for its focus on addressing the challenge
of audio-visual temporal synchronization, sparking a wave
of subsequent research with impressive advancements in
model performance [Wang et al., 2024b; Zhang et al., 2024a;
Ren et al., 2024], precise temporal alignment [Pascual et
al., 2025; Viertola et al., 2024], lightweight designs [Wang
et al., 2024a], and text control integration [Du et al., 2023;
Xie et al., 2024; Jeong et al., 2024]. However, current meth-
ods overlook the role of cinematic language [Mercado, 2019],
a cornerstone of artistic expression in film and video.

Cinematic language [Mercado, 2019] has the expressive
power of storytelling, enabling directors to convey subjective
intentions effectively. Camera techniques such as close-ups
and camera movements are common to cinematic language.
For instance, close-ups highlight specific features of charac-
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Close-ups

Camera movements
playing drums playing the piano playing tennis airplane flyby

machine gun shooting ( tell the sound based on the recoil when firing )

Foley targets are partially visible spatially

Foley target is partially visible spatially and temporally

Figure 2: Cinematic language is a fundamental element of artistic expression in film, such as close-ups and camera movements. These camera
techniques often create scenarios where Foley targets are only partially visible spatially or temporally. We refer to them as partial visibility.

ters or objects by zooming in, while camera movements dy-
namically introduce or remove them from the frame. These
camera techniques aim to portray characters as shown in Fig-
ure 2, such as characters playing instruments or engaging in
sports, where Foley targets may only be partially visible in the
spatial frame or temporal sequence. We refer to these situa-
tions where Foley targets are partially visible spatially or tem-
porally as partial visibility. In these situations, humans can
infer sound based on other visual clues and temporal clues,
even with incomplete information. However, current V2A
methods struggle to handle the challenges posed by partial
visibility, leading to poor performance in such scenarios.

State-of-the-art (SOTA) V2A models [Luo et al., 2024;
Wang et al., 2024b; Zhang et al., 2024a] typically employ a
two-stage training process: large-scale pretraining on audio-
visual datasets to learn a robust video encoder, followed by
training an audio generator conditioned on the extracted video
features. In cinematic language scenarios, partial visibility
of Foley targets causes the video encoder to extract inac-
curate video features. This misrepresentation results in in-
correct audio-visual associations, hindering the generation of
corresponding audio. To directly adapt these models for cin-
ematic scenarios, a straightforward approach would be col-
lecting cinematic videos to retrain both the video encoder and
the audio generator. However, this approach faces substantial
obstacles. High-quality cinematic video clips are not only
scarce but also restricted by copyright. Furthermore, train-
ing models directly on cinematic videos with incomplete vi-
sual information can be problematic. Such outliers may cause
the model puzzled, rather than enabling it to effectively learn
from partial visual information, ultimately disrupting opti-
mization and resulting in unexpectedly poor performance. In-
terestingly, current V2A models exhibit strong performance
on non-cinematic videos. This suggests that the pre-trained
knowledge can be leveraged to bridge the performance gap
between non-cinematic and cinematic scenarios.

In this paper, we propose a simple teacher-student frame-
work to capture partial audio-visual clues by constructing
paired supervision video, focusing on addressing the chal-
lenges of partial visibility in cinematic scenarios. First, we

simulate fundamental cinematic language variations to create
paired training videos: one with cinematic variations and the
other without while preserving consistent audio-visual corre-
spondences. The latter serves as a supervision signal, subtly
guiding the model to transfer its prior knowledge to under-
stand the partial visual information. These paired videos are
more effective than directly training on collected cinematic
videos. Next, we adopt a teacher-student framework to align
the video features from these paired training videos, bene-
fiting from the supervision signals. This not only enables
the student model to learn the associations between sounds
and partial visual clues but also preserves its original per-
formance. Our approach is both efficient and general, re-
quiring neither additional cinematic data nor modifications
to the subsequent audio generative model. It achieves im-
pressive improvements under partial visibility across all eval-
uation metrics and enhances performance on the large-scale
V2A dataset, VGGSound [Luo et al., 2024] compared to the
baseline. Our contributions are as follows:

• We are the first to focus on cinematic language in the
V2A generation area, where the Foley targets are only
partially visible.

• We propose an efficient and general teacher-student
framework that captures partial audio-visual clues by
creating paired training videos while maintaining its
original performance.

2 Related Work
2.1 V2A Generation
The progress in V2A Generation research attracts a lot of at-
tention. Early methods [Chen et al., 2020b] typically train
separate models for each video category to generate more
relevant and higher-fidelity audio, which limits the general-
ization abilities of models. SpecVQGAN [Iashin and Rahtu,
2021] makes a pioneering effort in audio generation for open-
domain videos. Diff-Foley [Luo et al., 2024] stands out
by addressing the challenge of audio-visual temporal syn-
chronization, inspiring a wave of subsequent studies with
impressive results in enhanced model performance [Wang
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et al., 2024b; Zhang et al., 2024a; Ren et al., 2024], pre-
cise temporal alignment [Pascual et al., 2025; Viertola et al.,
2024], lightweight designs [Wang et al., 2024a], and the in-
tegration of text control [Du et al., 2023; Xie et al., 2024;
Jeong et al., 2024]. Despite these advancements, current
methods all neglect cinematic language and perform poorly
in such scenarios, which is the focus of our work.

2.2 Partial Visual Clues Perception
Partial visual clues often arise when the predicted targets are
partially occluded or out of sight. The ability to perceive par-
tial visual information is a common challenge across various
visual tasks. In traditional computer vision tasks, such as im-
age classification and segmentation, models [He et al., 2016;
Huang et al., 2017] need to make inferences based on vis-
ible portions. For person re-identification, models [Miao et
al., 2019; Li et al., 2021] are required to identify the same
individual despite variations caused by camera perspectives
and occlusions. Similarly, robots need to predict human mo-
tion directions and trajectories based on visible human body
parts [Zhao et al., 2024]. Scene understanding tasks [Zhan
et al., 2020; Lee and Park, 2022] also face this challenge,
as models must infer semantic information from incomplete
visual clues, especially in applications like autonomous driv-
ing. In our research, we encounter similar difficulties related
to partial visibility in V2A generation.

2.3 Teacher-Student Methodology
The Teacher-Student methodology, also known as knowl-
edge distillation [Hinton, 2015], involves training a student
model to learn from a teacher model. This approach aims to
achieve model compression or enhance performance. Self-
distillation [Zhu et al., 2018; Xu and Liu, 2019; Zhang et al.,
2019; Yun et al., 2019] is a unique variant of the Teacher-
Student methodology, where the teacher and student models
are different versions or stages of the same model. This char-
acteristic enables the model to learn from itself. In our work,
we adopt this practical training methodology, leveraging the
prior knowledge of a pre-trained video encoder to guide the
learning of audio-visual correlation under partial visibility.

2.4 Data Augmentation
Data augmentation is widely applied to improve model per-
formance and generalization abilities. In image-related fields,
data augmentation techniques are widely used in traditional
computer vision tasks [He et al., 2016; Huang et al., 2017],
such as flipping, rotation, translation, and noise injection.
Moreover, video-based data augmentation methods [Gowda
et al., 2022] also gain attention in video action recogni-
tion. These methods concentrate more on actions and tem-
poral information by altering color [Zhang et al., 2024b] or
blending foregrounds and backgrounds [Ding et al., 2022;
Li et al., 2023; Wang et al., 2021] from different videos. Our
method simulates cinematic language variations to emphasize
audio-visual alignment using partial visual clues.

3 Method
An overview of our proposed method is shown in Figure 3.
First, we introduce the motivation behind our method in Sec-

tion 3.1. Next, we propose cinematic language variations f
in Section 3.2 and adopt the teacher-student methodology to
learn partial visibility in Section 3.3. Finally, in Section 3.4,
we describe the latent diffusion models for V2A Generation
with cinematic language.

3.1 Motivation
Our method targets the challenge of partial visibility in cin-
ematic language scenarios. To do so, we aim to improve the
model’s ability to capture audio-visual corrections from par-
tial visual information.

As illustrated in Figure 1, most Video-to-Audio (V2A)
models follow a two-stage process: first, a feature extrac-
tor E extracts visual features c = E(xv) from the video
xv . Subsequently, using these visual features c as a condi-
tion, a generative model G generates the corresponding au-
dio xa = G(c). Indeed, the performance of the generative
model G relies heavily on the semantic and temporal infor-
mation embedded in the condition c. Therefore, the quality
of the condition c is critical for generating relevant and syn-
chronized audio.

For normal video clips xv , i.e., without cinematic lan-
guage, the generative model G performs well, indicating that
the extracted visual features c = E(xv) provide accurate au-
dio information, making them ideal generation conditions.
However, when x′

v with cinematic language, the quality of
the generated audio x′

a deteriorates significantly. Given the
strong performance of G on non-cinematic videos, we rea-
sonably infer that this degradation stems from the poor gen-
eration conditions c′ = E(x′

v), rather than the generative
model G itself. In other words, when the Foley targets are
only partially visible, the video encoder E struggles to cap-
ture meaningful audio-visual associations from partial visual
clues, thereby failing to provide a suitable generation prior.

Consequently, assisting the video encoder in learning the
associations between sounds and partial visual clues and pro-
viding better conditions for the generative model G emerges
as a natural approach.

3.2 Cinematic Language Variations
We propose Cinematic Language Variations f to simulate
partial visibility in cinematic language [Mercado, 2019],
helping to establish audio-visual associations in such sce-
narios. This is more effective than directly training on col-
lected cinematic videos. In cinematic language, close-ups and
camera movements are two common camera techniques that
cause situations where the Foley targets are partially visible
in the spatial or temporal dimension. The cinematic language
variations f simulates the process of these two techniques as
examples.

Given that close-ups emphasize specific local details of
characters or objects, fcu uniformly crops the video frames.
The cropping sizes H ′ and W ′ are randomly selected within
a reasonable range, which are determined as follows:

H ′ = H × rh, W ′ = W × rw, (1)

where H and W are the original height and width of the video
frames, and rh, rw ∼ U(a1, a2). The range [a1, a2] should
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Figure 3: Our approach involves two key components: cinematic language variations f and a teacher-student framework. First, cinematic
language variations f create training video pairs (xv, x

f
v), where xf

v retains the same semantic and temporal information of Foley target as xv .
By aligning the visual features extracted from xf

v with those from xv can facilitate the student model in learning the audio-visual connection
with partial visibility. After training, the student model can provide a better generation condition for the subsequent inference stage

be chosen to ensure that the Foley targets are partially visible
while retaining sufficient visual information.

To simulate camera movements, fcm utilizes the same
cropping size above and shifts the shot along the central axis
of the video frames. The shift direction is:

• When W > H , shift left or right at random.
• When H > W , shift up or down at random.

3.3 Partial Visibility Learning by Self-distillation
We adopt the teacher-student methodology to learn the par-
tial visibility simulated by Cinematic Language Variations f .
Given that the pre-trained video encoder contains rich audio-
visual priors, we utilize it as the teacher model T to guide the
student model S in learning the association between sounds
and partial visual clues, as illustrated in Figure 3.

Given video data xv , by simulating cinematic language
variations f , we obtain video xf

v . Derived from xv , xf
v retains

the same semantic and temporal information of the Foley tar-
get with xv . They constitute training video pairs (xv, x

f
v )

with the same audio-visual correspondence. The only differ-
ence between training video pairs is the partial visibility of
the Foley target: it is fully visible in video xv while par-
tially visible in video xf

v . Since the Foley target in video
xv is fully visible, the visual features ct = T (xv) extracted
by the teacher model T accurately encompass sufficient au-
dio information for conditioning. Thus, aligning the features
csf = S(xf

v ) extracted by the student model S with feature
ct can facilitate the student model S in learning the audio-
visual connection between sounds and partial visual clues.
During training, we also align cs = S(xv) with the feature
ct to maintain the performance on the original dataset. The
optimization loss Lp is defined as follows:

Lp = cos(ct, cs′) + MSE(ct, cs′), cs′ = cs or csf (2)
We introduce k as the proportion of training video clips

with cinematic language variations. By aligning the visual
features of training video pairs, we can effectively guide the
student model S to map videos with partial visibility into the
original feature space of the teacher model. This approach
not only learns a better generation condition but also requires
no modifications to the subsequent generative model.

3.4 Latent Diffusion Models
Latent Diffusion Models (LDMs) [Rombach et al., 2022] are
probabilistic generative models that map the data distribution
into a low-dimensional latent space, consisting of an auto-
encoder and a U-Net denoiser. In the V2A task, the latent
encoder E encodes the Mel-spectrogram x ∼ p(x) into the
latent representation z = E(x), and the UNet denoiser ϵθ is
then trained to reverse the noise addition to generate new la-
tent representations. Under a given condition c, the optimiza-
tion [Ho et al., 2020; Song et al., 2021] process of LDMs can
be defined as follows:

LLDM := Ez∼E(z),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (3)

where ϵ represents Gaussian noise, and zt denotes the latent
representation at time step t.

For conditional LDMs, classifier-free guidance (CFG) [Ho
and Salimans, 2022] is a widely used alternative to classifier
guidance (CG) [Dhariwal and Nichol, 2021]. CFG jointly
trains conditional ϵθ(xt, c, t) and unconditional ϵθ(xt, t) dif-
fusion models by randomly dropping the condition c. During
sampling, the noise prediction is calculated as:

ϵ̂θ(zt, c, t) = wϵθ(zt, c, t) + (1− w)ϵθ(zt, t), (4)

where w is the guidance scale.
In our study, we build upon the open-source Diff-

Foley [Luo et al., 2024], an LDM conditioned on video fea-
tures extracted from a frozen CAVP video encoder, to achieve
Foley in cinematic scenarios.

4 Experiments
Datasets. We conduct our experiments using VGGSound
[Chen et al., 2020a], a large-scale audio-visual dataset con-
taining over 200,000 video clips across 309 distinct sound
categories. Existing V2A methods utilize VGGSound for
both training and evaluation. We follow the original VG-
GSound train/test split.
Baseline. Given our choice of Diff-Foley [Luo et al., 2024]
as the foundation model for our study, we select Diff-Foley as
our baseline, which is a leading open-source V2A model. For
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Test Set Method FAD↓ FD↓ KID(10−3) ↓ KL↓ IS↑ Align Acc(%)↑

VGGSound Diff-Foley 7.481 25.445 10.71 3.280 11.670 92.946
Ours 7.173 24.532 10.05 3.235 11.835 91.718

VGG-CU Diff-Foley 8.926 28.843 12.17 3.824 11.136 74.882
Ours 7.825 25.661 10.45 3.438 11.601 85.071

VGG-CM Diff-Foley 9.164 28.394 11.48 3.843 10.665 72.570
Ours 8.194 25.932 10.23 3.508 11.047 81.850

Table 1: Evaluation results for Video-to-Audio generation across three test sets: the original VGGSound test set, VGG-CU (close-up) test
set, and VGG-CM (camera movement) test set. During training, only cinematic language variation fcu is applied to VGGSound [Chen
et al., 2020a] training set with k = 75%. Diff-Foley baseline exhibits a notable performance drop on both VGG-CU and VGG-CM test
sets, compared to its original performance on VGGSound test set. In contrast, our method significantly outperforms the baseline across all
evaluation metrics on these two test sets, suggesting that it learns the audio-visual associations under partial visibility.

simplicity, we adopt the CFG configuration for both genera-
tion and comparison, keeping all other settings unchanged.
Evaluation Metrics. For evaluation, we adopt evaluation
metrics FAD, FD, KID, KL, and ISc from audioLDM [Liu et
al., 2023], alongside Align Acc from Diff-Foley [Luo et al.,
2024]. FAD, FD, and KID measure the similarity between
real and generated audio, while KL assesses the paired simi-
larity in probability distributions. ISc measures the diversity
and quality of generated audio, and Align Acc assesses the
audio-visual synchronization.
Implementation Details. For model configuration, we em-
ploy a pre-trained video encoder from CAVP [Luo et al.,
2024] as the teacher model. The student model adopts the
same architecture, with weights initialized from the teacher
model’s pre-trained parameters. The input video clips are
sampled at 4 frames per second (FPS), resulting in T = 4N
frames for each N -second video clip. Then the input video
xv ∈ RT×3×H×W is extracted by the video encoder into
video feature Ev ∈ RT×C , with the feature dimension C =
512. For training, we only apply cinematic language varia-
tion fcu on VGGSound [Chen et al., 2020a] training set with
k = 75%, where a1 = 0.4 and a2 = 0.6. The student model
is trained for 25 epochs on 4 NVIDIA 4090 GPUs, using the
AdamW optimizer with a learning rate of 5×10−4 and a total
batch size of 32.

To evaluate performance under partial visibility, we cre-
ate two modified test sets by applying cinematic language
variations to the VGGSound [Chen et al., 2020a] test set.
Specifically, fcu is used to create VGG-CU (close-ups) test
set, and fcm is used to create VGG-CM (camera movements)
test set. Following Diff-Foley [Luo et al., 2024], we gener-
ate 10 samples per video to ensure reliable evaluation. For
simplicity, we use only CFG [Ho and Salimans, 2022] con-
figuration in Diff-Foley, keeping all other experimental set-
tings unchanged, including the DPM-Solver [Lu et al., 2022]
Sampler with 25 inference steps and CFG scale ω = 4.5.

4.1 V2A Generation with Cinematic Language
Simulated Cinematic Scene on VGGSound. Table 1
presents the quantitative results across three test sets: the
original VGGSound test set, VGG-CU test set (created us-
ing fcu), and VGG-CM test set (created using fcm). In cin-
ematic language scenarios, we observe that Diff-Foley [Luo

0s 1s 2s 3s 4s 5s 6s 7s

Ground Truth

Diff-Foley

Ours

Close-ups Visual information Audio signal

fire fireload the 
magazine

take the 
magazine

Fails to generate gunshot

(a) Close-ups

0s 1s 2s 3s 4s 5s 6s 7s
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fire fireload the 
magazine

take the 
magazine

Fails to generate gunshot

Camera movements Visual information Audio signal

Ours

(b) Camera Movements

Figure 4: The figures show the qualitative results for V2A genera-
tion in cinematic language scenarios involving close-ups and camera
movements. Taking a machine gun shooting video as an example,
the pink dashed boxes and text mark the partial visual information,
while the blue parts represent the corresponding auditory signals.

et al., 2024] baseline shows a significant decline in all evalu-
ation metrics on both VGG-CU and VGG-CM test sets com-
pared to its performance on the original VGGSound test set.
In contrast, our method outperforms the baseline by a sub-
stantial margin across all evaluation metrics on these two test
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Figure 5: We evaluate the Align Acc metric for each video category on VGG-CU test set and present the top 25 video categories (309 in total)
with the most significant improvements. The dashed line represents the overall Align Acc across the entire VGG-CU test set.

prefer Diff-Foley prefer Ours

158 (25.48%) 462 (74.51%)

Table 2: A human study is conducted using collected 31 YouTube
videos with diverse cinematic scenarios from real-world.

sets. Notably, even when trained only on VGG-CU training
set, our model exhibits considerable improvement on VGG-
CM test set. These results suggest that our method effectively
learns the associations between audio and partial visual infor-
mation. Furthermore, by learning partial visual information,
our method achieves improved performance on the original
VGGSound test set compared to the baseline.

Figure 4 presents the qualitative results for V2A genera-
tion in cinematic language scenarios involving close-ups and
camera movements. Taking the machine gun shooting video
as an example, partial visual information is highlighted with
pink dashed boxes and pink text, while the corresponding au-
ditory signals are represented in blue. As depicted in Fig-
ure 4, we can easily identify the machine gun and the mo-
ment of the sound from the video frames, even when the gun
is partially visible. However, Diff-Foley fails to generate the
appropriate gunshot and other sounds at the correct moment.
In contrast, our method successfully generates synchronized
gunshot audio when the Foley target is partially visible. No-
tably, in camera movements scenarios shown in Figure 4(b),
the visual clues in the 0s and 1s video frames are lost. Our
method does not generate sound when the visual clues are
completely missing. While in the following video frames,
our method correctly generates relevant and synchronized au-
dio. These results suggest that our method correctly learns the
audio-visual associations under partial visibility.

Real Cinematic Scene. To evaluate performance in real-
world cinematic scenarios, we collect a new set of 31
YouTube videos that feature a wide range of cinematic tech-
niques, ensuring no overlap with the original VGGSound test
set. These videos include characteristics such as close-ups,
camera movements, zooms, scene transitions, as well as non-
partial factors like color and lighting variations. We con-
ducted a human study with 20 participants and the results
confirm the superiority of our method as shown in Table 2,

0s 1s 2s 3s 4s 5s 6s 7s

fire fireload the 
magazine

take the 
magazine

Visual information Audio signal

Ours

Ground Truth

Diff-Foley

Figure 6: We use the Grad-CAM [Selvaraju et al., 2017] to visualize
the model’s attention in close-up scenarios. Taking the machine gun
shooting video as an example, the pink dashed boxes and text rep-
resent the partial visual information, while the corresponding audio
ground truth is represented in blue.

4.2 Analysis of Partial Visibility Learning
Visualization Analysis. To better understand what the
model learns, we visualize the model’s attention areas along
the video frames in close-up scenarios. As shown in Figure 6,
we observe that the four regions highlighted by the model’s
attention (denoted by pink dashed lines) are semantically rel-
evant to the partial visual clues. Compared to the ground truth
audio, these highlighted regions are also temporally aligned
with the corresponding sound. In contrast, the highlighted
regions of Diff-Foley’s attention are misaligned with the par-
tial visual clues and are not temporally synchronized with the
audio. These visualized results demonstrate that our model
accurately captures the semantic and temporal association be-
tween sound and partial visual clues.

Improvements in Different Video Categories. To further
understand where our approach is superior, We evaluate the
Align Acc metric for each video category on VGG-CU test
set and present the top 25 video categories (309 in total) with
the most significant improvements. As shown in Figure 5,
these categories primarily include instrumental sounds, ball
impact sounds, and vehicle movement sounds that are com-
monly found in cinematic scenarios. In these categories, Diff-
Foley exhibits notably lower audio-visual consistency com-
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Test Set Training f FAD↓ FD↓ KID(10−3) ↓ KL↓ IS↑ Align Acc(%)↑

VGG-CU
fcu 7.905 26.341 10.65 3.511 11.411 82.951
fcm 8.505 27.403 11.30 3.652 11.645 79.420
fcu&fcm 8.157 26.460 10.76 3.513 11.705 83.311

VGG-CM
fcu 8.311 26.861 10.59 3.585 10.918 79.437
fcm 8.699 27.523 11.19 3.624 11.418 79.115
fcu&fcm 8.653 27.057 11.02 3.558 11.311 80.514

VGGSound
fcu 7.174 24.686 10.17 3.242 11.739 91.398
fcm 7.306 24.917 10.38 3.257 11.933 91.560
fcu&fcm 7.388 24.889 10.33 3.261 11.895 91.119

Table 3: We explore the effect of different cinematic language variations f during training, including fcu (close-ups), fcm (camera move-
ments), and fcu&cm (a combination of both). The respective proportions are set as kfcu = 50%, kfcm = 50%, and kfcu&cm = 66.7% (with
fcu : fcm = 1 : 1). The evaluation settings remain consistent with the previous experiments.

Test Set Proportion k FAD↓ FD↓ KID(10−3) ↓ KL↓ IS↑ Align Acc(%)↑

VGG-CU
50% 7.905 26.341 10.65 3.511 11.411 82.951
75% 7.825 25.661 10.45 3.438 11.601 85.071
100% 7.992 26.135 10.67 3.468 11.727 84.121

VGG-CM
50% 8.311 26.861 10.59 3.585 10.918 79.437
75% 8.194 25.932 10.23 3.508 11.047 81.850
100% 8.393 26.366 10.46 3.520 11.130 81.279

VGGSound
50% 7.174 24.686 10.17 3.242 11.739 91.398
75% 7.173 24.532 10.05 3.235 11.835 91.718
100% 8.036 26.487 10.68 3.425 11.454 86.553

Table 4: We explore the proportion k of training video clips with cinematic language variation fcu.

pared to its average performance. In contrast, our method
achieves significantly better results, demonstrating its effec-
tiveness in addressing the challenges of partial visibility in
cinematic scenarios.

4.3 Ablation Study
The Impact of Different Variations. As shown in Ta-
ble 3, we introduce three cinematic language variations dur-
ing training to assess their impact: fcu, fcm, and fcu&cm. The
fcu variation simulates spatial partial visibility, while fcm
simulates temporal partial visibility. According to FAD, FD,
and KID metrics, only using fcu yields the best improvements
across all three test scenarios, suggesting that the generated
audio is semantically more aligned with the video. This in-
dicates that simulating spatial partial visibility (fcu) is more
effective than simulating temporal partial visibility (fcm) for
learning the semantic association between sounds and par-
tial visual clues. On the other hand, in terms of Align ACC,
fcu&cm achieves the best improvements in VGG-CU and
VGG-CM test sets, with the generated audio showing better
temporal alignment with the videos. This suggests that sim-
ulating both spatial and temporal partial visibility (fcu&cm)
enhances the model’s ability to learn the temporal synchro-
nization between sounds and partial visual clues.
The Proportion of Variation. Table 4 demonstrates the ef-
fect of the proportion k of training video clips with cine-
matic language variation fcu. In VGG-CU and VGG-CM test

sets, model performance improves as k increases from 50%
to 75%, showing the effectiveness of fcu. When k reaches
100%, where no data from the original dataset is used, the
model’s performance shows a decline compared to 75%, em-
phasizing the importance of training with the paired data.

5 Limitations and Broader Impact
Limitations. Our method excels in scenarios with partial
visibility such as camera movements and close-ups, but its
adaptability and performance across other diverse cinematic
languages still require further exploration.
Broader Impact. V2A boosts video production efficiency,
offering substantial benefits to creators. However, vigilance
and regulations are still needed to prevent potential misuse.

6 Conclusion
We present a simple yet effective method to address the chal-
lenge of partial visibility in cinematic language scenarios by
providing a better condition for the audio generator. By sim-
ulating the cinematic language variations, the student model
aligns the video features from training video pairs with the
same audio-visual correspondences, which helps learn the as-
sociations between sounds and partial visual clues. Experi-
mental results demonstrate the impressive improvements of
our approach, not only in partial visibility scenarios but also
on the original V2A dataset, VGGSound.
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