Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Logarithmic Approximations for Fair k-Set Selection

Shi Li!, Chenyang Xu? and Ruilong Zhang?

School of Computer Science, Nanjing University, Nanjing, China
2 Software Engineering Institute, East China Normal University, Shanghai, China
3Department of Mathematics, Technical University of Munich, Munich, Germany
shili@nju.edu.cn, cyxu@sei.ecnu.edu.cn, ruilong.zhang @tum.de

Abstract

We study the fair k-set selection problem where we
aim to select k sets from a given set system such
that the (weighted) occurrence times that each ele-
ment appears in these k selected sets are balanced,
i.e., the maximum (weighted) occurrence times are
minimized. By observing that a set system can be
formulated into a bipartite graph G := (LU R, E),
our problem is equivalent to selecting k vertices
from R such that the maximum (weighted) number
selected neighbors of vertices in L is minimized.
The problem arises in a wide range of applications
in various fields, such as machine learning, artifi-
cial intelligence, and operations research.

We first prove that the problem is NP-hard even
if the maximum degree A of the input bipar-
tite graph is 3, and the problem is in P when
A = 2. We then show that the problem is
also in P when the input set system forms a
laminar family. Based on intuitive linear pro-
gramming, we show that two rounding algorithms
achieve O(lcg’ﬁ’) Zn)—approximation on general bi-
partite graphs, and an independent rounding algo-
rithm achieves O(log A)-approximation on bipar-
tite graphs with a maximum degree A. We demon-
strate that our analysis is almost tight by providing
a hard instance for this linear programming.

1 Introduction

The problem of fair k-set selection is to select k£ sets from a
given set system such that the (weighted) occurrence times
that each element appears in these k selected sets are bal-
anced, i.e., the maximum (weighted) occurrence times among
all elements are minimized. Observe that a set system can be
formulated into a bipartite graph G := (L U R, E), i.e., each
element and set corresponds to a vertex in L and R respec-
tively; there is an edge between an element vertex and a set
vertex if the element is included in the set. Thus, the fair k-set
selection problem is equivalent to finding % vertices from R
such that the maximum (weighted) number of selected neigh-
bors of vertices in L are minimized.

The above problem aims to balance the frequency of el-
ement occurrence within a selected subset of sets. Thus,

it falls under the umbrella of the subset selection prob-
lem, which arises in a wide range of applications in various
fields, such as artificial intelligent [De and Chakrabarti, 2022;
Mehrotra and Vishnoi, 2023; Tschiatschek et al., 20171, ma-
chine learning [Boehmer et al., 2023; Lang et al., 2022;
Mirzasoleiman et al., 2020; Tukan et al., 2023], data min-
ing [Bao et al, 2022; Yi et al., 2023], operations re-
search [Hazimeh and Mazumder, 2020; Mazumder et al.,
2023], to name just a few. In the following, we present three
concrete applications of the problem in the recommended
system, feature selection, and facility location. As a typi-
cal application of subset selection algorithms, our problem
also captures applications in feature selection on unbalanced
datasets, which is described in the full version of the paper [Li
et al., 2025].

Fair Ad Recommendation. The first application of the
above problem is about ad recommendation. Fairness plays
a vital role in recommendation systems and an unfair system
may harm the benefits of multiple stakeholders [Abdollah-
pouri and Burke, 2019; Beutel et al., 2019; Li e al., 2023];
see [Wang et al., 2023] for an excellent survey. The fair k-set
selection problem can model a fair ad recommendation sce-
nario as follows: a recommendation system has n users, and
the company needs to select k types of ads from m types to
push to these users. A user may dislike some ad types, and
this can be learned from her block history. If the user receives
too many ads that she does not like to see, this will cause her
to resent the recommendation system. We use disagreement
to denote the case where a user sees an ad that she dislikes.
The goal is to fairly pick k ads from m ads, i.e., minimize the
maximum disagreement among all users.

Fair Facility Location. The last impetus for studying the
above problem is an application in facility location. Fairness
in facility location has been extensively studied in the field
of both game theory and computational social choices [Aziz
et al., 2022; Wang et al., 2021; Zhou et al., 2022]. Consider
the following scenario where the government aims to select
k positions from m positions to build facilities (e.g., garbage
recycle stations). There are n agents, and all agents do not
want many garbage recycling stations built near them. Each
agent has multiple adjacent positions, which can be viewed
as a subset of the given m positions. We also use the dis-
agreement to denote that case where some recycling station
is built near an agent. The goal is to find a fair way to build &k

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

facilities, i.e., minimize the maximum disagreement.

Our problem is related to the anonymous refugee housing
problem, which was recently proposed by [Knop and Schier-
reich, 2023; Schierreich, 2023]. In this problem, the input is
an undirected graph, and each vertex corresponds to a house
that is either an empty house or occupied by an inhabitant.
There are k anonymous refugees, each of which is required
to be assigned an empty house. Each inhabitant has an upper
bound, and an assignment is called inhabitant respected if the
number of refugees in the neighborhood of every inhabitant
is at most its upper bound. The goal is to determine whether
an inhabitant-respected assignment exists. By considering (i)
each inhabitant as an element; (ii) each empty house as a
set of inhabitants that are adjacent to this empty house, the
minimax fairness version of the anonymous refugee housing
problem is equivalent to our problem. So, the fair anonymous
refugee housing problem can be viewed as another applica-
tion in Fair Facility Location. The previous works only focus
on the computation complexity while we aim to design ap-
proximate algorithms, and this leads to a completely different
technique.

For convenience of description, we mainly use the
bipartite-graph-based formulation of our problem. By follow-
ing the convention of the computational social choice com-
munity, we consider each vertex in L as an agent and the in-
teger k as the demand, where k is the number of vertices that
we need to select. For each vertex in L, we use disagreement
to denote the number of selected neighbors of this vertex. The
formal definition of the problem is shown in Section 2.

1.1 Our Contributions

We consider the Fair k-Set Selection problem (FKSS) in
which we mainly use the bipartite graph G := (L U R, E)
to describe the input. We distinguish several cases according
to the type of the input bipartite graph. For each case, we give
either an exact or approximation algorithm running in poly-
nomial time. In the following, we summarize the main results
of this work.

Main Result 1. The problem FKSS is NP-hard even on
bipartite graphs with A = 3. For bipartite graphs with
A = 2, the problem FKSS is in P. The problem is also
in P if the input set system forms a laminar family. More-
over, the maximin criteria do not admit any polynomial time
a-approximate algorithm unless P = NP, where « is an ar-
bitrary function of the input.

Our first result focuses on the computation complexity of
the problem. This part is completely omitted in this version
due to the space limit and can be found in [Li er al., 2025]. We
first show that the problem is NP-hard even in the case A =
3. The hardness result is built on the maximum independent
set on planar graphs, which is shown to be NP-hard in [Garey
and Johnson, 1977]. We then show that the complement case
(A = 2) is polynomially solvable by giving a simple and
efficient combinatorial algorithm. For the laminar set family,
we give a dynamic programming algorithm that computes the
optimal solution in polynomial time. One may expect that
maximin criteria are also candidates to investigate the fairness
of the k-set selection problem. Namely, find k sets such that
the minimum number of selected neighbors of vertices in L is

maximized, where we call these neighbors agreement. This is
not the case because it is NP-hard to determine whether the
optimal solution has a zero agreement; this case is equal to
determining whether there exist k sets that cover all elements.

Main Result 2 (Theorem 1, 2). Given any instance of FKSS
on general bipartite graphs, there is a randomized algorithm

that achieves O(lolgoi o7)-approximation with high probabil-

ity running in poly(n) times, where n is the number of ver-
tices in the graph. Moreover, our analysis is optimal up to a
constant factor.

Our second result focuses on the general bipartite graph
(Section 3). To have a better understanding of our algorith-
mic ideas, we focus on the unweighted case in Section 3, and
then we extend our algorithms to the weighted case in [Li
et al., 2025]. We give two algorithms and both algorithms
are LP-based rounding algorithms. The first algorithm is a

simple independent rounding algorithm that is O(%)-
approximate and it only can satisfy the demand requirement
with high probability. The second algorithm is a dependent
rounding algorithm which can surely satisfy the demand re-
quirement while achieving the same ratio. The random vari-
ables used in the second algorithm are negatively correlated,
which enables us to use the strong concentration bounds (e.g.,
Chernoff bound). The algorithm is a special case of the classi-
cal pipage rounding technique [Chekuri ef al., 2010], which is
used to handle the more general matroid constraints. We also
demonstrate that our analysis is tight up to some constant fac-
tor by showing that the LP has a Q(—2"_) integrality gap.

. log log n
This part is omitted in this version.

Main Result 3 (Theorem 3). Given any instance of FKSS
on bipartite graphs with a maximum degree A, there is a
randomized algorithm that achieves O(log A)-approximation
with running time poly(n) in expectation. Moreover, our
analysis is nearly tight.

By observing that the maximum degree of many practiced
in real-life scenarios is often small compared to the num-
ber of vertices in the whole graph, our third result focuses
on graphs with a maximum degree A (Section 4). To have
a better understanding of our algorithm, we first focus on
the unweighted case in Section 4 and then extend our algo-
rithms to the weighted case in [Li et al., 2025]. We prove
that there is a randomized algorithm achieving O(log A)-
approximation ratio, which significantly improves the A ap-
proximation achieved by a trivial algorithm. Our algorithm
is based on the same linear programming formulation as the
general graph. To get rid of the dependency on the number of
vertices, we employ the powerful Lovdsz Local Lemma. Our
analysis is also almost tight since the same integrality gap
instance also implies a Q(log’i ? +) gap of the natural linear
programming.

1.2 Other Related Works

Subset selection has numerous variants in literature. To the
best of our knowledge, FKSS is a novel problem and has
never been addressed before. One of the most representa-
tive subset selection problems is to select a subset of el-
ements such that a monotone submodular function is opti-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

mized. If the selected subset is required to satisfy a cardinal-
ity constraint, the submodular maximization admits a (1—1)-
approximate algorithm [Nemhauser et al., 1978]. This result
can be further extended to a more general matroid constraint,
and the approximation ratio remains the same [Cilinescu et
al., 2011; Filmus and Ward, 2014]. In contrast, the submodu-
lar minimization subject to some constraint has a strong lower
bound [Svitkina and Fleischer, 2011]. When the selected sub-
set is required to satisfy a knapsack constraint, the submod-
ular maximization also admits a (1 — %)-approximate algo-

rithm [Sviridenko, 2004].

1.3 Roadmap

In Section 2, we give a formal definition of our problem. In
the full version [Li et al., 2025], we show that our problem is
NP-hard even if A = 3, and we give a simple polynomial-
time algorithm that solves the A = 2 case. We also show that
the problem is in P when the input set system forms a laminar
family. In Section 3, we consider the problem on general bi-

partite graphs and give O(logﬁ) Zn)-approximate algorithms.
In Section 4, we show that the problem admits a O(log A)-
approximate algorithm on graphs with a maximum degree A.
In the full version, we extend our logarithmic-approximation
algorithms in Section 3 and Section 4 to the weighted case.
For a better understanding of our algorithm, we will focus on
the unweighted version of our problem when presenting our
logarithmic approximation algorithms.

2 Preliminaries

We consider the Fair k-Set Selection problem (FKSS) and
mainly use the bipartite-graph-based formulation. An in-
stance of FKSS consists of a bipartite graph G := (LUR, E)
with |[L| = n and |R| = m and a positive integer k with
k < |R|, where k is called the demand. Each vertex v in R
has a non-negative weight w,. When all w, are equal, we
refer it to unweighted case. A feasible solution S C R is a
subset of vertices in R with |.S| > k. In the corresponding set
system, each vertex in L represents an element and each ver-
tex in R corresponds to a set. So, we aim to choose at least k
sets if we use the set system description. For each vertex ¢ in
G, let N¢ (i) be the set of neighbors of ¢ in G. The disagree-
ment of a vertex ¢ € L is the total weight of its neighbors that
are also in S, i.e., dis;(5) = >, cn (i)ns Wo- The goal is
to select a subset of vertices S C R with |\S| > k such that
max;e, dis;(S) is minimized. In the remainder of this paper,
we will use A to denote the maximum degree of the input bi-
partite graph G = (LU R, E), i.e., A := max;cur|Ng(7)|.

3 General Graphs

In this section, we give two logarithmic approximate algo-
rithms. To have a better understanding of our algorithmic
idea, we shall focus on the case where all vertices in R
have the same weight. We will extend our algorithms to
the general FKSS instance in [Li et al., 2025]. Both algo-
rithms are LP-based randomized rounding algorithms. The
first algorithm is a simple independent rounding algorithm

that (i) achieves O(101§fgo gn)-approximation with high proba-
bility; (ii) satisfies the demand requirement with high prob-
ability; see Section 3.2 for details. The second algorithm is
a dependent rounding algorithm which strictly improves the
first algorithm, i.e., it (i) achieves O(log’li gn)-approximation
with high probability; (ii) satisfies the demand requirement
with probability 1. Due to the space limits, this part is omit-
ted in this version. The dependent rounding algorithm is a
special pipage rounding algorithm proposed by [Chekuri et
al., 2010], which preserves the negative correlation property.
Compared to dependent rounding, independent rounding is
simple and easy to analyze. The analysis of special pipage
rounding requires proof of negative correlation property. In
the full version [Li et al., 2025], we also show that our anal-
ysis is optimal up to the constant factor by giving a hard in-
stance, i.e., the linear programming formulation that we used

has an integrality gap of £(log)i g —~).

3.1 LP Formulation

The intuitive linear programming formulation is to add the
objective “min 7" to (Feas-LP); if so, the integrality gap shall
be Q(n). The detailed discussion is deferred to the full ver-
sion. In the following, we shall use the feasibility-checking
LP (Feas-LP), which is a standard technique to cut the inte-

grality gap.

(Feas-LP)
Z T, < T, Yu € L
vENG(u)
Z Ty >k,
veR
0< a2, <1, Vv e R

We shall guess the value of the optimal solution whose
range is from 1 to k. Hence, (Feas-LP) eliminates the bad
instance of the intuitive LP because the guessed value 7" > 1.
Let 7™ be the minimum integer in [1, k] to make (Feas-LP)
admit a feasible solution; 7™ can be obtained by solving
O(log k) times (Feas-LP). Observe that 7* is a lower bound
of the optimal solution, i.e., any optimal integral solution has
a maximum disagreement of at least T*. Let x* := (z),cr
be the solution to (Feas-LP) that achieves T™.

3.2 Independent Rounding

In this section, we show that there is a simple independent
rounding algorithm that (i) achieves O(log n)-approximation
with high probability; (ii) satisfies the demand requirement
with high probability. Formally, we aim to prove the follow-
ing theorem (Theorem 1).

Theorem 1. There is a randomized independent rounding
algorithm that (i) achieves O(log’ﬁ) Zn)-approximation with
probability at least 1 — % (ii) satisfies the demand require-
ment with probability at least 1 — O(l/log)ign), where n is

the number of vertices in the input bipartite graph.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithmic Intuition. The algorithmic idea of Algo-
rithm 1 is simple. We first solve (Feas-LP) to obtain a frac-
tional solution (x), ¢ r, and then, we interpret z° as the prob-
ability that we choose v. To ensure that we can sample a suf-
ficient number of vertices from R, we raise the probability
that we choose v to O({2-) - 2. Then, by using the Cheby-
shev bound, we can show that the sampled solution satisfies
the demand requirement with high probability. Meanwhile,
the disagreement of each vertex in L will also be raised to
O($3-) . T*, where T* is a lower bound of the optimal
solution. By using the right tail Chernoff bound and union
bound, we can show that the disagreement of all vertices in L

is at most O(2-) - OPT with high probability.

Inln

Algorithm 1 Independent Rounding Algorithm.

Input: The fractional solution x*.

Output: A set of vertices S C R with |S| > k with high
probability.

A+ {veR: x> lun,

v = 10lnn
B+ {veER:xy< By B
if Y gy <1then
B’ <— {u}; wis an arbitrary vertex in B.
end if
if) gy > 1then
for each v € B do
Py %1?11;1:; Xy, > Note that p, < 1.
9: Independently add v to B’ with probability p,.
10: end for
11: end if

12: return S «— AU B’.

PRDIN RN

In the following, we show that the returned solution of Al-
gorithm 1 satisfies the demand requirement (Lemma 1) and
ratio requirement (Lemma 2) with high probability. In the
following proof, we will use the same notations stated in Al-
gorithm 1.

Lemma 1. Algorithm I returns a vertex set that satisfies the
demand requirement with probability at least 1—O(1/ 23-),
where n is the number of vertices.

101 1
Lemma 2. Pr[|[Ng(u) N B'| > ot - T*] < =5 for all
vertices v € L.

Theorem 1 can be proven by Lemma 1 and Lemma 2 with
the union bound applied. The formal proofs of these lemmas
are omitted in this version.

As we have seen above, independent rounding allows us to
use the strong concentration bounds but it may not be able
to guarantee that the total number of selected vertices sat-
isfies the demand. Fortunately, several dependent rounding
techniques can ensure the negative correlation property with
which the strong concentration bounds are still applicable.
One of the most elegant methods is called pipage rounding
proposed by [Chekuri et al., 2010]. The initial pipage round-
ing technique in [Chekuri et al., 2010] is used to handle
the matroid structure. In our problem, the constraint can be
viewed as a simple uniform matroid. Thus, we can obtain the
following theorem via the pipage rounding algorithm. More
details can be found in [Li et al., 2025].

Theorem 2. Given any instance of FKSS on general bipar-
tite graphs, there is a randomized algorithm with running
time poly(n) that (i) satisfies the demand requirement with

probability 1; (ii) returns a O(lolg?ig -

)-approximate solution

with probability at least 1 — % where n is the number of ver-
tices in the input bipartite graph.

4 Graphs with Bounded Degree

In this section, we consider FKSS on the graphs with a max-
imum degree A and mainly show that there is a O(log A)-
approximate algorithm (Theorem 3). Similar to Section 3, to
have a better understanding of our algorithmic ideas, we shall
focus on the unweighted case. We will extend our algorithms
to the general FKSS instances in [Li et al., 2025]. We remark
that our analysis is almost tight since (Feas-LP) also has an

integrality gap Q(log)i ? =<)-

Theorem 3. Given any instance of FKSS on graphs with
a maximum degree A, there is a randomized algorithm
with running time poly(n) in the expectation that returns a
O(log A)-approximate solution, where n is the number of
vertices in the input bipartite graph.

In practice, the maximum degree of many graphs is of-
ten small compared to the number of vertices in the whole
graph. The graph with a maximum degree A admits a triv-
ial A-approximate algorithm. Namely, arbitrarily picking k-
vertices from R is a A-approximate algorithm by observing
the following two simple facts: (i) the optimal solution to the
given instance is at least 1; (ii) the maximum disagreement
of any algorithm is at most A since the maximum degree
is A. However, if we use the algorithm for general graphs,
we can only obtain a O(lolgc_’fgO gn)-approximate solution; this
is not even a constant factor when A is a constant. In this
section, we give a O(log A)-approximate algorithm, which
significantly improves the ratio of the trivial A-approximate
algorithm.

Main Obstacles and Our Ideas. Our algorithm is still
based on (Feas-LP). To get rid of the dependency of n on the
approximation ratio, there are three main obstacles that we
need to overcome. The first obstacle comes from the union
bound we used in the proof of Theorem 2. For each vertex
u € L, we define the following event as a “bad event”: the
disagreement of vertex w is larger than o - OPT for some pa-
rameter cv. To ensure that these bad events do not occur at the
same time, we need to use the union bound over all vertices
in L; thus, we have to lose the factor n on the approxima-
tion ratio. However, if we do the analysis more carefully, we
may realize that these bad events are not so independent. For
example, assuming that two vertices u, v in L have the same
set of neighbors in R. If the bad event of uw does not occur,
this shall imply that the bad event of v does not occur ei-
ther. Based on this observation, we may not need to do union
bound over all vertices, so bypassing the dependency of n. To
this end, we shall use the powerful Lovdsz Local Lemma; see
Section 4.1 for the definition of the lemma.

The next two obstacles come from the use of the Lovasz
Local Lemma. The second obstacle is that the Lovasz Local

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Lemma requires us to do independent rounding, but the inde-
pendent rounding cannot ensure the feasibility of the solution,
i.e., it cannot ensure the algorithm selects at least k vertices.
Our idea to overcome this obstacle is that, aside from defin-
ing a bad event for the approximation ratio, we also define
a bad event for the feasibility. In this way, as long as the
Lovasz Local Lemma ensures all bad events do not occur, we
obtain a solution that achieves the desired approximation ra-
tio and satisfies the demand requirement simultaneously. The
third obstacle comes from the implementation of the above
feasibility idea. Namely, we need to find an appropriate def-
inition for the feasibility bad events so that (i) all feasibility
bad events do not occur, ensuring a solution that satisfies the
demand requirement; (ii) the defined bad events should not
dependent on many other bad events to get rid of the depen-
dency on n. Our idea for this obstacle is a grouping tech-
nique; see Definition 1 for details.

4.1 Lovasz Local Lemma

There are several versions of Lovdsz Local Lemma. In our
work, we shall use the variable version proposed by [Moser
and Tardos, 2010]. In this version, there is an underlying fam-
ily of mutually independent random variables on a common
probability space, denoted by X = {X1,...,X,, }. Let
A:={A1,..., A, } be a set of bad events. Each bad event
A; is determined by a subset A; C X of variables in X'. The
dependency graph G := (V, E) for A is an undirected graph
such that (i) each vertex v € V corresponds a bad event A, in
A; (ii) there is an edge between v € V and v € V' if and only
if A, N A, # 0. For each bad event A;, let N'(4;) C Abe
a set of bad events that are adjacent to A; in the dependency
graph G.

Lemma 3 (Lovasz Local Lemma [Moser and Tardos, 2010]).
If there exists a real number x; € (0,1) for each bad event
A; € A such that Pr[4;] < x; HAjeN(Ai)(l — x;) for all
A; € A, then (i) there exists an assignment of the random
variables in X such that Pr[A;e(,)—A;i] > 0; (ii) there exists
an algorithm that finds such an assignment for X in expected

time Zie[n] ToL-.

The algorithm proposed by [Moser and Tardos, 2010] is a
simple local search algorithm; let LocalSearch(-, -) repre-
sent this algorithm. It takes two parameters as the input: the
independent random variables X" and the bad events A, and
it outputs an assignment X of X that makes all bad events
in A not occur. Let d be the maximum degree of the depen-
dency graph G. By setting z; = %ﬂ for each ¢ € [n], the
Lovasz Local Lemma can be simplified, which produces the
Symmetric Lovdsz Local Lemma. The symmetric Lovasz Lo-
cal Lemma was first proposed by [Erdos and Lovész, 1975].

Lemma 4 (Symmetric Lovdsz Local Lemma [Erdos and
Lovész, 1975]). Let A = {Ay,..., A} be a set of bad
events with Pr[A;] < pforalli € [n]. Ife-p-(d+1) <1,
then Pr[Aje(n—Ai] > 0.

Lemma 3 implies Lemma 4. More discussions about
Lemma 3 and Lemma 4 can be found in the full version.

4.2 Rounding Algorithm

Algorithm 2 is an independent rounding algorithm that is built
based on the local search algorithm for Lovasz Local Lemma
(LocalSearch(-,-)). As is typical, we interpret each vari-
able in the optimal fractional solution x* = (z}),cr as the
probability. For each v € R, we raise the probability of
the event that selects v to O(In A) - % (see line 2 of Algo-
rithm 2). Algorithm 2 consists of three phases: (Phase 1)
Fixed Choice Phase (lines 4-7 of Algorithm 2); (Phase 2) Lo-
cal Search Phase (lines 8-18 of Algorithm 2); (Phase 3) One
Vertex Phase (lines 19-22 of Algorithm 2). In the first phase,
we select all vertices whose probability is 1. If the number
of selected vertices already satisfies the demand requirement
(line 5 of Algorithm 2), then we stop; otherwise, we enter the
second phase to select more vertices. Due to some techni-
cal reason, Algorithm 2 may not be able to select sufficient
vertices at the end of the second phase. Fortunately, such a
demand gap is at most 1. Thus, Algorithm 2 enters the third
phase and arbitrarily selects one vertex.

The choice of the scaling factor O(In A) is crucial to the
Lovasz Local Lemma, i.e., it ensures that the probability of
the bad events (which will be defined in Definition 1) satis-
fies the conditions stated in Lemma 4. So, we can employ
LocalSearch(s,-) to find the right selection of vertices in
R that ensures all bad events do not occur.

Algorithm 2 Algorithm for Degree Bounded Graphs

Input: The bipartite graph G := (L U R, E); The maximum
degree A of GG; The demand k; The optimal fractional
solution x* = (z})yecr-

Output: A vertex set .S C R with |S| > k.

1: for each vertex v € R do

2: pv ¢ min{1, (z}; + %) - 4In(2eA?)}.

3: end for

4: Sl%{’UGR|pv:1}; > Phase 1
5: if |S1| > k then

6: return S < Sj.

7: end if

8: if |S1| < k then > Phase 2
9: for each vertex v € R\ S; do

10: Define X, € {0,1} s.t. Pr[X, = 1] = p,.

11: end for

122 X {Xo}teps-

13: X + LocalSearch(X,AUB). b Definition 1
14: SQE{UGR\Sl\szlin%}.

15: end if

—
[=))

: lf'Sl| + ‘SQ| > k then

return S < S; U Ss.

: end if

. if | S1]| + |S2| < k then > Phase 3
Pick an arbitrary vertex v* from R\ (S1 U S2).
return S <+ S; U Sy U {v* }.

: end if

NN = =
M2 QY e

4.3 Ratio Analysis

We start by introducing some notations for the purpose of
analysis. Let S; C R be the set of vertices that are selected

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

in the first phase by Algorithm 2. Let |S;| := k;. Recall
that 7™ is the optimal fractional solution that is achieved by
the solution x* = (z}),er. Let OPT be the maximum dis-
agreement of the optimal solution. Let ALG be the maximum
disagreement of Algorithm 2’s solution.

Analysis Framework. To analyze the ratio, we distin-
guish three cases according to the existence of the second and
third phases, i.e., Case (i): Algorithm 2 ends at the first phase
(Lemma 5); Case (ii): Algorithm 2 ends at the second phase
(Lemma 8); Case (iii): Algorithm 2 ends at the third phase
(Lemma 9). The first phase of Algorithm 2 is equivalent to a
simple deterministic rounding algorithm, and the third phase
just picks at most one vertex; thus, their analysis is easy. The
analysis of the second phase depends on the Lovéasz Local
Lemma. To this end, we shall first define the bad events and
show that the defined bad events achieve the desired approx-
imation ratio as well as (almost) satisfy the demand require-
ment (Lemma 7). Then, we will upper bound the probability
that a bad event occurs (Lemma 10, 11) and show that Algo-
rithm 2 finds an appropriate solution in desired running time;
this is the place where we use the Lovdsz Local Lemma.

We start with the easy case where Algorithm 2 does not
enter the second phase; see Lemma 5.

Lemma 5. If Algorithm 2 does not enter the second phase,
then the following two claims are true: (i) Sy is a feasible

solution; (ii) ALG < 4 -1In(2eA?) - (OPT + 1).

Now, we focus on the second case where Algorithm 2 ends
at the second phase, which implies that k1 < k. Let S be
the set of vertices that are selected by Algorithm 2 in the sec-
ond phase. Let R’ := R\ S, and if a vertex in L has no
neighbors in R, we delete such a vertex. Let L’ be the set
of remaining vertices in L. We shall focus on the subgraph
G' .= (I’ U R, E'). Note that for each v € R’, we have
(2 + %) - 41In(2eA?) < 1. For each vertex v € R/, define a
random variable X,, € { 0,1} to indicate whether the vertex
v is added to So. Let X := { X, } .p. We now give the
definition of the bad events based on the random variable set
X, which is crucial to the Lovédsz Local Lemma.

Bad Events. Intuitively, the definition of bad events needs
to ensure that when all of them do not occur, the following
two statements are true: (i) the selected vertices in the sec-
ond phase satisfy the remaining demands; (ii) the maximum
disagreement of the selected vertices in the second phase is
O(log A) - OPT. This motivates us to define two groups of
bad events: performance bad events A and feasibility bad
events B. The bad event in A is used to ensure that the se-
lected vertices are able to achieve a good ratio. To this end,
for each vertex in u € L', we define a bad event A,, stands
for [Ng/(u) N Sa| > O(log A) - OPT, where N (u) is a set
of neighbors of vertex u in graph G’. The bad event in B is
used to ensure that the number of vertices in Sy satisfies the
remaining demand requirement. To this end, we group ver-
tices in R’ into several subgroups according to the index of
vertices such that each subgraph consists of A vertices from
R'. Let Dy,...,Dy C R’ be these subgroups. Note that
the size of the last subgroup Dy may be smaller than A. For
each subgroup D;,i € [¢ — 1], we define a bad event B; to
represent |D; N Sa| < >, . p. @y, Intuitively, this inequal-

ity requires that the number of selected vertices in D; is at
least), . ;. For the last subgroup Dy, we shall not de-

fine a bad eventif), (77, + +) < 1; otherwise, D, also
has a bad event B,. Intuitively, if D, has no bad event, then
EueDe x;, is small; thus, we will not create a big demand gap
in the case where no vertex is selected from D,. The reason
why we need to distinguish the last subgroup is that we have
to upper bound the probability that a bad event happens; its
meaning will be clear in the proof of Lemma 10. See Defini-
tion 1 for the formal definition of the bad events. An example
can be found in Figure 1.

Definition 1 (Bad Events). The bad event set AUB consists of
two types of bad events, where bad events A and B are called
performance bad events (P-BE) and feasibility bad events (F-
BE), respectively.

(P-BE). For each vertexw € L', we have a bad event A,, in
A. Define A, C X as a subset of random variables, each of
which corresponds to a vertex in Ng: (u). We say A, occurs
if: D ien, Xi 2 8- In(2eA?) - (T* + 1).

(F-BE). For each subgroup D;,j € [(— 1], we have a
bad event in B. The last subgraph Dy has a bad event if
> wep, (@h + %) < 1; otherwise, Dy does not have a bad
event. For each bad event B; € B, define B; C X as a subset
of random variables, each of which corresponds to a vertex
in Dj. Say Bj occurs if: 3 7,cp5. Xi <3 ,ep, T

Let DG(A U B) be the dependency graph of bad events in
A and 5. Lemma 6 gives a lower and upper bound of the
maximum degree of DG(.A U B), which will be used later to
connect our problem and Lovasz Local Lemma.

Lemma 6. Let d be the maximum degree of the dependency
graph DG(AUB). Then, the following two inequalities hold:
(i)d > 1; (ii) d < A2, where A is the maximum degree of the
input bipartite graph.

In the following, we split the proof into two parts. In the
first part (Part I), we focus on an assignment X of random
variables in X’ that makes all bad events in .A U B not occur.
We define Sy := {v € R' | X, = 1in X }. We show that Sy
is a set of vertices that satisfies the claimed property. In the
second part (Part II), we prove that Algorithm 2 is able to
return such an assignment in the desired running time. The
proofs in this part shall built on the Lovasz Local Lemma
stated in Lemma 3 and Lemma 4. The formal proofs of all
these lemmas are shown in the full version [Li et al., 2025].

Part I: Properties of X and S;. We start with the correct-
ness of the feasibility bad events’ definition. Formally, we
shall show that when all bad events in B do not occur, the
demand gap is at most 1 at the end of the second phase.

Lemma 7. If Algorithm 2 enters the second phase and all
bad events in B do not occur, then |S1| + |S2| > k — 1.

Lemma 8 is mainly due to Lemma 5 and the definition of
performance bad events.

Lemma 8. If Algorithm 2 enters the second phase but does
not enter the third phase, and Sy is a solution that makes
all bad events in A U B do not occur, then the following two
claims are true: (i) |S1USa| > k; (ii) ALG < 12-1n(2eA?)-
(OPT +1).

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

L/ (1) R/
Al;Alz{Xth} X1

Ay Ay ={X1} . @
AS;ASZ{X27X4} @

Ay Ay = { X3, X4 } Xy

A

By; By :={ X3, X4}

A

G':=(L'URE

Bl;Blz{XhXQ} (11)

Ao Az

Dependency Graph DG(A U B)

Figure 1: An example for bad events (Definition 1) and their dependency graph. The remaining graph G’ has four vertices in L’ and four
vertices in ', and the maximum degree A of the original graph is 2. The bad events are shown in the subfigure (i). For each vertex v in R’,

there is a random variable X, € {0, 1 } indicating whether v is selected. All bad events in .A U B are defined over X' := { X, }

vER'" For

each vertex u € L, we have one bad event A, in A, and A, is determined by a set A,, of random variables in X. For example, bad event Ay
is determined by { X1, X> } which are neighbors of vertex 1. We group all vertices in R’ into several subgroups, each of which consists of at
most A vertices in R'. Each subgroup (might) corresponds to a bad event By, e.g., By is determined by B1 = { X1, X» }. The dependency
graph of A U B is shown in the subfigure (ii). The dependency graph describes the relationship between all bad events. For example, the

occurrence of bad event B; depends on bad events A1, Az, As.

Lemma 9 can be proved by Lemma 7 and Lemma 8, i.e.,
adding one more vertex increases the solution’s value by at
most 1.

Lemma 9. [f Algorithm 2 enters the third phase and selects
v* in the third phase. Assume that S5 is a solution that makes
all bad events in A U B do not occur, then the following two
claims are true: (i) S; U Sy U {v* } is a feasible solution; (ii)
ALG < 12 -In(2eA?) - (OPT + 2).

Part II: Finding X and S;. In this part, we upper
bound the probability that a bad event occurs (Lemma 10 and
Lemma 11). This shall prove that our bad events satisfy the
condition of the Lovasz Local Lemma (Lemma 4). And then,
we use Lemma 3 to bound the running time of Algorithm 2.

Lemma 10. For each bad event B; € B, Pr[B; occurs] <
where d is the maximum degree of the dependency graph

D"G(Au B).

Lemma 11. For each bad event A; € A, Pr[A; occurs] <
o d where d is the maximum degree of the dependency graph

DG(AUB).
Wrapping Up. Now, we are ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 5, Lemma 8, and Lemma 9,
we know that if Algorithm 2 returns a solution that
makes all bad events not occur, then Algorithm 2 is a
121n(2eA%)(OPT + 2)-approximate algorithm. In the fol-
lowing, we show that Algorithm 2 finds a desired solution in
polynomial time. By Lemma 10 and Lemma 11, we know
that the probability that a bad event occurs is at most 26 5o
where d is the maximum degree of the dependency graph By

Lemma 6, we know d > 1. Hence, we have Qid < e(d+1)

Thus, we have Pr[C occurs] < for any bad event
C € AU B. We define p := ﬁ Therefore, we have that
e(d+1)-p=e(d+1)- e(d+1) =1 < 1. Thus, the probabil-

ity of defined bad events satisfies the condition of Lemma 4.

e(d+1)

Since Lemma 3 implies Lemma 4 by setting x¢c = d%_l for
each bad event C' € A U B, then Algorithm 2 finds a solution
that makes all bad events not occur in expected time at most
Y oeaus o2z = (1+3) - [AUB| by Lemma 3. Recall that
|L| = n and |R| = m. By Definition 1, we have |.A| < n and
|B| < [®] < m. By Lemma 6, we have 1 < d < A% Thus,
(1+1)-]AUB|is poly(n, m). Hence, the expected running
time of Algorithm 2 is in poly(n), where n is the number of
vertices in the input bipartite graph. O

5 Conclusion

We study the fair k-set selection problem where we aim to
select k sets from a given set system such that the maxi-
mum (weighted) occurrence times that an element appears in
these k selected sets are minimized. Given a bipartite graph
G := (LUR, E), our problem is equivalent to selecting k ver-
tices from R such that the maximum (weighted) number of
selected neighbors of vertices in L is minimized. We demon-
strate that the problem is NP-hard when the maximum degree
A = 3, and then we give a simple optimal algorithm for the
A = 2 case. For the laminar family case, we show that the
problem is also in P. We give three LP-rounding algorithms
that are logarithmic approximate for general bipartite graphs
and bipartite graphs with a maximum degree A.

This work points out many interesting directions. Firstly,
it would be interesting to see whether the approximation can
be further improved. This may need a more involved LP for-
mulation. In particular, it would be interesting to see whether
the problem admits an Q(log_’i gn) lower bound. Secondly,
considering a more general case is interesting where we addi-
tionally require that the selected vertices form a base of some
matroid. The pipage rounding still works for this case, but it
is not clear whether an O(log A)-approximate exists.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

Chenyang Xu is supported by the National Natural Science
Foundation of China (No. 62302166), the National Key Re-
search Project of China under Grant No. 2023YFA 1009402,
and the Key Laboratory of Interdisciplinary Research of
Computation and Economics (SUFE), Ministry of Education.
Shi Li is supported by the State Key Laboratory for Novel
Software Technology and the New Cornerstone Science Lab-
oratory. We thank the anonymous reviewers for their valuable
comments.

Contribution Statement

All authors in the paper have equal contributions and are cor-
responding authors, and thus, it is ordered alphabetically.

References

[Abdollahpouri and Burke, 2019] Himan Abdollahpouri and
Robin Burke. Multi-stakeholder recommendation and its
connection to multi-sided fairness. In RMSE@RecSys,
volume 2440 of CEUR Workshop Proceedings. CEUR-
WS.org, 2019.

[Aziz et al., 2022] Haris Aziz, Alexander Lam, Mashbat
Suzuki, and Toby Walsh. Random rank: The one and only
strategyproof and proportionally fair randomized facility
location mechanism. In NeurIPS, 2022.

[Bao et al., 2022] Wei-Xuan Bao, Jun-Yi Hang, and Min-
Ling Zhang. Submodular feature selection for partial label
learning. In KDD, pages 26-34. ACM, 2022.

[Beutel et al., 2019] Alex Beutel, Jilin Chen, Tulsee Doshi,
Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan
Hong, Ed H. Chi, and Cristos Goodrow. Fairness in rec-
ommendation ranking through pairwise comparisons. In
KDD, pages 2212-2220. ACM, 2019.

[Boehmer et al., 2023] Niclas Boehmer, L. Elisa Celis,
Lingxiao Huang, Anay Mehrotra, and Nisheeth K. Vish-
noi. Subset selection based on multiple rankings in the
presence of bias: Effectiveness of fairness constraints for
multiwinner voting score functions. In ICML, volume
202 of Proceedings of Machine Learning Research, pages
2641-2688. PMLR, 2023.

[Cilinescu et al., 2011] Gruia Cilinescu, Chandra Chekuri,
Martin Pdl, and Jan Vondrdk. Maximizing a monotone
submodular function subject to a matroid constraint. STAM
J. Comput., 40(6):1740-1766, 2011.

[Chekuri et al., 2010] Chandra Chekuri, Jan Vondrik, and
Rico Zenklusen. Dependent randomized rounding via ex-
change properties of combinatorial structures. In FOCS,
pages 575-584. IEEE Computer Society, 2010.

[De and Chakrabarti, 2022] Abir De and Soumen
Chakrabarti. Neural estimation of submodular func-
tions with applications to differentiable subset selection.
In NeurIPS, 2022.

[Erdos and Lovdsz, 1975] Paul Erdos and L34szl6 Lovész.
Problems and results on 3-chromatic hypergraphs and

some related questions. Infinite and finite sets, 10(2):609—
627, 1975.

[Filmus and Ward, 2014] Yuval Filmus and Justin Ward.
Monotone submodular maximization over a matroid via
non-oblivious local search. SIAM J. Comput., 43(2):514—
542,2014.

[Garey and Johnson, 1977] M. R. Garey and David S. John-
son. The rectilinear steiner tree problem is NP complete.
SIAM Journal of Applied Mathematics, 32:826-834, 1977.

[Hazimeh and Mazumder, 2020] Hussein Hazimeh and
Rahul Mazumder. Fast best subset selection: Coordinate
descent and local combinatorial optimization algorithms.
Oper. Res., 68(5):1517-1537, 2020.

[Knop and Schierreich, 2023] Dusan Knop and Simon
Schierreich. Host community respecting refugee housing.
In AAMAS, pages 966-975. ACM, 2023.

[Lang et al., 2022] Hunter Lang, Aravindan Vijayaraghavan,
and David A. Sontag. Training subset selection for weak
supervision. In NeurIPS, 2022.

[Li et al., 2023] Yungi Li, Hanxiong Chen, Shuyuan Xu,
Yingqgiang Ge, Juntao Tan, Shuchang Liu, and Yongfeng
Zhang. Fairness in recommendation: Foundations, meth-
ods, and applications. ACM Trans. Intell. Syst. Technol.,
14(5):95:1-95:48, 2023.

[Li et al., 2025] Shi Li, Chenyang Xu, and Ruilong Zhang.
Polylogarithmic approximation for robust s-t path. arXiv,
abs/2505.12123, 2025.

[Mazumder et al., 2023] Rahul Mazumder, Peter Rad-
chenko, and Antoine Dedieu. Subset selection with
shrinkage: Sparse linear modeling when the SNR is low.
Oper. Res., 71(1):129-147, 2023.

[Mehrotra and Vishnoi, 2023] Anay Mehrotra and
Nisheeth K. Vishnoi. Maximizing submodular func-
tions for recommendation in the presence of biases. In
WWW, pages 3625-3636. ACM, 2023.

[Mirzasoleiman et al., 2020] Baharan Mirzasoleiman,
Jeff A. Bilmes, and Jure Leskovec. Coresets for
data-efficient training of machine learning models. In
ICML, volume 119 of Proceedings of Machine Learning
Research, pages 6950-6960. PMLR, 2020.

[Moser and Tardos, 2010] Robin A. Moser and G4bor Tar-
dos. A constructive proof of the general lovasz local
lemma. J. ACM, 57(2):11:1-11:15, 2010.

[Nemhauser et al., 1978] George L. Nemhauser, Lau-
rence A. Wolsey, and Marshall L. Fisher. An analysis of
approximations for maximizing submodular set functions
- 1. Math. Program., 14(1):265-294, 1978.

[Schierreich, 2023] Simon Schierreich. Anonymous refugee
housing with upper-bounds. CoRR, abs/2308.09501, 2023.

[Sviridenko, 2004] Maxim Sviridenko. A note on maximiz-
ing a submodular set function subject to a knapsack con-
straint. Oper. Res. Lett., 32(1):41-43, 2004.

https://arxiv.org/abs/2505.12123

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Svitkina and Fleischer, 2011] Zoya Svitkina and Lisa Fleis-
cher. Submodular approximation: Sampling-based algo-
rithms and lower bounds. SIAM J. Comput., 40(6):1715—
1737, 2011.

[Tschiatschek et al., 20171 Sebastian Tschiatschek, Adish
Singla, and Andreas Krause. Selecting sequences of items
via submodular maximization. In AAAI pages 2667-2673.
AAAI Press, 2017.

[Tukan et al., 2023] Murad Tukan, Samson Zhou, Alaa
Maalouf, Daniela Rus, Vladimir Braverman, and Dan
Feldman. Provable data subset selection for efficient neu-
ral networks training. In ICML, volume 202 of Proceed-
ings of Machine Learning Research, pages 34533-34555.
PMLR, 2023.

[Wang er al., 2021] Chenhao Wang, Xiaoying Wu, Minming
Li, and Hau Chan. Facility’s perspective to fair facility lo-
cation problems. In AAAI, pages 5734-5741. AAAI Press,
2021.

[Wang et al., 2023] Yifan Wang, Weizhi Ma, Min Zhang,
Yiqun Liu, and Shaoping Ma. A survey on the fairness of
recommender systems. ACM Trans. Inf. Syst., 41(3):52:1—
52:43, 2023.

[Yi et al., 2023] Lu Yi, Hanzhi Wang, and Zhewei Wei. Op-
timal dynamic subset sampling: Theory and applications.
In KDD, pages 3116-3127. ACM, 2023.

[Zhou et al., 2022] Houyu Zhou, Minming Li, and Hau
Chan. Strategyproof mechanisms for group-fair facility lo-
cation problems. In IJCAI, pages 613-619. ijcai.org, 2022.

