
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Improving Efficiency of Answer Set Planning with Rough Solutions
from Large Language Models for Robotic Task Planning

Xinrui Lin1 , Yangfan Wu1 , Huanyu Yang1 , Yuting Huang1 , Yu Zhang1,2 , Jianmin
Ji1,2∗ and Yanyong Zhang1,2

1University of Science and Technology of China, China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China

{xinruilin, uuyf, yanghuanyu, yutinghuang}@mail.ustc.edu.cn,
{yuzhang, jianmin, yanyongz}@ustc.edu.cn

Abstract

Answer Set Programming (ASP) planning can be
used to refine the rough solutions generated by
Large Language Models (LLMs) to handle specific
restrictions of actions, i.e., reconstruct the rough
solutions to be executable, for robotic task plan-
ning. However, it is still challenging to efficiently
solve ASP programs that have multiple variables
with large domains, which prevents the above ap-
plication of ASP planning from real-world task
planning problems. In this paper, we consider how
to reduce the domains of variables without losing
possible solutions for ASP planning, while given
these rough solutions from LLMs. Based on the
above reduction, we introduce CLMASP, an ap-
proach that couples LLMs with ASP for robotic
task planning. We evaluate CLMASP on the Virtu-
alHome platform for common indoor tasks, demon-
strating a significant improvement in the executable
rate from under 10% to nearly 90% and reduc-
ing average ASP planning time from over 2 hours
to under 5 seconds. Code is available at https:
//github.com/CLMASP/CLMASP.

1 Introduction
Answer Set Programming (ASP) [Lifschitz, 2019] has been
applied to robotic task planning [Chen et al., 2013; Tran et
al., 2023]. However, answer set planning still faces chal-
lenges in real-world applications due to the extensive domain
knowledge required and the limited computational efficiency
in large-scale problems.

Conversely, Large Language Models (LLMs), such as GPT-
4 [OpenAI, 2023] and Llama 3 [Meta AI, 2024], possessing
broad foundational knowledge, are well-suited for task plan-
ning in open-world scenarios [Kambhampati et al., 2024].
It is hard for LLMs to directly generate executable plans
that follow specific constraints of the robot [Wu et al.,
2023]. For instance, an LLM-generated plan might skip
essential actions like “plugin washing machine” be-
fore “switch on washing machine”. However, these

∗Corresponding author

Loop-admissible
reductions

Act.
Env.
task

Semantic
Grounding
Refinement

Initial Plan
Generation

···

Env.
Act.

 R
ough Solution

 A
SP Planning

Encoding

;

Figure 1: CLMASP workflow: An LLM generates an initial plan
which undergoes Semantic Grounding Refinement to produce a
rough solution, which is then enhanced by ASP to generate a de-
tailed, executable plan.

LLM-generated rough solutions serve as valuable guidance.

In this paper, we consider how to utilize these rough solu-
tions to speed up answer set planning. Rough solutions from
LLMs can improve the computational efficiency of answer
set planning in two different ways. Firstly, inspired by the
TLPLAN system [Bacchus and Kabanza, 2000] that utilizes
domain-specific control knowledge to speed up the planning
process, we encode the ASP program to refine the rough plan
to accomplish the task. In this sense, we define the planning
problem with a rough solution and provide an ASP encoding
to generate executable plans for the problem. Secondly, we
consider how to reduce the domains of variables to speed up
the grounding process in ASP. However, the ground ASP pro-
gram obtained by a reduction may generate different results
from the original program. To address this, we introduce the
notions of admissible reduction and safe reduction that pre-
serve possible solutions for the original program, while ad-
missible reductions are more helpful for answer set planning.
It is hard to identify admissible or safe reductions. Then we
propose a sufficient condition with the notions of loops and
loop formulas [Lin and Zhao, 2004] for identifying admis-
sible reductions and apply the condition in our encoding for
answer set planning.

For a typical task planning problem with hundreds of objects
and requiring dozens of actions to accomplish the task, the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/CLMASP/CLMASP
https://github.com/CLMASP/CLMASP

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

above methods can reduce the computing time from more
than 2 hours to less than 5 seconds. Building on the two
speedup methods, we introduce CLMASP (see Figure 1), an
approach that couples LLMs with ASP for robotic task plan-
ning. Our contributions are as follows:

• We consider leveraging rough solutions from LLMs to
accelerate answer set planning. To enhance ASP plan-
ning efficiency, we propose two methods: (1) defining
the planning problem using a rough solution refined by
an ASP program, and (2) introducing admissible and
safe reductions, along with a sufficient condition based
on loops and loop formulas to reduce variable domains.

• We provide a framework, CLMASP, that leverages the
accelerated ASP planning methods to improve both
computational efficiency and the executability of plans,
as demonstrated through experiments on the Virtual-
Home platform.

2 Related Work
2.1 Improve Efficiency of ASP
Reducing domains of variables to reduce the size of ground
programs has not been considered much in ASP. Lazy
grounding [Dal Palu et al., 2009] requires a new ASP
solver implementation, rather than using existing solvers
such as clingo [Gebser et al., 2019]. Although methods
such as rewriting [Pearce, 2004; Ji et al., 2015a; Ji et al.,
2016], splitting [Lifschitz and Turner, 1994; Ji et al., 2015b;
Fandinno and Lierler, 2023], and forgetting [Ji et al., 2015c;
Saribatur and Woltran, 2024] have been extensively explored,
they often require some sense of equivalence during the sim-
plification of logic programs. Abstraction [Saribatur and
Eiter, 2021; Saribatur et al., 2021] approximates answer sets
without losing any, by simplifying logic programs so that ev-
ery answer set of the original program corresponds to one in
the abstract program. However, it does not explicitly con-
sider the grounding process. In contrast, our admissible and
safe reductions operate at the grounding level by pruning con-
stants to reduce ground program size while preserving rele-
vant answer sets. To our knowledge, such reductions have
not been explored in ASP.

2.2 LLMs in Robotic Task Planning
Recent research has explored the application of LLMs in
robotic task planning using prompt-based methods that inte-
grate domain knowledge through natural language [Huang et
al., 2022; Song et al., 2023] or pseudo-Python code [Singh et
al., 2023; Liang et al., 2023]. However, LLMs often struggle
to retain crucial information in long-horizon tasks. To address
these limitations, the integration of external tools like knowl-
edge base feedback [Gou et al., 2023], local checkers [Chen
et al., 2024], and physical environment interactions [Bhat et
al., 2024] has been proposed, alongside fine-tuning LLMs for
specific tasks to minimize inaccuracies [Xiang et al., 2024;
Mu et al., 2024]. Nevertheless, robotic task plans still strug-
gle to fully conform to action models and environmental con-
straints, complicating the successful completion of tasks.

In contrast, a well-designed symbolic planner can yield com-
prehensive and interpretable results within a specific do-
main [Pan et al., 2023]. Current research is exploring the
integration of symbolic planners with LLMs [Liu et al., 2023;
Yang et al., 2023]. Compared to our proposed CLMASP, ex-
isting approaches primarily use LLMs for translating infor-
mal to formal representations, neglecting their planning and
commonsense reasoning capabilities, and fail to adapt sym-
bolic planners for effective collaboration with large models.

3 Preliminaries
We first recall the definition of Answer Set Programming
(ASP) with variables [Van Harmelen et al., 2008], focusing
on key concepts used in our method. We then review loops
and loop formulas [Lin and Zhao, 2004], and finally discuss
the ASP encoding for robot task planning [Tran et al., 2023].

3.1 Answer Set Programming with Variables
Consider a first-order vocabulary Θ = (P,D), where P and
D are finite, non-empty sets of predicates and constants, re-
spectively. A term is a constant from D or a variable from a
set of variables V . An atom has the form p(t1, . . . , tn) where
p ∈ P and each ti is a term. A ground atom contains no vari-
ables. An ASP program Π with variables consists of rules of
the form:

A0 ← A1, . . . , Am, notAm+1, . . . , notAn.

where Ai are atoms (0 ≤ i ≤ n) and n ≥ 1. Each rule r is
also written as head(r) ← body(r), where body(r) = A1 ∧
· · ·∧Am∧¬Am+1∧· · ·∧¬An, body+(r) = {A1, . . . , Am}
and body−(r) = {Am+1, . . . , An}. Π is ground if all its
rules are ground; Π is safe if each variable in rule r appears
in body+(r). Safety is achieved using domain predicates -
unary predicates given as facts, universally true for all con-
stants used to ground the variables. The Herbrand universe
of Π, denoted by HU(Π), consists of the set of all constants,
that is, HU(Π) = D.

A complete variable assignment σ maps each variable in V
to a constant in D. For a rule r, the ground rule rσ replaces
every variable in r with its value in σ. The set of all ground in-
stances of r overD, denoted r|D, includes all possible ground
rules with constants from D:
r|D = { rσ |

σ is a complete variable assignment for r over D}.

For an ASP program Π, we can construct its ground program
Π|HU(Π) =

⋃
r∈Π r|HU(Π), referred to as the grounding result.

Given an interpretation I , i.e., I is a set of ground atoms,
I satisfies a ground rule r, if head(r) ∈ I whenever
body+(r) ⊆ I and body−(r) ∩ I = ∅. An interpretation I
is a model of Π, if it satisfies every ground rule in Π|HU(Π).
I is a minimal model if there is no other model J of Π such
that J ⊂ I .

Now, we define the answer sets of an ASP program with vari-
ables. Given an ASP program Π and an interpretation I , the
Gelfond-Lifschitz reduction [Gelfond and Lifschitz, 1988] of
Π on I , written ΠI , is obtained from Π|HU(Π) by deleting:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

1. each rule that has notA in its body with A ∈ I , and

2. all notA in the bodies of the remaining rules.

For any interpretation I , ΠI is a ground positive ASP pro-
gram, then ΠI has only one minimal model. Thus, an inter-
pretation I is an answer set of Π iff I is the minimal model of
ΠI . An ASP program may have zero, one or multiple answer
sets. We focus here on normal rules; richer constructs follow
in Sec. 3.3.

3.2 Loops and Loop Formulas
With the notions of loops and loop formulas, we can con-
vert an ASP program Π into a propositional formula such
that an interpretation I is an answer set of Π iff it is a model
of the propositional formula. Notice that, we define the no-
tions of loops and loop formulas on the ground ASP pro-
gram Π|HU(Π), as we define the notion of answer sets on
Π|HU(Π), which slightly differs from the first-order loop for-
mulas in [Chen et al., 2006].

Given an ASP program Π, the positive dependency graph of
Π, written GΠ, is a directed graph whose vertices are atoms
in Π|HU(Π) and there is an arc from A to B if there is a rule
r ∈ Π|HU(Π) such that A ∈ head(r) and B ∈ body+(r). A set
L of ground atoms is a loop of Π if the L-induced subgraph
of GΠ is strongly connected. Every singleton in Π|HU(Π) is
also a loop of Π.

Given a loop L of an ASP program Π, a ground rule r ∈
Π|HU(Π) is an external support of L if head(r) ∈ L and L ∩
body+(r) = ∅. We denote R−(L,Π) to be the set of all
external support rules of L in Π|HU(Π). The loop formula of
L under Π, written LF(L,Π), is given by:∧

A∈L

A ⊃
∨

r∈R−(L,Π)

body(r).

Theorem 1. [Lin and Zhao, 2004] Given an ASP ground
program Π and an interpretation I . If I is a model of Π, then
I is an answer set of Π if and only if I satisfies LF(L,Π) for
all loops L of Π.

3.3 Encoding of Answer Set Planning
A robot task planning problem can be encoded as an ASP
program Π [Tran et al., 2023], where each answer set I cor-
responds to a valid plan. Π comprises the following compo-
nents:

• A set of fluents F representing states, h(f,t) (fluent f
is true at time step t);

• A set of actions A represented as occurs(a,t) (ac-
tion a occurs at time step t);

• Initial state s0 using fluents at time 0;

• Action preconditions as constraints on occurs(a,t);

• Effect axioms describing how actions modify fluents;

• Frame axioms for unchanged fluents;

• Goal conditions at the final time step.

Algorithm 1: ASP-based Task Planning Encoding
Input:

Πdomain : domain encoding (objects, initial states, maxi-
mum allowed timesteps (Tmax), etc.).

Πstep : action encoding (preconditions, effects, etc.)
Πcheck : goal-checking constraints.

Output: Plan τ = ⟨s0, a1, s1, . . . , sn⟩.
1: Set t← 0 {Initialize time step t to 0}
2: Load Πdomain , Πstep , Πcheck

3: while no solution found and t < Tmax do
4: t← t+ 1 {Increment time step t}
5: Ground and solve Πbase ∪Πstep(1..t) ∪Πcheck (t)
6: if an answer set I is found then
7: Extract plan τ from occurs(a, t) and h(f, t) in I
8: return τ
9: end if

10: end while
11: return “No solution found within Tmax steps.”

A trajectory τ is a sequence ⟨s0, a1, s1, . . . , an, sn⟩, where
each si is the state at time i (0 ≤ i ≤ n), and aj (1 ≤ j ≤ n)
is the action at time j.1 An answer set I of Π contains exactly
such a trajectory, where states and actions are derived from
h(f,t) and occurs(a,t) present in I respectively. A
trajectory τ satisfies an encoding Π if there exists an answer
set I of Π such that τ can be constructed from I .

We now describe a practical ASP encoding Π for robot
task planning, using clingo’s syntax [Potassco Team, 2025].
While our preceding discussion focused on normal rules,
this encoding also employs constructs like choice rules. To
find the shortest plan, we use clingo’s incremental mode.
Listing 1 shows an ASP encoding of the wash and find
actions, structured per Algorithm 1. Traditional encod-
ing includes Πdomain (Lines 3-10) defining objects, ini-
tial states, and actions; Πstep (Lines 11-22) specifying ac-
tion preconditions, effects, and state transitions; and Πcheck

(Lines 26-27) detailing goal constraints. When executed, the
ASP solver returns an answer set “occurs(find(2),1).
occurs(wash(2),2).” indicating the robot first finds
object 2, then washes it.

While this encoding can scale to more complex domains by
adding new rules, handling numerous constants and actions
in indoor task planning can lead to inefficient planning. Sec-
tion 4 explores methods to enhance computational efficiency.

4 Improve Efficiency of Answer Set Planning
with Rough Solutions

Despite advances in ASP solver efficiency, real-world robot
task planning remains challenging due to the computa-
tional complexity, becoming NP-complete for bounded plan
lengths [Tran et al., 2023]. LLMs, with their extensive knowl-
edge, can facilitate the planning process by generating rough
solutions. This section shows how to utilize these rough so-
lutions to speed up answer set planning by: (1) incorporat-

1In this study, only one action is performed at each time step.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Listing 1: ASP Encoding for wash and find. Our proposed
skeleton plans (Section 4.1, lines 23-25, 28) replace the tra-
ditional method (Section 3.3, commented out in lines 22, 27),
both of which are compared in our experiments.
1 #include <incmode>.
2 #const tmax = 30.
3 #program base.
4 num(0..tmax). time(0) .
5 is (1, character) . is (2, clothesshirt) .
6 robot (1) . object (2) .
7 action of (wash(O)) :− object (O).
8 action of (find (O)) :− object (O).
9 h(hand empty(1),0) . h(same loc (1,2) ,0) .

10 task (wash(O)) :− is (O, clothesshirt) , object (O).
11 #program step(t) .
12 time(T) :− num(T), T==t.
13 1{occurs(A,t) : action of (A)}1.
14 h(clean (O), t) :− occurs(wash(O),t) , object (O).
15 :− occurs(wash(O),t) , not h(hand empty(C),t−1), robot (C

), object (O).
16 :− occurs(wash(O),t) , not h(found(O), t−1), object (O).
17 h(found(O), t) :− occurs(find (O), t) , object (O).
18 :− occurs(find (O), t) , not h(same loc(C,O), t−1), robot (C

), object (O).
19 h(hand empty(C),t) :− h(hand empty(C),t−1), not −h(

hand empty(C),t) , robot (C).
20 h(same loc(C,O), t) :− h(same loc(C,O), t−1), not −h(

same loc(C,O), t) , robot (C), object (O).
21 h(clean (O), t) :− h(clean (O), t−1), not −h(clean(O), t) ,

object (O).
22 % goal(wash(O),t):−h(clean (O), t) , object (O).
23 goal(subtask (p, find (2) ,1) , t) :− occurs(find (2) , t) .
24 goal(subtask (p,wash(2) ,2) , t) :− occurs(wash(2), t) .
25 goal(p, t) :− goal(subtask (p, find (2) ,1) ,T1), time(T1),

goal(subtask (p,wash(2) ,2) ,T2), time(T2), T1<=T2,
T2<=t.

26 #program check(t) .
27 % :−query(t) , not goal(Task, t) , task (Task) .
28 :−query(t) , not goal(p, t) .
29 #show occurs /2.

ing skeleton plans into existing ASP encoding—an idea in-
spired by TLPLAN [Bacchus and Kabanza, 2000], which
uses domain-specific control knowledge to guide the planner,
and (2) reducing variable domains during grounding without
losing any valid plans.

4.1 Answer Set Planning with Skeleton Plans
To enhance the efficiency of answer set planning, we intro-
duce skeleton plans (e.g., generated by LLMs) that provide
guided instructions for tasks.

A planning problem with a skeleton plan is a pair (Π, P),
where Π is an ASP encoding of the planning domain, and
P is a skeleton plan aligned with Π’s signature. The sig-
nature comprises disjoint sets of action names (from ground
terms in occurs(a,t)), fluent names (from ground atoms
h(f,t)), and subtask names, with no circular subtask refer-
ences. A skeleton plan P is recursively defined as:

• An action name a;

• A fluent-specification φ, formed from fluent names us-
ing propositional connectives;

• A subtask name p;

• A sequence P1; . . . ;Pm, where each Pi is a skeleton
plan.

A trajectory τ = ⟨s0, a1, s1, . . . , an, sn⟩ satisfies P if:

• P = a and a = an;

• P = φ and sn satisfies φ;

• P = p and τ satisfies the skeleton plan for subtask p;

• P = P1; . . . ;Pm, and there exist 0 ≤ n1 ≤
· · · ≤ nm−1 ≤ n such that each sub-trajectory
⟨sni−1 , ani−1+1, . . . , sni⟩ satisfies Pi (with n0 = 0,
nm = n).

A trajectory τ is a solution to (Π, P) if it satisfies both Π and
P . This implies that a plan for Π can be constructed by ex-
tending the skeleton in P into an executable plan, rather than
exploring all possible action sequences, enhancing efficiency.

For example, a skeleton plan for task “wash object 2” can be:

P = find(2); wash(2).

This plan encodes a high-level instruction that the robot
should first finds object 2, then washes it. Although exe-
cution details are abstracted away, it still constrains the search
space and is embedded into ASP via auxiliary rules.

Skeleton plans are incorporated by adding ASP rules for sub-
task definitions and plan satisfaction constraints, as shown in
Listing 1 (Lines 23–25, 28). This enables efficient plan re-
finement guided by P , compared to unconstrained planning.
Property 1. Given an encoding of the answer set planning
problem Π and a skeleton plan P , a solution τ of (Π, P) al-
ways contains a plan for Π and can be computed from the
answer set of the encoding of Π appending with the encoding
for the skeleton plan P .

This holds because P constrains the solution space of Π with-
out changing its underlying planning logic. Any answer set
satisfying both still represents a valid plan for Π.

Property 1 enables skeleton plans to significantly reduce the
search space, enhancing planning efficiency by decreasing the
complexity from O

(
(S × A)N

)
to O

(
m × (S × A)N/m

)
,

where S is the state space size, A is the action space size, N
is the maximum number of timesteps, and m is the number
of skeleton steps. In our VirtualHome experiments, which
involve numerous objects and relations, appropriate skeleton
plans can accelerate answer set planning.

4.2 Reduce Domains of Variables
ASP solvers must ground program Π into Π|HU(Π) before
computing answer sets. However, the size of Π|HU(Π) can
be exponentially larger than Π, creating a performance bot-
tleneck. For example, VirtualHome task planning prob-
lems with hundreds of objects produce groundings exceeding
16MB at time 0, causing clingo to timeout after 2 hours.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Our encoding Π ensures safety through domain predicates
(unary predicates given as facts). Each variable in a rule is
restricted by a domain predicate in the rule’s body. For in-
stance, in rule r at Line 14 of Listing 1, variable O is restricted
by predicate object.

Since most objects are irrelevant for plan generation, we can
omit them during answer set planning. This section discusses
how to reduce the constant set for grounding while preserving
solutions. We will define admissible reductions and safe re-
ductions, provide a sufficient condition for admissible reduc-
tion, and demonstrate its application in speeding up answer
set planning.
Definition 1. Given an ASP program Π (with variables), a
set D of constants with D ⊆ HU(Π) is an admissible reduc-
tion of Π, if

• for every answer set ID of the ground program Π|D,
there always exists an answer set I of Π such that
ID ⊆ I .

Definition 2. An admissible reduction D of Π is also a safe
reduction of Π, if

• for every answer set I of Π, there always exists an an-
swer set ID of Π|D such that ID ⊆ I .

Note that for D ⊆ HU(Π), while Π|D ⊆ Π|HU(Π), D may
neither be an admissible nor a safe reduction of Π. Consider
program Π′:

f(a). f(b). g(a, b). ← g(x, y), f(x), f(y).

where HU(Π′) = {a, b}, x, y are variables appearing in Π′.
With D = {a}, Π′|D has answer set {f(a), f(b), g(a, b)},
but Π′ has none. Thus {a} is neither an admissible nor a safe
reduction, while {a, b} is both.
Theorem 2. Given a subset D of HU(Π) for an ASP pro-
gram Π, deciding whether D is an admissible reduction or a
safe reduction of Π is coNP-hard.

Proof. We can construct an ASP problem Π from a 3-SAT
problem by adding {a ← not a′. a′ ← not a.} for each
atom a, without loss of generality, for each clause ¬a∨b∨¬c
adding {← a, not b, c.}, and adding {f(o1). f(o2). ←
f(x), f(y), x ̸= y.}. HU(Π) = {o1, o2}, Π|HU(Π) has no
answer sets, Π|{o1} has an answer set iff the 3-SAT problem
is satisfiable. Then {o1} is an admissible or a safe reduction
iff the 3-SAT problem is unsatisfiable.

It is hard to identify admissible and safe reductions. In the ap-
plication of answer set planning, rather than finding all solu-
tions, we prefer to find an executable plan for the task. Then
we consider the applications of admissible reduction in this
paper.

With the help of the notions of loops and loop formulas, we
provide a sufficient condition for admissible reduction.
Definition 3. Given an ASP program Π (with variables), a
set D of constants with D ⊆ HU(Π) is a loop-admissible
reduction of Π, if

1. for every answer set ID of Π|D, there exists an interpre-
tation I ′ such that ID ∪ I ′ satisfies rules in Π|HU(Π) and
loop formulas for every loop L′ of Π with L′ ⊆ I ′, and

2. there does not exist a loop L of Π such that L is not
a loop of Π|D and L contains a loop L′ of Π|D with
R−(L′,Π|D) ̸= ∅.

Intuitively, we require that the rules in Π|HU(Π)\Π|D and any
newly introduced loop formulas can be satisfied by ID ∪ I ′.
Theorem 3. Given a subset D of HU(Π) for an ASP pro-
gram Π, if D is a loop-admissible reduction of Π, then D is
an admissible reduction of Π.

Proof. Let ID be an answer set of Π|D, from the definition
of loop-admissible reduction, there exists the set I ′ of groud
atoms such that ID ∪ I ′ is a model of Π and ID ∪ I ′ satisfies
loop formulas of loops L of Π with L ⊆ ID or L ⊆ I ′.

To prove that D is an admissible reduction of Π, we need to
show that ID ∪ I ′ is an answer set of Π. By Theorem 1, it
suffices to prove that ID ∪ I ′ satisfies LF(L,Π) for all loops
L of Π. Consider an arbitrary loop L of Π. We analyze all
possible cases:

1. Case L ̸⊆ ID ∪ I ′: By the the loop formula definition,
the formula is vacuously true when the premise

∧
A∈L A

is false.

2. Case L ⊆ ID: Since ID is an answer set of Π|D and
for any rule r ∈ R−(L,Π|D) ⊆ R−(L,Π), ID satisfies
LF (L,Π).

3. Case L ⊆ I ′: By condition 1 of the loop-admissible
reduction definition, ID ∪ I ′ satisfies LF(L,Π).

4. Case L∩ ID ̸= ∅∧L∩ I ′ ̸= ∅∧L ⊆ ID ∪ I ′: We prove
by contradiction that this case cannot occur. Suppose
such a loop L exists. Since ID is an answer set of Π|D,
by Theorem 1, there must exist a loop L′ ⊆ L ∩ ID ⊆
L that is at least a singleton, such that R−(L′,Π|D) ̸=
∅. However, this contradicts condition 2 of the loop-
admissible reduction definition.

So, for every loop L of Π, ID ∪ I ′ satisfies LF (L,Π). Given
that ID ∪ I ′ is also a model of Π, by Theorem 1, ID ∪ I ′ is an
answer set of Π.

Notice that, a loop-admissible reduction D does not imply
a safe reduction, as for a loop L ⊆ ID in both Π|D and
Π|HU(D), LF(L,Π|D) ⊃ LF(L,Π|HU(D)) but not vice versa.

Application to Answer Set Planning. For a planning prob-
lem with skeleton plan (Π, P), we define a loop-admissible
reduction D∗ as the minimal subset of the HU(Π), that satis-
fies the following conditions: (1)D ⊆ D∗, whereD is the ini-
tial set of relevant elements; and (2)D∗ is closed under the bi-
nary relationR ⊆ HU(Π)×HU(Π), such that (o1, o2) ∈ R
and o1 ∈ D∗ imply o2 ∈ D∗. Formally, D∗ can be expressed
as:

D∗ =
⋃{

S ⊆ HU(Π)

∣∣∣∣ D ⊆ S and ∀(o1, o2) ∈ R,
o1 ∈ S =⇒ o2 ∈ S

}
.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Method LLM GCR Rexec

[Huang et al., 2022] GPT-3.5 6.27± 3.79% 9.29± 8.43%
GPT-4o 9.94± 6.10% 11.90± 10.48%

[Singh et al., 2023] GPT-3.5 20.42± 6.02% 16.67± 9.60%
GPT-4o 21.70± 8.04% 13.75± 11.86%

[Mu et al., 2024]∗ Llama-3.126.73± 8.07% 32.71± 22.01%

CLMASP-
Clingo (ours)

Llama-3.113.69± 4.09% 81.04± 15.36%
GPT-3.5 37.07± 9.72%89.59± 9.33%
GPT-4o 41.90± 10.75%86.99± 11.32%

Table 1: Comparison of CLMASP-Clingo with other baselines.
Results using (Clingo) Full are shown in Table 3. Method marked
with ∗ use a fine-tuned LLM.

This expansion primarily affects binary relations (e.g.,
on(o1,o2), in(o1,o2), close(o1,o2)). The resulting
D∗ satisfies both conditions for loop-admissible reduction be-
cause:

• Different domain predicates restrict variables in each
rule of our encoding, ensuring Π|HU(Π) \ Π|D∗ and its
loop formulas are satisfiable.

• The construction of D∗ ensures the second condition of
Definition 3 is met for all relevant loops.

Let Π∗ be the combination of encodings for Π and P . We
can compute answer sets of Π∗|D∗ to obtain the solution of
(Π, P).
Property 2. Given the encoding Π∗ of a planning problem
with a skeleton plan (Π, P), the expanded setD∗ of constants
is a loop-admissible reduction of Π∗. A solution of (Π, P)
can be obtained from the answer set of Π∗|D∗ .

This is guaranteed by the construction ofD∗, which ensures it
contains all constants relevant to the planning problem while
satisfying loop-admissible reduction conditions.

In our experiments, task planning in VirtualHome involves
hundreds of objects. By reducing variable domains, we focus
on dozens of objects and relations, greatly reducing ground
program size. With appropriate skeleton plans, clingo com-
putation time was cut from over 2 hours to under 5 seconds.

5 Couple LLMs with Answer Set Planning
To effectively integrate LLM common sense with ASP’s rea-
soning capabilities for real-world planning tasks, we propose
CLMASP as a two-phase planning framework, as illustrated
in Figure 1. This framework first leverages the LLM for
rough planning and grounding, followed by ASP to elaborate
the skeleton plan into a final solution.

5.1 Generating a Skeleton Plan by LLMs
Initial Plan Generation. Given a task description, primitive
actions, environmental object categories, and three planning
examples, LLMs generate an initial plan, τ0s . This plan uses
object categories instead of specific IDs due to LLM input
capacity limitations.

Semantic Grounding and Refinement (SGR). The SGR
step refines the initial plan τ0s by correcting invalid or am-
biguous terms (e.g., “walk kitchencounter” to “walk kitchen”
because “kitchencounter” is absent). It computes cosine sim-
ilarities (cos(θ) = a⃗·⃗b

|⃗a||⃗b|
) between plan element embeddings

(a) and environmental component embeddings (b). Invalid
terms are then substituted with the closest valid environmen-
tal actions or objects. This yields a semantically refined plan,
τs, ready for ASP reasoning and execution.

5.2 Enhancing a Skeleton Plan by ASP
The skeleton plan τs is refined using ASP to establish action
dependencies and specify object locations. First, reusable
ASP codes encode robotic action models (e.g., cause-effect
relationships). ASP’s initial state is then derived from a
global environment map—a directed acyclic graph of entity
nodes and relationship edges (e.g., is(1,character),
state(7,dirty), relation(in,5,2)). Finally, a
Python module translates τs into ASP rules, treating each sub-
task as a temporally ordered goal to produce the final plan τf .
This process is detailed in Section 4.

6 Evaluation
6.1 Experiment Setup
Simulator and Dataset.

Experiments utilize the VirtualHome (VH) simulator v2.3.0,
where an agent interacts with 250–300 household objects us-
ing 42 actions. These objects, linked by approximately 3,000
relationships, form an environment abstracted as a grounded
directed acyclic graph. As shown in Fig. 1, task inputs com-
prise a natural language description (task), the environment
as a serialized dictionary (Env.), and structured possible ac-
tions (Act.). Each task instance includes a reference plan—the
ground truth sequence of verb-object pairs that accomplishes
the task. (e.g., [WALK] <wardrobe>, [GRAB] <clothes>,
[PUTIN] <clothes><clothesbin>for “put clothes in bin”).
For evaluation, we sample 269 of 292 VH task instances and
reserve 23 for prompting examples.

LLMs and Solvers. Evaluations of CLMASP and base-
lines utilize the LLMs gpt-3.5-turbo-1106 [Brown et al.,
2020], gpt-4o-2024-08-06 [Hurst et al., 2024], and Llama-
3.1-8B [Meta AI, 2024]. For its ASP solver, CLMASP em-
ployed clingo 5.7.1 [Gebser et al., 2019] and DLV2 [Cal-
imeri et al., 2022]. The SGR step in CLMASP used the text-
embedding-ada-002 embedding model. To ensure fairness,
all experimental results in this paper are obtained from actual
measurements rather than citations.

Metrics. Metrics include ASP Planning Time (TASP), the
ASP runtime (Fig. 1, lower part); Solvability Rate (Rsol), the
proportion of instances where the final plan τf is success-
fully solved; Executability Rate (Rexec), the portion of τf
successfully executed in VH; and Final Plan Length Stats
(Lτf), covering average, median, and maximum τf length.
We also measure Mean Goal Condition Recall (GCR), av-
eraged across all instances. For each instance, GCR is the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Solver Model
TASP Rsol Lτf

-S-R -R -S Full ∆ -S-R -R -S Full ∆ -S Full

DLV2
Llama-3.1 >2h >2h 39.37s 23.33s -40.7% 0 0 7.4% 65.4% +58.0% (4.75/6/13) (6.08/ 7/29)
GPT-3.5 >2h >2h 37.24s 24.38s -34.5% 0 0 7.4% 93.3% +85.9% (4.75/6/13) (7.53/10/30)
GPT-4o >2h >2h 38.75s 29.29s -24.4% 0 0 7.4% 91.4% +84.0% (4.75/6/13) (8.23/11/30)

Clingo
Llama-3.1 >2h >2h 32.06s 4.16s -87.1% 0 0 7.4% 84.0% +76.6% (4.75/6/13) (5.37/ 7/24)
GPT-3.5 >2h >2h 30.52s 4.63s -84.8% 0 0 7.4% 93.7% +86.3% (4.75/6/13) (7.17/ 9/28)
GPT-4o >2h >2h 31.17s 11.20s -64.1% 0 0 7.4% 91.4% +84.0% (4.75/6/13) (8.20/11/28)

Table 2: Ablation study on the skeleton plan and loop-admissible reduction techniques in CLMASP. Each variant removes the corre-
sponding technique from CLMASP (Full): removing loop-admissible reduction is denoted as (-R), removing skeleton plan is denoted as (-S),
and removing both of them is denoted as (-S-R). The table also shows the relative improvement of Full over -S, denoted as ∆.

Method
LLM -SGR-ASP -ASP (DLV2)-SGR (Clingo)-SGR (DLV2) Full (Clingo) Full

Llama-3.1 GCR 3.83± 1.48% 11.32± 3.01% 8.28± 3.53% 8.61± 3.51% 11.41± 3.81% 13.69± 4.09%
Rexec 3.72± 3.58% 27.14± 19.77% 39.41± 23.88% 42.01± 24.36% 62.45± 23.45% 81.04± 15.36%

GPT-3.5 GCR 14.05± 6.35% 23.69± 8.07% 35.93± 9.98% 35.35± 9.92% 37.18± 9.89% 37.07± 9.72%
Rexec 8.55± 7.82% 11.15± 9.91% 85.87± 12.13% 86.99± 11.32% 88.48± 10.20% 89.59± 9.33%

GPT-4o GCR 22.55± 7.41% 28.62± 8.06% 42.40± 10.68% 41.76± 10.94% 42.34± 10.84% 41.90± 10.75%
Rexec 11.52± 10.20% 15.24± 12.92% 87.36± 11.04% 86.25± 11.86% 87.73± 10.76% 86.99± 11.32%

Table 3: Ablation study on the Semantic Grounding and Refinement (SGR) and ASP solving steps in CLMASP. Each variant removes
the corresponding step from CLMASP (Full): removing Semantic Grounding and Refinement is denoted as (-SGR), removing ASP solving
is denoted as (-ASP), and removing both is denoted as (-SGR-ASP). The ASP solver used is indicated in parentheses.

proportion of goal states and relations achieved:

GCR = 1−
|(Dgoal −Dinitial)− (Dmethod −Dinitial)|

|Dgoal −Dinitial|
,

where Dinitial, Dmethod, and Dgoal are the sets of object states
and relations at the initial state, after method application, and
in the goal state, respectively.

6.2 Results and Analysis
To verify CLMASP’s effectiveness, we compare it with three
baselines. As shown in Table 1, CLMASP’s Rexec (90%) and
GCR (42%) significantly surpass the best baseline (33% and
27%, respectively), indicating CLMASP effectively improves
executability and goal condition fulfillment of LLM-based
planning in large domains.

To assess the contribution of CLMASP’s two ASP plan-
ning acceleration techniques, we conduct an ablation study.
As shown in Table 2, removing loop-admissible reduction
(-R) results in TASP exceeding 2 hours; including it drops
solving time below 40 seconds. Adding the skeleton plan
technique further improves solving efficiency by 24%-87%
and significantly increases Rsol by approximately 58%-86%.
The method is effective for Lτf across different LLMs and
solvers. Therefore, these two techniques, especially the re-
duction technique, are crucial for accelerating ASP planning
and key to its practicality.

To verify the necessity of CLMASP’s dual-phase approach,

we also conduct an ablation study. As shown in Table 3, re-
moving the ASP solving step leads to plans with only 3.7%-
27.1% Rexec. In contrast, removing SGR still maintains 39%-
87% Rexec. However, only when both components are in-
cluded does the method achieve 89.59% Rexec and around
40% average GCR. Thus, the ASP solving step is CLMASP’s
core phase, while SGR serves as a powerful enhancement to
fully exploit its potential by correcting the grounding and uti-
lization of objects.

A horizontal comparison in Table 2 and 3 reveals that while
clingo and DLV2 offer similar ASP solving capabilities,
clingo is more efficient. Regarding LLMs, their performance
mainly dictates skeleton plan quality, which impacts GCR
more significantly (sometimes negatively) than Rexec.

7 Conclusion
This paper defines the planning problem with a skeleton plan
and encodes the ASP program to refine the skeleton plan to
accomplish the task. We introduce admissible and safe reduc-
tions that preserve solutions, and to address the challenge of
identifying them, we propose a sufficient condition for ad-
missible reductions using loops and loop formulas. Using
these speedup techniques, we present CLMASP, an approach
coupling LLMs with ASP for robotic task planning. Experi-
ments on the VirtualHome platform demonstrate CLMASP’s
improvements in both computational efficiency and plan exe-
cutable rates.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation of China (No. 62332016), the Key Re-
search Program of Frontier Sciences, CAS (No. ZDBS-LY-
JSC001), the National Key R&D Program of China (No.
2023YFB4704500), and the Hunan Province Major Scientific
and Technological Project (No. 2024QK200).

Contribution Statement
The first two authors contributed equally to this work.

References
[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-

ald Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artificial intelligence, 116(1-
2):123–191, 2000.

[Bhat et al., 2024] Vineet Bhat, Ali Umut Kaypak, Prashanth
Krishnamurthy, Ramesh Karri, and Farshad Khorrami.
Grounding llms for robot task planning using closed-loop
state feedback. arXiv preprint arXiv:2402.08546, 2024.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[Calimeri et al., 2022] Francesco Calimeri, Giovambattista
Ianni, Francesco Pacenza, Simona Perri, and Jessica Zan-
gari. Asp-based multi-shot reasoning via dlv2 with incre-
mental grounding. In Proceedings of the 24th Interna-
tional Symposium on Principles and Practice of Declar-
ative Programming, pages 1–9, 2022.

[Chen et al., 2006] Yin Chen, Fangzhen Lin, Yisong Wang,
and Mingyi Zhang. First-order loop formulas for normal
logic programs. KR, 6:298–307, 2006.

[Chen et al., 2013] Xiaoping Chen, Jianmin Ji, Zhiqiang Sui,
and Jiongkun Xie. Handling open knowledge for service
robots. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI-13), pages 2459–
2465, 2013.

[Chen et al., 2024] Yongchao Chen, Jacob Arkin, Charles
Dawson, Yang Zhang, Nicholas Roy, and Chuchu Fan.
Autotamp: Autoregressive task and motion planning with
llms as translators and checkers. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 6695–6702. IEEE, 2024.

[Dal Palu et al., 2009] Alessandro Dal Palu, Agostino
Dovier, Enrico Pontelli, and Gianfranco Rossi. Gasp: an-
swer set programming with lazy grounding. Fundamenta
Informaticae, 96(3):297–322, 2009.

[Fandinno and Lierler, 2023] Jorge Fandinno and Yuliya
Lierler. Splitting answer set programs with respect to in-
tensionality statements. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 37, pages 6338–
6345, 2023.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot asp
solving with clingo. Theory and Practice of Logic Pro-
gramming, 19(1):27–82, 2019.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, volume 88, pages
1070–1080. Cambridge, MA, 1988.

[Gou et al., 2023] Zhibin Gou, Zhihong Shao, Yeyun Gong,
Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-
interactive critiquing. arXiv preprint arXiv:2305.11738,
2023.

[Huang et al., 2022] Wenlong Huang, Pieter Abbeel,
Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for
embodied agents. In International conference on machine
learning, pages 9118–9147. PMLR, 2022.

[Hurst et al., 2024] Aaron Hurst, Adam Lerer, Adam P
Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Rad-
ford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

[Ji et al., 2015a] Jianmin Ji, Hai Wan, Ziwei Huo, and Zhen-
feng Yuan. Simplifying a logic program using its conse-
quences. In IJCAI, pages 3069–3075, 2015.

[Ji et al., 2015b] Jianmin Ji, Hai Wan, Ziwei Huo, and Zhen-
feng Yuan. Splitting a logic program revisited. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

[Ji et al., 2015c] Jianmin Ji, Jia-Huai You, and Yisong Wang.
On forgetting postulates in answer set programming. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[Ji et al., 2016] Jianmin Ji, Hai Wan, Kewen Wang, Zhe
Wang, Chuhan Zhang, and Jiangtao Xu. Eliminating dis-
junctions in answer set programming by restricted unfold-
ing. In IJCAI, pages 1130–1137, 2016.

[Kambhampati et al., 2024] Subbarao Kambhampati,
Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya
Stechly, Siddhant Bhambri, Lucas Saldyt, and Anil
Murthy. Position: Llms can’t plan, but can help planning
in llm-modulo frameworks. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

[Liang et al., 2023] Jacky Liang, Wenlong Huang, Fei Xia,
Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs
for embodied control. In 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 9493–
9500. IEEE, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson
Turner. Splitting a logic program. In Proceedings of the
Eleventh International Conference on Logic Programming
(ICLP-94), page 23–37, 1994.

[Lifschitz, 2019] Vladimir Lifschitz. Answer set program-
ming. Springer Heidelberg, 2019.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. Assat:
Computing answer sets of a logic program by sat solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[Liu et al., 2023] Bo Liu, Yuqian Jiang, Xiaohan Zhang,
Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal
planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

[Meta AI, 2024] Meta AI. Introducing meta llama 3: The
most capable openly available llm to date. https://ai.meta.
com/blog/meta-llama-3/, 2024. Accessed: 2025-06-05.

[Mu et al., 2024] Yao Mu, Qinglong Zhang, Mengkang Hu,
Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-
language pre-training via embodied chain of thought. Ad-
vances in Neural Information Processing Systems, 36,
2024.

[OpenAI, 2023] OpenAI. Gpt-4 research and capabili-
ties. https://openai.com/index/gpt-4-research/, 2023. Ac-
cessed: 2025-06-05.

[Pan et al., 2023] Liangming Pan, Alon Albalak, Xinyi
Wang, and William Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical
reasoning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 3806–3824, 2023.

[Pearce, 2004] David Pearce. Simplifying logic programs
under answer set semantics. In International Conference
on Logic Programming, pages 210–224. Springer, 2004.

[Potassco Team, 2025] Potassco Team. Potassco user guides
and documentation. https://potassco.org/doc/, 2025. Ac-
cessed: 2025-06-05.

[Saribatur and Eiter, 2021] Zeynep G Saribatur and Thomas
Eiter. Omission-based abstraction for answer set pro-
grams. Theory and Practice of Logic Programming,
21(2):145–195, 2021.

[Saribatur and Woltran, 2024] Zeynep G Saribatur and Ste-
fan Woltran. A unified view on forgetting and strong
equivalence notions in answer set programming. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10687–10695, 2024.

[Saribatur et al., 2021] Zeynep G Saribatur, Thomas Eiter,
and Peter Schüller. Abstraction for non-ground answer set
programs. Artificial Intelligence, 300:103563, 2021.

[Singh et al., 2023] Ishika Singh, Valts Blukis, Arsalan
Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,

Dieter Fox, Jesse Thomason, and Animesh Garg. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 11523–11530.
IEEE, 2023.

[Song et al., 2023] Chan Hee Song, Jiaman Wu, Clayton
Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2998–3009, 2023.

[Tran et al., 2023] Son Cao Tran, Enrico Pontelli, Marcello
Balduccini, and Torsten Schaub. Answer set planning:
a survey. Theory and Practice of Logic Programming,
23(1):226–298, 2023.

[Van Harmelen et al., 2008] Frank Van Harmelen, Vladimir
Lifschitz, and Bruce Porter. Handbook of knowledge rep-
resentation. Elsevier, 2008.

[Wu et al., 2023] Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Ji-
wen Lu, and Haibin Yan. Embodied task planning with
large language models. arXiv e-prints, pages arXiv–2307,
2023.

[Xiang et al., 2024] Jiannan Xiang, Tianhua Tao, Yi Gu,
Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu.
Language models meet world models: Embodied experi-
ences enhance language models. Advances in neural in-
formation processing systems, 36, 2024.

[Yang et al., 2023] Zhun Yang, Adam Ishay, and Joohyung
Lee. Coupling large language models with logic pro-
gramming for robust and general reasoning from text. In
Findings of the Association for Computational Linguistics:
ACL 2023, pages 5186–5219, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/gpt-4-research/
https://potassco.org/doc/

