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No Regret Reinforcement Learning Algorithms for Online Scheduling with
Multi-Stage Tasks

Yongxin Xu , Hengquan Guo , Ziyu Shao and Xin Liu∗

ShanghaiTech University
{xuyx2022, guohq, shaozy, linxin7}@shanghaitech.edu.cn

Abstract

We study online task scheduling problems where
tasks arrive sequentially and are processed by the
platform or server. The service processes for
tasks are multi-stage and are modeled as episodic
Markov Decision Processes (MDPs). While pro-
cessing a task, the system acquires rewards by con-
suming resources. The goal of the platform is to
maximize the reward-to-cost ratio over a sequence
of K tasks. Online scheduling with multi-stage
tasks faces two major challenges: intra-dependence
among the different stages within a task and inter-
dependence among different tasks. These chal-
lenges are further exacerbated by the unknown re-
wards, costs, and task arrival distribution. To ad-
dress these challenges, we propose the Robbins-
Monro-based Value Iteration for Ratio Maximiza-
tion (RM2VI) algorithm. Specifically, RM2VI
addresses “intra-dependence” through optimistic
value iteration and handles “inter-dependence” us-
ing the Robbins-Monro method. The algorithm
has a greedy structure and achieves a sub-linear re-
gret of O(K

3
4 ), establishing the no-regret property

(per-task). We test RM2VI in two synthetic exper-
iments of sale promotion in E-commerce and ma-
chine learning job training in cloud computing. The
results show RM2VI achieves the best reward-to-
cost ratio compared with the baselines.

1 Introduction
Online task scheduling involves dynamically allocating in-
coming tasks to available resources for real-time process-
ing, with applications spanning cloud computing [Agarwal
and Jain, 2014; Arunarani et al., 2019; Guo et al., 2012],
crowdsourcing [Alabbadi and Abulkhair, 2021; Khazankin et
al., 2011; Deng et al., 2015], and advertising [Deane, 2012;
Kanuri et al., 2018]. Existing studies [Chen et al., 2020;
Cho et al., 2015; Zhao et al., 2022] have largely focused
on homogeneous tasks and simplified the problem to single-
stage processes. However, these approaches fail to address

∗Corresponding Author

the heterogeneity and complexity inherent in practical sys-
tems, where tasks often involve multiple stages with distinct
resource requirements. For instance, a typical machine learn-
ing workflow consists of several interdependent stages, in-
cluding data processing, pre-training, fine-tuning, and valida-
tion. These stages not only exhibit strong coupling but also
have heterogeneous resource demands. Pre-training may re-
quire significant memory and computational power to process
large datasets, whereas fine-tuning and validation are less
resource-intensive. Furthermore, different tasks frequently
compete for shared hardware resources, introducing addi-
tional dependencies and contention. To capture this hetero-
geneity and complexity, we model the service process of each
task as an episodic Markov Decision Process (MDP) and aim
to optimize performance over a sequence of tasks. Specif-
ically, our objective is to maximize the long-term reward-
to-cost ratio (see the explicit formulation in (1)). This ap-
proach accounts for task heterogeneity, multi-stage depen-
dencies, and shared resource constraints, addressing key chal-
lenges overlooked in prior work.

As discussed, online task scheduling faces two major chal-
lenges. The first challenge arises from the intra-dependence
among different stages or steps within a task. This depen-
dence is further complicated by the inherent uncertainty in
practical systems, where the rewards, costs, and transitions
between task stages are often unknown and must be learned
during the process. The second challenge stems from the
inter-dependence among tasks, where heterogeneous tasks ar-
rive sequentially and compete for shared resources. This chal-
lenge is again exacerbated by the fact that the task arrival dis-
tribution is unknown.

To address the “intra-dependence” within a task, we adopt
the principle of “optimism in the face of uncertainty” [Auer
et al., 2002] to learn both the reward and cost value func-
tions. These functions capture the long-term impact of de-
cisions made at each stage of a task. This approach allows
the system to strategically allocate resources to critical stages
within a task that promise high potential rewards while avoid-
ing resource wastage on less beneficial stages. To address the
“inter-dependence” among tasks, we directly track the aver-
age system performance, represented by the reward-to-cost
ratio. This metric serves as a guiding signal to balance re-
source allocation across tasks, enabling the system to priori-
tize resources for tasks with high potential reward gains while
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avoiding resource expenditure on tasks with lower expected
returns. We summarize our contribution in the following.
Algorithm Design: We propose a novel online scheduling
algorithm, RM2VI, for multi-stage task processing. It lever-
ages the Robbins-Monro iteration to directly track the sys-
tem’s goal (i.e., the long-term reward-to-cost ratio) with only
task samples, thereby avoiding explicitly estimating the task
arrival distribution. It incorporates optimistic value iteration
to effectively learn the unknown MDP and capture the long-
term effects of decisions within tasks. By synthesizing a
unified surrogate decision function that balances reward ac-
quisition and cost consumption, RM2VI enables an efficient
greedy decision-making framework designed to maximize the
reward-to-cost ratio.
Theoretical Analysis: We prove that RM2VI achieves a no-
regret learning performance against the optimal policy in
hindsight (c.f., Theorem 1). Specifically, it achieve a sub-
linear regret of O(

√
HMSAT

3
4 ) where M is the number

of task types, and S and A are the sizes of state and ac-
tion spaces, T = HK, H is the number of steps in a task
and K is the number of tasks, respectively. To prove this
result, we decompose the regret into two components corre-
sponding to the greedy decision-making and value iteration
learning processes. A key challenge lies in addressing the
coupling between these two components (learning and deci-
sion). We address this challenge using a Lyapunov/potential
drift technique, where the Lyapunov/potential functions cap-
ture the decision-making mismatches such that we can quan-
tify the cumulative mismatches throughout the entire learning
and decision-making process.
Experiments: We simulated two online task scheduling set-
tings, sale promotion in E-commerce and machine learning
job training in cloud computing, to justify RM2VI. We com-
pare the performance of RM2VI against state-of-the-art rein-
forcement learning algorithms for the metric of reward-to-
cost ratio. Our results demonstrate that RM2VI achieves sig-
nificant gains compared to these baselines.

2 Related Work
Online task scheduling has been extensively studied through
the lens of online learning, particularly in the contexts of
budget-constrained bandits/MDPs and reward-to-cost ratio
bandits/MDPs.

Budget-constrained bandits have been widely explored in
the literature [Tran-Thanh et al., 2012; Ding et al., 2013; Xia
et al., 2017; Badanidiyuru et al., 2018; Agrawal and Devanur,
2014; Agrawal and Devanur, 2016; Badanidiyuru et al., 2014;
Han et al., 2023; Slivkins et al., 2023; Guo and Liu, 2024],
where the objective is to maximize cumulative rewards under
a finite resource budget. However, this line of research typi-
cally assumes prior knowledge of the resource budget, and the
interaction process terminates when the budget is exhausted.
This differs from our setting, as we do not impose a prede-
fined budget limit, and the interaction process is designed
to proceed continuously without termination. The budget-
bandit settings have been further extended to constrained
MDP (CMDP) to capture the stateful property in the learn-
ing process [Altman, 1999; Borkar, 2005; Bhatnagar, 2010;

Wei et al., 2022; Wachi et al., 2024]. The key difference is
again that our setting does not impose any constraints or re-
quire any prior knowledge of these constraints.

Ratio-maximization bandits have also been studied in the
literature [Watanabe et al., 2018; Cayci et al., 2020; Cesa-
Bianchi et al., 2021; Heyden et al., 2024], with the objective
of maximizing the ratio of cumulative rewards to cumula-
tive costs, which aligns with the goal of this paper. How-
ever, these settings represent a simplified subclass of our
problem, as they consider homogeneous tasks with a sin-
gle stage—meaning only one type of task exists, and each
task follows a single-stage service process. Though this
framework has been extended to reward-to-cost ratio MDPs
(RMDPs) to incorporate stateful dynamics within the learn-
ing process [Abounadi et al., 2001; REN and KROGH, 2005;
Tanaka, 2017; Suttle et al., 2021], they still consider the
setting of homogeneous tasks. The most relevant work in
this direction is [Suttle et al., 2021], which introduced cost-
aware reinforcement learning algorithms capable of achiev-
ing asymptotic convergence. However, we study heteroge-
neous tasks with unknown task distribution and provide a
finite-time (no-regret) performance guarantee.

For the reward-to-cost ratio setting, [Neely, 2021] was the
first to highlight the critical relationship between the optimal
policy and the task arrival distribution, proposing a Robbins-
Monro-based fast learning algorithm. [Neely, 2024] general-
izes this work by introducing additional explicit constraints,
ensuring that the reward-to-cost ratio is maximized while sat-
isfying these constraints over the long term. However, both
works assume full knowledge of the rewards and costs of
tasks when making decisions. To model the uncertainty of
rewards and costs for task processing, [Xu et al., 2024] inte-
grates bandit learning into the framework of [Neely, 2021],
proposing an optimistic learning algorithm to estimate these
unknown quantities. While these works account for hetero-
geneous tasks, they simplify the task structure to a single
stage, which cannot handle the complexity of multi-stage
tasks as addressed in our paper. The multi-stage structure
introduces significant challenges due to the intra-dependence
among stages (i.e., bandits vs. MDPs), and it becomes even
more complicated when costs are involved. To address these
challenges, we need to carefully design the value iteration
learning with the estimated reward-to-cost ratio. This design
is crucial for decoupling the inter-dependence between tasks
and enables a greedy decision-making framework for opti-
mizing the reward-to-cost ratio in the long term.

3 System Model
We study an online task scheduling system represented by a
tuple (M,S,A, H,P, r, c). At each time step k ∈ [K], a
task of type mk ∈ M arrives in the system, drawn from an
unknown arrival distribution PM, where M is the set of task
types. Each task undergoes a process consisting of H steps,
modeled as an episodic Markov decision process (MDP). In
the episodic MDP of a task, S is the state space with |S| =
S, A is the action space with |A| = A, and P = {Ph}Hh=1
is a collection of transition kernels. The reward function is
denoted by r, and the cost function by c. For simplicity, we
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assume all tasks share the same state space S and action space
A, and that P, r, c are explicitly presented as dependent on the
task type m. At each step h ∈ [H], Ph(·|m, s, a) represents
the transition probability to the next state, given state s, action
a, and task type m at step h. The reward function at step h is
defined as rh : M × S × A → [rmin, rmax], while the cost
function is defined as ch : M×S ×A → [cmin, cmax].

Given the definitions above, the interaction protocol oper-
ates as follows. At each time or episode k, the system ob-
serves a task type mk ∈ M, drawn from PM. The initial
state of the task, sk1 , is sampled from µ(mk). At each stage
or step h, the system takes action akh based on the current
state skh and then receives a reward rh(mk, s

k
h, a

k
h) and in-

curs a cost ch(mk, s
k
h, a

k
h). Subsequently, the task transitions

to the next state, skh+1, which is sampled from the transition
probability Ph(· | mk, s

k
h, a

k
h). Note that task arrivals, along

with the corresponding rewards and costs, are i.i.d. generated
across task types, episodes, and internal steps.

For a given policy π, which is a collection of functions
{πh : M × S → A}Hh=1, we can define its reward value
functions (rkh is the short notation for rkh(m, skh, a

k
h))

Vk,h(m, s) = E

[
H∑
i=h

rki |skh = s

]
,

Qk,h(m, s, a) = rkh + E

[
H∑

i=h+1

rki |skh = s, akh = a

]
.

Similarly, we define the cost value functions (ckh is the short
notation for ckh(m, skh, a

k
h))

Wk,h(m, s) = E

[
H∑
i=h

cki |skh = s

]
,

Ck,h(m, s, a) = ckh + E

[
H∑

i=h+1

cki |skh = s, akh = a

]
.

Reward-to-Cost Ratio Maximization: The platform needs
to serve a sequence of K tasks, and the cumulative reward-
to-cost ratio over the K tasks is defined as follows

θπ =

∑K
k=1 E

[
V π
k,1(mk, s

k
1)
]

∑K
k=1 E

[
Wπ

k,1(mk, sk1)
] . (1)

The goal of the platform is to design an optimal policy π∗

such that the long-term reward-to-cost ratio is maximized,
where θ∗ is denoted as the optimal value. The model captures
plenty of practical applications illustrated in the following.
Sale Promotion: E-commerce platforms (e.g., Amazon) fre-
quently employ discounts to boost sales during promotional
campaigns. These discounts constitute the cost incurred by
the platform, while the reward is the revenue generated from
customer purchases. The process of a customer’s interaction
with a discount can be modeled as a multi-stage task: for
instance, stage 1 involves the customer noticing the promo-
tion, stage 2 involves the customer adding discounted items
to their cart, and stage 3 involves the customer completing

the purchase. The transition probabilities between stages de-
pend on various factors, including the customer type, dis-
count size, and their current stage in the process. Different
discount strategies may elicit varying customer responses, di-
rectly impacting the reward (sales revenue) and the cost (dis-
count size). Maximizing the reward-to-cost ratio in this sce-
nario ensures the platform’s promotional spending is efficient,
balancing revenue generation with discount expenditures.
Cloud Computing: Cloud computing platforms (e.g., Mi-
crosoft Azure or Google Cloud) routinely train various ma-
chine learning models, which consume computational re-
sources. In this setting, the reward corresponds to the ac-
curacy or quality of the trained model, while the cost repre-
sents the computational resources consumed, such as GPU
hours or energy usage. The process of training a model can
be modeled as a multi-stage task. For example, stage 1 in-
volves initializing the model and conducting initial training
epochs, stage 2 involves intermediate evaluation and adjust-
ments (e.g., hyperparameter tuning), and stage 3 involves fi-
nal training and validation. The transition probabilities be-
tween these stages depend on the model’s complexity, the
amount of data, and the number of epochs allocated. Max-
imizing the reward-to-cost ratio ensures that computational
resources are used efficiently, achieving a good balance be-
tween a high model accuracy and resource consumption.

Convergence Gap & Regret: The metric we use for eval-
uating a policy π is convergence gap against θ∗:

Gap(K) = |θ∗ − θπ| .
Based on the convergence gap, we define its regret perfor-
mance for a given policy π:

R(K) = K ·Gap(K).

4 Algorithm Design
To find the best policy and maximize the reward-to-cost ra-
tio, we face two major challenges: inter-dependence among
different tasks and intra-dependence among different steps
within a task. To make things even more challenging, the
task arrival distribution and MDP of a task itself are both un-
known. To decouple the intra-dependence with an unknown
MDP model, we leverage the idea of optimism in perform-
ing value iteration to learn the individual reward/cost value
function, which captures the long-term effect of decisions.
To decouple the inter-dependence challenge with unknown
arrival distribution of task types PM, we leverage a stochas-
tic gradient type algorithm (i.e., Robbins-Monro algorithm)
to learn the best value and policy alternatively. Interestingly,
with these two decompositions, we can just make a “greedy”
decision for any task given any state. We then break two ma-
jor components and their intuition in our algorithm design. To
simplify the notation, we define (V −W )(s) = V (s)−W (s)
and (Q− C)(s, a) = Q(s, a)− C(s, a).

4.1 Stochastic Approximation
According to the definition of the optimal θ∗ in (1), we can
rewrite it below (its proof can be found in Appendix A)

max
π

[
K∑

k=1

E
[
V π
k,1(mk, s

k
1)− θ∗Wπ

k,1(mk, s
k
1)
]]

= 0. (2)
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This becomes a fixed point problem of (θ, π) and (θ∗, π∗) is
the fixed point. Now let’s build some intuition by first assum-
ing θ∗ is known, we can find a policy such that for any time
k ∈ [K]:

argmax
π

V π
k,h(mk, s

k
1)− θ∗Wπ

k,h(mk, s
k
1).

This is reasonable because the task arrival is independent and
finding a policy that maximizes (V π

k,h − θ∗Wπ
k,h)(mk, s

k
1)

for every task will certainly maximize its overall expectation
E[(V π

k,h − θ∗Wπ
k,h)(mk, s

k
1)]. Though the problem in 2 can

be solved by dynamic programming (DP) [Held and Karp,
1962], it requires the full knowledge of MDP (i.e., reward,
cost, and transition kernel) and might suffer from large com-
putational overhead. Therefore, we turn to the value iteration
type algorithm to improve the value functions and their asso-
ciated policy. Given the current value or action-value func-
tions, we are able to make the greedy decision akh, for any
task mk given any state skh as follows

akh = argmax
a∈A

Qk,h(mk, s
k
1 , a)− θ∗Ck,h(mk, s

k
h, a).

This would keep improving our policy and ideally converge
to the optimal value functions and policy. Now, the left chal-
lenge is to estimate the optimal θ∗. This can be done with the
Robbins-Monro algorithm using the “task sample” as follows

θk+1 = [θk + η(Vk,1(s
k
1)− θkWk,1(s

k
1)]

θmax

θmin

where V and W are the current value functions, η =
1/cmin

√
K is the learning rate carefully chosen to guar-

antee a sub-linear regret with the lower and upper bounds
θmax = rmax/cmin and θmin = rmin/cmax. These are two
major components to improve the policy given the value func-
tions at time k. However, as MDP models are unknown, we
need to learn the reward and cost value functions as intro-
duced in the next section.

4.2 Double-Optimistic Value Iteration
In this section, we leverage the idea of optimism to learn the
value functions motivated by the optimistic value iteration
method, UCBVI [Azar et al., 2017]. We first estimate the
unknown transition kernel with history information and then
use the empirical transition kernel and realized reward or cost
to update value functions for the current policy. Note that we
need to implement carefully the idea of optimism for MDP
with constraint constraints. In particular, we impose “UCB”
and “LCB” to estimate reward and cost value functions, re-
spectively, such that the reward-to-cost ratio is guaranteed to
be optimistic against (or larger than) its true value.

At the beginning of the episode k, the agent observes the
task type mk = m, we estimate the transition kernel with the
historical information as follows:

P̂k
h(s

′|m, s, a) =
Nk

h (m, s, a, s′)

Nk
h (m, s, a)

, ∀s′ ∈ S, (3)

where Nk
h (m, s, a, s′) and Nk

h (m, s, a) are the visit counts
at (m, s, a, s′) and (m, s, a) observed in the historical dataset

Algorithm 1 RM2VI

Input: K, H ,ι, cmin, rmax, θmax and θmin.
for k = 1, 2, . . . ,K do

Given a task mk with initial state sk1(mk).
for h = 1, 2, . . . ,H do

Cost-aware greedy decision:

akh = argmax
a∈A

(Q̂k,h − θkČk,h)(mk, s
k
h, a). (6)

Observe: reward rkh, ckh and skh+1 and include the data
{h,mk, s

k
h, a

k
h, s

k
h+1, r

k
h, c

k
h} to H.

end for
Reward-to-Cost Ratio Learning:

θk+1 = [θk + η(V̂k,1 − θkW̌k,1)(mk, s
k
1)]

θmax

θmin
. (7)

Double–Optimistic Value Estimation:

V̂k+1,h, Q̂k+1,h, W̌k+1,h, Čk+1,h = DOVI(θk+1,H).

end for

H. Then the estimated reward and cost action-value functions
are updated as follows:

Q̂k,h(m, s, a) =min {Hrmax, rh(m, s, a) (4)

+ (P̂k
hV̂

k
h+1)(m, s, a) + β(Nk

h (m, s, a))
}

Čk,h(m, s, a) =max {Hcmin, ch(m, s, a) (5)

+ (P̂k
hW̌

k
h+1)(m, s, a)− β(Nk

h (m, s, a))
}

where (P̂k
hV̂

k
h+1)(m, s, a) =

∑
s′ P̂h(s

′|m, s, a)V̂ k
h+1(m, s′).

The bonus term β(N) ≜ H
√

log(SAT/ι)
N with ι being param-

eters. As discussed, we impose the positive bonus into Q̂k,h

and the negative bonus into Čk,h to achieve an overall opti-
mism over the reward-to-cost ratio.

Then, for all s ∈ S , we estimate reward and cost value
function by assigning the value of reward and cost action-
value function whose action can maximize Q̂k,h(m, s, a) −
θkČk,h(m, s, a), which coincides with stochastic approxima-
tion based decision leading to the convergence of policy.

We combine the above to get RM2VI.

5 Theoretical Results
In this section, we state our main result of the RM2VI algo-
rithm in the following theorem.

Theorem 1. Under RM2VI algorithm, for a large K ≥
HM2S2A2, we have the convergence gap and regret to be
bounded as follows

Gap(K) = O
(√

HMAST− 1
4

)
,

R(K) = O
(√

HMAST
3
4

)
.
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Algorithm 2 DOVI
Input: θk, H.
for h = H,H − 1, . . . , 1 do

for (s, a) ∈ S ×A do
if (s, a) ∈ H then

Estimate P̂k
h(s

′ |mk, s, a) according to (3).
Estimate Q̂k,h(mk, s, a) and Čk,h(mk, s, a) ac-
cording to (4)-(5).

end if
end for
for s ∈ S do

Estimate V̂k,h(mk, s) and W̌k,h(mk, s):

a
′
= argmax

a∈A
(Q̂k,h(m, s, a)− θkČk,h(m, s, a))

V̂k,h(m, s) = Q̂k,h(m, s, a
′
), (8)

W̌k,h(m, s) = Čk,h(m, s, a
′
). (9)

end for
end for
return V̂k,h, Q̂k,h, W̌k,h, Čk,h

Theorem 1 implies RM2VI achieve a sub-linear regret per-
formance O(T 3/4) when K ≥ HM2S2A2, which implies
the convergence gaps of O(T−1/4). These are the first results
for online task scheduling, where the tasks have a compli-
cated Markovian structure without any prior knowledge of the
MDP model and the task arrival distributions. These results
also indicate that RM2VI can quickly identify an effective and
efficient policy that converges to the optimal ratio θ∗ with the
integral design of cost-aware decision and double-optimistic
value iteration.

Next, we present the detailed proof of Theorem 1 and focus
on the analysis of the convergence gap Gap(K). We first de-
compose Gap(K) into the two items related to the cost-aware
decision and double-optimistic value iteration, respectively,
and then establish them, individually.

5.1 Proof of Theorem 1
Recall the definition of θπ with π being our RM2VI algorithm
and define its optimistic ratio

θ̂π =

∑K
k=1 E

[
V̂k,1(mk, s

k
1)
]

∑K
k=1 E

[
W̌k,1(mk, sk1)

] ,
which is the optimistic estimation of θπ to bridge the optimal
value θ∗ in the Gap(K). By triangle inequality, we have

Gap(K) ≤ |θ∗ − θ̂π|︸ ︷︷ ︸
decision error

+ |θ̂π − θπ|︸ ︷︷ ︸
estimation error

(10)

The first term in (10) is related to the optimality of cost-
aware decision, which is intuitively small because RM2VI
takes the greedy decision to maximize Q̂k,h − θkČk,h for ev-
ery step that is consistent with maximizing the reward-cost
ratio Q̂k,h/Čk,h (or V̂h/W̌h). The bound of decision error is
established in Lemma 1. The second term is related to the

estimation errors of value iteration because it is associated
with the same policy π. This captures the bias of optimistic
learning on reward and cost value functions as in Lemma 2.
Lemma 1. Under RM2VI, when K ≥ HM2S2A2, we have

|θ∗ − θ̂π| ≤ O
(√

HMAST− 1
4

)
.

Lemma 2. Under RM2VI, we have

|θ̂π − θπ| ≤ O
(
HMAST− 1

2

)
.

To prove Lemma 1 and 2, we introduce the following key
lemma.
Lemma 3. Let V ∗

k,h(mk, s) and W ∗
k,h(mk, s) be the opti-

mal real reward and cost value functions; Vk,h(mk, s) and
Wk,h(mk, s) are the true reward and cost value functions un-
der RM2VI. We have for any time k ∈ [K] and state s ∈ S
such that

E
[
(V̂k,h − θkW̌k,h)(mk, s)

]
≥E

[
(V ∗

k,h − θkW
∗
k,h)(mk, s)

]
E
[
(V̂k,h − θkW̌k,h)(mk, s)

]
≥E [(Vk,h − θkWk,h)(mk, s)]

The first inequality shows the optimistic property of
RM2VI algorithm over the optimal surrogate value functions,
which is the key to prove Lemma 1 and also the most chal-
lenging part in our analysis; the second inequality shows it is
also an optimistic estimation of reward-to-cost ratio. This is
intuitively true if the individual value function has the opti-
mistic property and is necessary for proving Lemma 1. The
detailed proof can be found in Appendix C.1.

5.2 Analysis of Estimation Errors
Based on Lemma 3, we then study the errors of value iteration
in Lemma 2. We sketch the key steps in the proof, and the
completed version can be found in Appendix C. We further
decompose the estimation error by the triangle inequality

|θ̂π − θπ| ≤ ϵ(K) + κ(K)

where ϵ(K) and κ(K) are the estimation errors w.r.t. reward
and cost value functions, respectively,

ϵ(K) :=

∣∣∣∣∣θ̂π −
∑K

k=1 E
[
Vk,1(mk, s

k
1)
]∑K

k=1 E
[
W̌k,h(mk, sk1)

] ∣∣∣∣∣ ,
κ(K) :=

∣∣∣∣∣
∑K

k=1 E
[
Vk,1(mk, s

k
1)
]∑K

k=1 E
[
W̌k,h(mk, sk1)

] − θπ

∣∣∣∣∣ .
Then, we can bound these two errors as follows

ϵ(K) + κ(K)

≤ 1

KHcmin

∣∣∣∣∣
K∑

k=1

E
[
V̂k,h(mk, s

k
1)− Vk,1(mk, s

k
1)
]∣∣∣∣∣ (11)

+
rmax

KHc2min

∣∣∣∣∣
K∑

k=1

E
[
Wk,1(mk, s

k
1)− W̌k,h(mk, s

k
1)
]∣∣∣∣∣ ,

where the inequality holds due to the boundedness of reward
and cost functions.
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Lemma 4. Under RM2VI, we have∣∣∣∣∣
K∑

k=1

E
[
(V̂k,h − Vk,1)(mk, s

k
1)
]∣∣∣∣∣ = O(H2MAS

√
T ),∣∣∣∣∣

K∑
k=1

E
[
(Wk,1 − W̌k,h)(mk, s

k
1)
]∣∣∣∣∣ = O(H2MAS

√
T ).

The proof of the lemma is motivated by [Azar et al., 2017],
and the key step is to compare the Bellman equation update
with the value iteration under RM2VI. The detailed proof can
be found in Appendix C.1. Finally, we plug Lemma 4 to (11)
such that

ϵ(K) + κ(K) ≤ O(HMAST− 1
2 ),

which proves Lemma 2.

5.3 Analysis of Decision Errors
To prove a no-regret performance in Lemma 1, we first es-
tablish an upper bound of E

[
(θk − θ∗)2

]
in Lemma 5, and

we then carefully control the cumulative errors in stochastic
approximation.

Lemma 5. Under RM2VI, we bound the stochastic approxi-
mation convergence gap as follows:∣∣∣θ∗ − θ̂π

∣∣∣ ≤ max
{
|θ̂π − θπ|, (12)
√
2C2

Kcmin

K∑
k=1

√
E [(θk − θ∗)2]

}
. (13)

We sketch the proof by considering two cases.
1) When θ∗ ≤ θ̂π , the term in (12) is upper bound of θ̂π −

θπ according to the definition of θ∗.
2) When θ∗ ≥ θ̂π , we have the decision in our algorithm

such that

E
[
(V̂k,1 − θkW̌k,1)(mk, s

k
1)|θk

]
≥E

[
V ∗
k,1(mk, s

k
1)|θk

]
− θkE

[
W ∗

k,1(mk, s
k
1)|θk

]
≥v∗ − θtw

∗,

where π∗ is any possible policy, the first inequality holds due
to the greedy decision and Lemma 3; the second inequality
holds because (v∗, w∗) lies within the closure of the possible
policy set. By adding (θk − θ∗)W̌k,1(mk, s

k
1) on both sides

of the above inequality, we further have

E
[
(V̂k,1 − θ∗W̌k,1)(mk, s

k
1)
]

≥E
[
(θk − θ∗)(W ∗

k,1(mk, s
k
1)− w∗)

]
.

Taking the summation and rearranging the above inequality,
we have∣∣∣θ∗ − θ̂π

∣∣∣ ≤∑K
k=1 E

[
|θk − θ∗|

∣∣W̌k,1(mk, s
k
1)− w∗

∣∣]
KHcmin

Finally, we use Cauchy-Schwarz inequality to establish (13)
in Lemma 5. More details can be found in the Appendix.

Note (12) in Lemma 5 has been proved in the previous sub-
section. We focus on bounding the cumulative quadratic er-
rors

∑T
t=1

√
E [(θk − θ∗)2]. We use the Lyapunov drift anal-

ysis [Neely, 2010; Srikant and Ying, 2014] to study this key
term. Define the Lyapunov function δk ≜ 1

2 (θk − θ∗)2 and
its drift ∆(k) ≜ δk+1 − δk. We have the following lemma.
Lemma 6. Under RM2VI, we have the expected Lyapunov
drift to be bounded as follows:

E [∆(k)] ≤ −2HcminηE[δk] + η2b+

θgapηE
[(

V̂k,1 − Vk,1 − θk(W̌k,1 −Wk,1)
)
(mk, s

k
1)
]
,

in which b ≥ 1
2E

[
(V̂k,1 − θkW̌k,1)

2(mk, s
k
1)
]
, ∀k and

θgap ≜ θmax − θmin.
Therefore, according to the Cauchy-Schwarz inequality,

we have the following lemma.
Lemma 7. Under RM2VI, we have

K∑
k=1

√
E [(θk − θ∗)2] = O(

√
HMAST

3
4 ). (14)

Finally, by combining Lemma 2 and 7 into Lemma 5, we
prove Lemma 1.

6 Experiment
We evaluate RM2VI via two sets of simulated experi-
ments: 1) sale promotion; and 2) cloud computing. The
metric is the empirical cumulative reward-to-cost ratio∑K

k=1

∑H
h=1 rh(mk,s

k
h,a

k
h)∑K

k=1

∑H
h=1 ch(mk,skh,a

k
h)

. In RM2VI algorithm, we let the

learning rate be ηk = 1/(cmin

√
K). We use a simplified

version of samples to substitute for value iteration in RM2VI
for fairness since all the baselines are model-free algorithms.

Baselines: We consider the following algorithms to com-
pare the performance of RM2VI:

• Q-learning with UCB (Q-UCB) [Jin et al., 2018].
• Cost-Aware Relative Value Iteration (CARVI) [Suttle et

al., 2021].
• Cost-Aware Actor-Critic (CAAC) [Suttle et al., 2021].

These baselines all make greedy decisions (i.e., maximize the
reward-cost ratio for every task) and ignore the distribution of
task types. We use rkh

ckh
as the reward function in Q-UCB since

it cannot handle the cost function. We run the experiments
for 10 trails and plot the average results with the light-shaded
areas indicating the standard deviation.

6.1 Sale Promotion Scenario
We simulate a sales promotion scenario where the users ar-
rive at the shopping platform sequentially, and each user will
have at most H = 5 rounds of promotion decided by the
platform. The total number of users is K = 10000. We as-
sume that there are two groups of users, {male, female},
and two types of goods, {electronicproducts, cosmetics}.
We have four types of tasks in M by concatenating user
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Figure 1: Performance Comparison in a Sales Promotion Scenario.

and goods types. The distribution of these four task types
{male×electronicproducts,male×cosmetics, female×
electronicproducts, female × cosmetics} is draw from
(0.4, 0.1, 0.2, 0.3).

The states of users are in {not interested, cart, buy}, and
three actions/discounts that the shopping platform can take to
persuade the users to buy their products: (90%, 75%, 50%).
We set the transition to reflect the behavior of users in real-
life. For example, the tasks (male × electronicproducts)
and (female× cosmetics) have a higher probability of tran-
sitioning to the cart and buy states compared to the tasks
(male × cosmetics) and (female × electronicproducts).
Additionally, the higher the discount the shopping platform
offers, the more likely the guests are to transition to the cart
and buy states. The detailed probability transition can be
found in Appendix E.

The price of electronicproducts is 1000 and the price of
cosmetics is 500. The reward is the price that the user pays
and the cost is the discount the platform offers when purchase
occurs, which means reward is (1−discount)∗price and cost
is discount ∗ price. The other two states only cause a little
cost and do not bring a reward.

Figure 1 shows that the Q-UCB method performs the
worst, as it only optimizes the ratio of reward to cost at ev-
ery step, without actually learning the optimal policy for each
task. In contrast, the CARVI and CAAC methods perform
better than Q-UCB, because they do learn the optimal policy
for each task individually. However, they still perform worse
than RM2VI, as they do not take the distribution of task types
into account. The results demonstrate RM2VI can converge
to a global policy compared to the greedy decision-making
approaches.

6.2 Cloud Computing Scenario
We simulate a cloud computing scenario where a server re-
ceives ML training tasks sequentially, and it has two chances
H = 2 to configure the task to train (i.e., choose the number
of training episodes). When the first episode choice ends, the
platform extracts its accuracy and configures for the next step.
The total number of training tasks is K = 15000. We as-
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Figure 2: Performance Comparison in a Cloud Computing Scenario.

sume that there are 3 types of ML training tasks, which are the
insect recognition task, the atomic force microscopy images
analysis task and the speech-emotion recognition task. The
distribution of the three task types {insect, AFM, speech}
is drawn from (0.8, 0.05, 0.15).

For each task, according to complexity, we set a minimal
selectable number of epochs, which is (1, 50, 25). The three
actions/epoch numbers that the server can choose: (1, 2, 3)
times of the minimal selectable number of epochs. The states
of tasks are (0, 1, 2, 3, 4, 5, 6) times of the minimal selectable
number of epochs, in which 0 is the initial state, since the
server can only choose two times. The transition kernel
Ph(s

′|m, s, a) = 1 when s+ a = s′ and stays 0 otherwise.
The accuracy of the model is regarded as a reward and the

total number of episodes is the cost. We use the data in [Mar-
tineau et al., 2018; Zhang et al., 2024; Abdul Qayyum et al.,
2019] to figure out reward, which is accuracy, instead of re-
ally running them on a server.

Figure 2 shows that though RM2VI still outperforms the
other baselines, we find that Q-UCB performs as well as
CARVI, which is different from the result in the former ex-
periment. This is because the setting of reward and cost func-
tions causes the optimal policy of the individual task and the
policy learned by Q-UCB to be the same by accident. The
poor performance of CAAC is because CAAC learns more
slowly than the other baselines, which is consistent with the
result in the former experiment.

7 Conclusion
In this paper, we studied online scheduling for multi-stage
tasks and proposed a novel RM2VI algorithm. RM2VI inte-
grates optimistic value learning methods and stochastic ap-
proximation techniques to balance the trade-off between re-
wards acquisition and costs consumption in the face of un-
certainty. Through theoretical analysis, we demonstrated that
RM2VI achieves a sub-linear regret bound over the total num-
ber of tasks K Furthermore, we conducted simulation exper-
iments that showed RM2VI outperforms state-of-the-art base-
line methods.
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