
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Heterogeneous Temporal Hypergraph Neural Network

Huan Liu1,2 , Pengfei Jiao1,2 , Mengzhou Gao1,2∗ , Chaochao Chen3 and Di Jin4∗

1School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
2Data Security Governance Zhejiang Engineering Research Center, Hangzhou, China
3College of Computer Science and Technology, Zhejiang University, Hangzhou, China

4College of Intelligence and Computing, Tianjin University, Tianjin, China
{huanliu, pjiao, mzgao}@hdu.edu.cn, zjuccc@zju.edu.cn, jindi@tju.edu.cn

Abstract

Graph representation learning (GRL) has emerged
as an effective technique for modeling graph-
structured data. When modeling heterogeneity and
dynamics in real-world complex networks, GRL
methods designed for complex heterogeneous tem-
poral graphs (HTGs) have been proposed and have
achieved successful applications in various fields.
However, most existing GRL methods mainly fo-
cus on preserving the low-order topology informa-
tion while ignoring higher-order group interaction
relationships, which are more consistent with real-
world networks. In addition, most existing hyper-
graph methods can only model static homogeneous
graphs, limiting their ability to model high-order
interactions in HTGs. Therefore, to simultaneously
enable the GRL model to capture high-order inter-
action relationships in HTGs, we first propose a
formal definition of heterogeneous temporal hyper-
graphs and P -uniform heterogeneous hyperedge
construction algorithm that does not rely on addi-
tional information. Then, a novel Heterogeneous
Temporal HyperGraph Neural network (HTHGN),
is proposed to fully capture higher-order interac-
tions in HTGs. HTHGN contains a hierarchical
attention mechanism module that simultaneously
performs temporal message-passing between het-
erogeneous nodes and hyperedges to capture rich
semantics in a wider receptive field brought by hy-
peredges. Furthermore, HTHGN performs con-
trastive learning by maximizing the consistency
between low-order correlated heterogeneous node
pairs on HTG to avoid the low-order structural
ambiguity issue. Detailed experimental results on
three real-world HTG datasets verify the effective-
ness of the proposed HTHGN for modeling high-
order interactions in HTGs and demonstrate signif-
icant performance improvements.

∗Corresponding authors.

1 Introduction
Graph representation learning (GRL) has emerged as an ef-
fective technique for learning real-world graph-structured
data and has been widely applied in various fields [Xia et
al., 2021; Gao et al., 2023b; Zhang et al., 2023c]. In the
major research of GRL, graph neural networks (GNNs) as en-
coders have gained universal effectiveness due to their power-
ful message-passing mechanism and fitting ability [Kipf and
Welling, 2017; Hamilton et al., 2017]. However, most meth-
ods assume that the network is homogeneous and static and
only includes pairwise relationships, which often contradicts
real-world systems [Antelmi et al., 2023; Barros et al., 2021;
Wang et al., 2023]. For example, in an academic network
that includes multiple node types such as author, paper and
venue, as well as evolving co-author and co-citations rela-
tionships among multiple authors and papers over time. This
network contains heterogeneity and dynamics in not low-
order but group interactions, which are too complex to be
described by simple pairwise graphs [Antelmi et al., 2023].

Considering the successful applications of GRL methods
of heterogeneous graphs, dynamic graphs, and hypergraphs,
we propose a formal definition of heterogeneous temporal hy-
pergraphs (HTHGs) as a modeling tool to comprehensively
describe high-order relationships in heterogeneous temporal
graphs (HTGs). Specifically, HTHGs refer to hypergraphs
that contain high-order relationships among three or more
multi-type entities, and these entities and relationships could
increase or delete over time. Since HTHGs involve multiple
types of nodes and interaction patterns, effectively modeling
the high-order correlations and semantic information inherent
in HTHGs is crucial for representation learning.

However, existing GRL and GNN research usually one-
sidedly simplifies HTHG in different aspects, thus losing
its information integrity and seriously affecting performance.
For example, on the one hand, modeling group interactions as
hyperedges and performing representation learning through
hypergraph GNNs has become a dominant paradigm and has
achieved remarkable results [Huang and Yang, 2021; Gao et
al., 2023a]. However, these methods usually only focus on
homogeneous hypergraphs with static structures, failing to
model the heterogeneity and dynamics in HTGs. On the other
hand, for heterogeneity and dynamics, GNNs designed for
heterogeneous graphs [Wang et al., 2023; Yang et al., 2022;
Ji et al., 2023] and dynamic graphs [Barros et al., 2021;
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Zhang et al., 2023a; Zhang et al., 2023b] have been pro-
posed respectively and achieved encouraging results. How-
ever, this method usually performs representation learning
on pairwise networks and cannot model both low-order and
high-order dynamic relationships between multiple heteroge-
neous nodes.

Although effectively modeling semantic information, tem-
poral dependence, and group interactions has demonstrated
significant performance improvements in practice, uniformly
modeling HTHGs still has the following challenges: 1) How
to model group interactions without relying on expert
knowledge? Additional information or predefined structures
are required to model group interactions, but their effective-
ness depends on prior knowledge and is difficult to general-
ize. 2) How to model both low-order and high-order in-
formation on HTHGs? The message-passing mechanism
of the GNNs and cluster/star expansion are often used to
model high-order interaction, but they have computational
problems [Antelmi et al., 2023] and cannot preserve both
low-order and high-order relationships simultaneously. 3)
How to perform message-passing on HTHGs? To preserve
temporal structural and semantic information in latent repre-
sentation space, enhancing communication between hetero-
geneous nodes and hyperedges is necessary and challenging.

In this paper, to uniformly model the complex blend of het-
erogeneity, dynamics, and group interactions, we first provide
a formal definition of HTHGs, which describes multi-scale
group interaction relationships containing dynamics and het-
erogeneity. Furthermore, to universally model high-order in-
teractions in HTHGs, we formally define two general hetero-
geneous hyperedges, k-hop, and k-ring, and P -uniform hy-
peredges based on high-order neighborhood sampling, which
do not rely on predefined structures. Then, we propose a
novel contrastive heterogeneous temporal hypergraph neural
network called HTHGN to capture the high-order dynamic
semantics contained in HTHGs. Specifically, HTHGN con-
tains a hierarchical attention mechanism that simultaneously
performs cross-temporal message passing between heteroge-
neous nodes and hyperedges to capture rich semantic infor-
mation in a wider receptive field brought by hyperedges. Fi-
nally, to avoid the problem of low-order structural ambiguity,
a heterogeneous low-order structure-preserving contrastive
learning objective function is used to optimize the over-
all HTHGN. Detailed experimental results on 3 real-world
datasets demonstrate that group interaction significantly gains
representation learning and verifies the effectiveness of the
proposed contrastive learning method HTHGN.

In summary, the contributions of this paper are as follows:

• We study the complex properties prevalent in real-world
complex networks. To the best of our knowledge, we
are the first to define HTHGs, which are used to model
complex networks containing dynamics, heterogeneity,
and group interactions.

• We propose a general hyperedges construction algorithm
to model high-order semantic information without rely-
ing on additional information and prior knowledge.

• We propose a novel contrastive heterogeneous temporal
hypergraph neural network, HTHGN, which simultane-

ously models low-order and high-order interactions, and
extensive experimental results on 3 real-world datasets
verify its superior performance.

2 Background and Preliminaries
The overall architecture of our proposed HTHGN model is
shown in Figure 1. We design a pipeline to learn node repre-
sentations, which can capture both low-order and high-order
information within a HTG. The basic definitions in this paper
are shown below:
Definition 1 (Heterogeneous Graph). A Heterogeneous
Graph can be defined as G = (V,E,X), where V and E de-
note the node set and the edge set, respectively; X ∈ R|V |×D

is the D-dimensional attribute matrix of nodes. Each node
v ∈ V and link e ∈ E is associated with their mapping func-
tions ϕ(v) : V → A and ψ(e) : E → R, where A and R
denote the node types and link types, and |A| + |R| > 2 due
to heterogeneity.
Definition 2 (Heterogeneous Temporal Graph). A Hetero-
geneous Temporal Graph is a list of observed heterogeneous
snapshots G =

{
G1, G2, . . . , GT

}
ordered by timestamps,

where T is the size of time window and Gt = (V t, Et, Xt)
represents the t-th snapshot. The node set V t and edge setEt

can differ between snapshots, representing dynamic addition
and removal of nodes and edges.
Definition 3 (Link Prediction). Given a heterogeneous tem-
poral graph G = {Gt}Tt=1 and the learned node represen-
tations Z ∈ R|V t|×d, the link prediction is the problem of
predicting the probability p ((i, j) ∈ Eτ | zi, zj) where τ >
T . Besides, the new link prediction predicts the probability
p
(
(i, j) ∈ Eτ | zi, zj , (i, j) /∈ ET

)
where τ > T .

3 Heterogeneous Temporal Hypergraph
Contrastive Learning: HTHGN

3.1 Hypergraph Construction
Given a HTG G = {Gt}Tt=1, the hypergraph construction
module is leveraged to construct heterogeneous collective re-
lations based on the heterogeneous snapshots. For this pur-
pose, it is necessary to employ a graph structure capable
of modeling interactions that encompass both multiple node
types and collective behavior. Formally, we define as follows:
Definition 4 (Heterogeneous hypergraph). A heteroge-
neous hypergraph can be defined as H = (V, E), where V
and E denote the node set and the hyperedges set, respec-
tively; each hyperedge e ∈ E is a subset of V , i.e., e ⊆ V ,
and each node v ∈ V is contained in at least one hyperedge
e ∈ E, i.e., V =

⋃
e∈E e. Each node v ∈ V and link e ∈ E

is associated with their mapping functions ϕh(v) : V → Ah

and ψh(e) : E → Rh, where Ah and Rh denote the node
types and hyperedge types, and |Ah| + |Rh| > 2 due to het-
erogeneity. When |Ah| + |Rh| = 2, the heterogeneous hy-
pergraph degenerates into a homogeneous hypergraph, rep-
resented as H−.

Due to heterogeneous hyperedges, H has a higher level
of expressive power that can encompass many entity types
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Figure 1: Overall architecture of the proposed HTHGN model.

between subtle relationships. However, hyperedges are typi-
cally defined by original data and predefined structures, such
as meta-paths, which often introduce noise due to insuffi-
cient modeling and rely on specific scenarios, limiting their
generalizability. Consequently, we propose heterogeneous
network-structure-based hyperedge construction methods for
constructing hyperedges, i.e., k-hop and k-ring heteroge-
neous hyperedge.

Definition 5 (k-hop heterogeneous hyperedge). A k-hop
heterogeneous hyperedge around a node v ∈ V is defined
as the set of all nodes that are within cumulative topological
distance k edges from the node v, regardless of the types of
edges and nodes. We denote the set of nodes in the receptive
field of v by e(v)k-hop, which is defined recursively as:

e(v)k-hop := e(v)(k−1)-hop

∪ {u ∈ V | (v, u) ∈ E ∧ u ∈ N k−1
v },

(1)

where N k
v represents the k-hop neighborhoods set of node v

and e(v)1-hop := Nv .

This approach to constructing hyperedges based on k-hop
connectivity implicitly integrates multifaceted semantic lay-
ers and relationships between entities, offering a nuanced un-
derstanding of their interactions. As illustrated in Figure 2,
which has Author(A), Paper(P) and Venue(V). when k = 1,
the 1-hop hyperedge of node A1 represents all direct neigh-
bors, that is, e(A1)1-hop = {P1, V 1}. When k = 2, the 2-
hop hyperedge encompasses both 1-hop and 2-hop neighbors,
thus, e(A1)2-hop = {P1, V 1, A2, A3, P2}. This encapsulates
rich semantic information that can be recognized as multiple
meta-paths, such as AP, AV, APA, AVA, AVP, etc.

Definition 6 (k-ring heterogeneous hyperedge). A k-ring
heterogeneous hyperedge around a node v ∈ V is defined
as the set of all heterogeneous nodes that reside exactly a
topological distance of k edges from v, where the types of
nodes and edges along the path are not necessarily the same,
denoted as e(v)k-ring, which is defined recursively as:

e(v)1-ring := Nv,

e(v)k-ring := {u ∈ V | (v, u) ∈ E ∧ u ∈ N k−1
v }.

(2)

𝑘 = 0

𝑘 = 1

A1

P1

A2 P2A3

V1

𝑘 = 2

Figure 2: k-hop heterogeneous hyperedge toy example.

Different from k-hop heterogeneous hyperedge, the k-ring
focuses on the heterogeneous nodes at a specific distance,
which helps understanding group interactions at that exact
distance. Given the substantial augmentation in the number
of nodes and edges typically resulting from the k-hop/k-ring
expansion in hypergraphs, we propose the concept of a P -
uniform heterogeneous hypergraph.
Definition 7 (P -uniform heterogeneous hypergraph).
Given k ∈ N and P ∈ N, a P -uniform hypergraph, denoted
as HP = (V, Ek), is a heterogeneous hypergraph that ev-
ery k-hop/k-ring hyperedge e ∈ Ek connects exactly P nodes
from V . That is:

HP = (V, Ek) is P -uniform ⇔ ∀e ∈ Ek, |e| = P, (3)

where |e| denotes the cardinality, i.e., the number of hetero-
geneous nodes of the hyperedge e.

This P -uniform heterogeneous hypergraph addresses the
computational and complexity challenges inherent to hyper-
graph expansions by introducing a uniform sampling of hy-
peredges, exhibiting invariance in heterogeneous hyperedge
cardinality.
Theorem 1 (Scalability of k-hop/k-ring structures in
P -uniform heterogeneous hypergraph). For a P -uniform
heterogeneous hypergraphHP = (V, Ek), let |V | → ∞ while
maintaining |e| = P, ∀e ∈ Ek. It follows that the number of
k-hop/k-rings structures grows polynomially with the size of
V , assuming a constant average degree.
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The P -uniform heterogeneous hypergraph condenses the
hypergraph by uniformly sampling the incorporating nodes
and thus balanced representation of the underlying heteroge-
neous relationships while mitigating the exponential increase
in graph components. Then, we construct a HTHG based on
the heterogeneous hypergraph snapshots.
Definition 8 (Heterogeneous Temporal Hypergraph). A
Heterogeneous Temporal Hypergraph is denoted as H =
{Ht}Tt=1, where each Ht = (V t, Et) is a snapshot of the
hypergraph at time t. Each snapshot consists of a node set
V t, hyperedges set Et, type-assignment functions for nodes
ϕh : V t → Ah and for hyperedges ψh : Et → Rh at time
t. The evolution of this hypergraph over time T captures the
dynamic interactions and relationships among entities.

The hyperedges of HTHGs can dynamically expand to en-
compass new relationships or contracts to exclude obsolete
ones, thereby accurately reflecting the temporal modifica-
tions of the system. Then, to harness the analytical power
of graph-based algorithms on HTHGs, we propose a novel
heterogeneous star expansion strategy that preserves the es-
sential lower-order structures and the directness of connec-
tivity while aptly encapsulating the heterogeneous group in-
teractions. Thus, we offer a refined and effective approach for
analyzing complex interaction networks.

Given a P -uniform heterogeneous hypergraph HP =
(V, Ek), the heterogeneous star expansion constructs a hetero-
geneous graph G∗ = (V∗, E∗, X) from HP by introducing a
new node for every heterogeneous hyperedge e ∈ Ek, thus
V∗ = V ∪ Ek. The new nodes v ∈ V∗ connect each node in
the hyperedge e, i.e., E∗ = E ∪ {(v, e) | v ∈ e}.

By introducing a distinct node for each heterogeneous hy-
peredge e ∈ E and connecting it to nodes within e, HTHGN
meticulously maintains the heterogeneous nature of the origi-
nal hypergraph while retaining the connectivity encapsulated
in the higher-order relationships of the original hypergraph.

3.2 Multi-scale Message-passing
By constructing a k-hop/k-ring HTHG and conducting the
heterogeneous expansion, we obtain the expanded graph
G∗ = {Gt

∗}Tt=0. We then utilize a heterogeneous attention
message-passing mechanism to aggregate information among
heterogeneous nodes as well as between nodes and hyper-
edges. Specifically, we initialize the features of hyperedge
nodes to all zero and execute a single-stage message-passing
of the nodes and hyperedges concurrently. This encompasses
heterogeneous attention aggregation tailored for heteroge-
neous relationships within snapshots and temporal attention
aggregation designed for dynamics across snapshots.
Heterogeneous Attention Aggregation. Heterogeneous
attention aggregation is utilized to accomplish message-
passing within snapshots of the HTHG.

For each heterogeneous node i ∈ V t
∗ on snapshot Gt

∗ =
(V t

∗ , E
t
∗, X

t), type-preserving attribute projection is per-
formed through the heterogeneous input layer:

zti = σ
(
Wϕ(i)x

t
i + bϕ(i)

)
, (4)

where xti ∈ RD and zti ∈ Rd are the original attributes and
hidden representation vectors of node i; Wϕ(i) ∈ Rd×D and

bϕ(i) are type-dependent learnable transfer matrices and bias
vectors; σ(·) represents a activation function such as ReLU.

Subsequently, we introduce a relationship type-dependent
graph attention mechanism to model distinct semantic rela-
tionships within the expanded graph Gt

∗. Specifically, for
neighbor nodes N a

i connected to node i under a certain type
of relationship a ∈ Ai, we execute the following K-head at-
tention aggregation:

zti,a = ∥Kk=1

 ∑
j∈Na

i

αk
ijW

k
a z

t
i

 ,
αk
ij = Softmax

(
c · σ(W k

ϕ(i)z
t
i +W k

ϕ(j)z
t
j)
)
,

(5)

where zti,a ∈ Rd is the attention aggregated representation of
all neighbors j ∈ N a

i with respect to relation type a; αk
ij ∈ R

is the normalized mutual attention coefficient of node i with
j; W k

a and W k
ϕ(i) ∈ Rd×d are the learnable key and value

vectors transfer matrices; c ∈ Rd is the learnable weight vec-
tor for calculating the attention coefficient; σ(·) represents a
nonlinear activation function such as LeakyReLU.

Following the attention aggregation for neighbor nodes un-
der specific relationship types, we further introduce a self-
attention mechanism to aggregate the hidden representations
of node i concerning neighbors of different relationship types:

zti = σ

(∑
a∈Ai

βaz
t
i,a

)
,

βa = Softmax

 1

|V t
∗ |

|V t
∗ |∑

i=1

q · tanh(Waz
t
i,a)

 ,

(6)

where zti is the representation of node i under the t-th snap-
shot of expanded HTHG; βa ∈ R is the normalized attention
score with respect to relationship type a; Wa ∈ Rd×d and
q ∈ Rd are learnable attention transformation matrices re-
spectively; σ(·) represents the activation function ReLU.

By executing the above heterogeneous attention aggrega-
tion within each snapshot, lower-order heterogeneous seman-
tic information is attentively captured, and higher-order in-
teraction and complex semantics are also aggregated into the
hyperedge nodes, which ensures a comprehensive integration
of both low- and high-order relation, enhancing the overall
representation capacity of the hypergraph by encapsulating a
broad of interactions and semantics within its structure.
Temporal Attention Aggregation. This module aggre-
gates node representations calculated under different snap-
shots and generates dynamic node representations.

Since the temporal attention mechanism will uniformly
calculate the node representation under all snapshots, we first
add temporal position encoding to each snapshot:

zti,p = zti + pt, ptj =

{
sin(t/100002j/d), (if j is even)

cos(t/100002j/d), (if j is odd)
(7)

where zti,p ∈ Rd is the hidden representation of node i with
position encoding about time t; pt ∈ Rd is a deterministic
position code with respect to time t.
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Then, a temporal attention aggregation module is used to
aggregate the representations under different snapshots:

z̄ti = σ

(
FC

(
T∑

t′=1

(γt,t
′

i ·WVz
t
i,p))

))
,

γt,t
′

i = Softmax
(

1√
d
[WKz

t
i,p] · [WQz

t′

i,p]

)
,

(8)

where z̄ti ∈ Rd is the representation vector obtained by at-
tentionally synthesizing each snapshot of node i; γt,t

′

i ∈ R is
the normalized mutual attention coefficient between the t-th
and t′-th snapshots of node i; WK ∈ Rd×d, WQ ∈ Rd×d and
WV ∈ Rd×d are learnable transformation matrices of Key,
Query and Value vectors used to calculate attention weights;
FC(·) is a trainable fully connected layer. The above param-
eters are not shared among different target node types ϕ(i).

Then, a heterogeneous gated residual connection mecha-
nism is used to connect with the previous layer input and cal-
culate the final node representation by summing all snapshots.

ẑi =
T∑

t=1

(
rtϕ(i) · z̄

t
i + (1− rtϕ(i)) FC(zti)

)
, (9)

where zti and ẑi are the residual node attribute vector obtained
by Equation (6) and the updated node representation vector
updated by the whole message-passing mechanism; rϕ(i) ∈ R
a is a trainable variable used to control the update strength of
node i; FC(·) is a trainable fully connected layer.

Stacking two or more layers of the above attention modules
enables a single-stage message-passing process: simultane-
ously from heterogeneous nodes to hyperedge nodes and back
to the heterogeneous nodes. This layered approach enhances
the depth of information integration, allowing for the iterative
refinement of node representations and facilitates a compre-
hensive bidirectional flow of information. This bidirectional
message passing harnesses the strengths of both direct and
higher-order interactions, enhancing the ability to capture and
understand the complex, multi-faceted relationships present
within the hypergraph structure.

3.3 Heterogeneous Contrastive Optimization
To enable the HTHGN to learn heterogeneous semantic in-
formation from network data adaptively and to circumvent
the issue of lower-order structural information loss caused by
the introduction of hyperedges, we optimize the entire model
through a self-supervised contrastive learning objective. For
the given HTHG G∗ = {Gt

∗}Tt=1 and the target node i ∈ V ,
we select its heterogeneous neighbors at following snapshot
as positive sample set PT+1

i and uniformly sample Q non-
neighbors as negative sample set NT+1

i :

PT+1
i = {u | u ∈ V T+1 ∧ u ∈ N T+1

i },
NT+1

i = {v | v ∈ V T+1 ∧ v /∈ N T+1
i ∧ v ̸= i},

(10)

Subsequently, we employ a projection head as a discriminator
to assess the likelihood of the existence of lower-order rela-
tionships between node pairs in the T + 1-th snapshot:

D(ẑi, ẑj) = FC (σ(FC (ẑi∥ẑj))). (11)

We draw inspiration from the Deep InfoMax for the objec-
tive function, adopting a noise-contrastive estimation frame-
work paired with a binary cross-entropy (BCE) loss. This loss
function discriminates between pairs of samples originating
from the joint distribution of nodes and their corresponding
heterogeneous neighbors (positive examples) and those from
the marginal distributions (negative examples):

L =
∑
i∈V t

 ∑
j∈PT+1

i

E [logD(ẑi, ẑj)]

+
∑

j∈NT+1
i

E [log (1−D(ẑi, ẑj))]

 .

(12)
The model is effectively trained to distinguish between au-

thentic neighboring node relationships and unrelated node
pairs across snapshots, thereby enhancing its ability to infer
and preserve lower-order connections.

4 Experiments
4.1 Datasets and Baselines
This section evaluates the proposed HTHGN and baselines on
three real-world datasets: Yelp, DBLP, and AMiner. We com-
pare static homogeneous methods VGAE [Kipf and Welling,
2016], GATv2 [Brody et al., 2022], DGI [Veličković et al.,
2019]; dynamic homogeneous GNNs EvolveGCN [Pareja et
al., 2020], DySAT [Sankar et al., 2020]; hypergraph meth-
ods HyperGCN [Yadati et al., 2019], UniGCN and Uni-
GAT [Huang and Yang, 2021] , HGNNP [Gao et al., 2023a];
static heterogeneous methods metapath2vec [Dong et al.,
2017], R-GCN [Schlichtkrull et al., 2018], HGT [Hu et al.,
2020], H-GVAE [Dalvi et al., 2022], HPN [Ji et al., 2023];
dynamic heterogeneous GNNs DyHATR [Xue et al., 2020]
and HTGNN [Fan et al., 2022].

4.2 Experiment Setup
We conducted dynamic link prediction and new link predic-
tion experiments to verify the gain of higher-order interac-
tions on representation learning performance. We held out
the last 3 snapshots for testing and trained the model on the
remaining snapshots. The link prediction uses all edges in
T + 1-th snapshot as positive edges, while the new link pre-
diction only evaluates edges that have not appeared. We per-
formed 5 repeated randomized experiments for all methods
and reported their means and standard deviations. More setup
and implementation details see Appendix B.

4.3 Experiment Results
Link Prediction Our comparative experimental results are
summarized in Table 1, and more results are in Appendix E.
The results show that HTHGN achieves excellent perfor-
mance on both AUC and AP metrics in all datasets. In partic-
ular, we note that methods designed for heterogeneous graphs
generally outperform homogeneous graph methods, demon-
strating the clear gains of introducing higher-order hetero-
geneous type information into representation learning. We
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Dataset Yelp DBLP AMiner Avg. RankMetrics AUC AP AUC AP AUC AP
VGAE 58.62 ± 4.79 59.71 ± 4.48 77.40 ± 1.41 80.55 ± 1.53 84.56 ± 2.68 87.13 ± 2.53 9.67
GATv2 59.87 ± 1.31 57.20 ± 1.76 83.28 ± 0.13 84.71 ± 0.27 89.12 ± 0.30 90.60 ± 0.40 6.17

DGI 55.68 ± 3.11 57.36 ± 2.66 73.36 ± 2.93 77.65 ± 2.47 80.71 ± 5.59 84.04 ± 4.60 12.33
EvolveGCN 54.85 ± 5.51 54.79 ± 4.07 71.26 ± 6.87 75.33 ± 5.70 74.90 ± 7.87 78.97 ± 6.28 14.67

DySAT 61.88 ± 2.68 58.57 ± 2.71 78.61 ± 1.54 80.56 ± 1.42 83.76 ± 0.98 85.31 ± 1.18 9.50
HyperGCN 59.18 ± 2.05 55.64 ± 2.03 72.60 ± 1.04 73.96 ± 0.68 75.07 ± 1.24 75.64 ± 2.31 13.67
UniGCN 57.47 ± 5.37 54.99 ± 4.13 75.14 ± 0.76 74.45 ± 3.26 82.35 ± 0.62 81.50 ± 1.45 12.67
UniGAT 55.47 ± 0.57 52.01 ± 0.69 83.88 ± 0.31 86.54 ± 0.34 89.13 ± 0.51 91.19 ± 0.62 7.00
HGNNP 62.16 ± 3.80 60.14 ± 3.54 80.39 ± 0.20 83.39 ± 0.38 85.59 ± 0.82 88.19 ± 0.71 7.17

metapath2vec 63.79 ± 0.41 59.28 ± 0.46 64.28 ± 2.15 60.28 ± 2.56 71.05 ± 1.61 68.95 ± 1.87 13.00
R-GCN 52.72 ± 2.25 51.66 ± 1.48 82.28 ± 3.79 84.18 ± 3.95 88.16 ± 1.55 89.66 ± 1.47 9.83

HGT 55.86 ± 1.97 54.07 ± 2.00 82.32 ± 0.46 85.32 ± 0.55 87.27 ± 0.63 89.94 ± 0.53 8.33
HetSANN-GVAE 59.28 ± 2.41 57.43 ± 2.34 81.51 ± 1.53 85.08 ± 2.44 87.52 ± 0.55 90.19 ± 0.80 6.83

HPN 62.02 ± 1.04 60.24 ± 1.53 81.30 ± 1.12 82.64 ± 1.37 84.39 ± 1.06 87.97 ± 0.77 7.67
DyHATR 63.58 ± 1.37 63.60 ± 1.29 69.61 ± 1.64 69.82 ± 1.72 75.90 ± 2.51 76.80 ± 2.43 11.33
HTGNN 70.43 ± 3.36 67.45 ± 4.18 85.94 ± 3.47 87.17 ± 3.30 90.50 ± 3.33 90.81 ± 3.42 2.17
HTHGN 74.04 ± 4.82 89.56 ± 3.01 91.33 ± 1.61 96.97 ± 0.56 96.58 ± 1.14 98.80 ± 0.40 1.00

Table 1: AUC and AP scores of link prediction tasks between HTHGN and baselines in three datasets.
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Figure 3: Impact of dimension.
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Figure 4: Impact of layer.

believe this is because more semantic relatedness can be cap-
tured through type information, where homogeneous graph
methods are limited. Furthermore, it should be noted that al-
though models designed for homogeneous hypergraphs, such
as UniGAT and HGNNP, enlarge the receptive field, their
performance suffers due to more noise and the inability to
model semantic information. We further observe that com-
pared to static heterogeneous graph methods, dynamic het-
erogeneous graph methods achieve more competitive perfor-
mance, thus validating the advantages of modeling network
temporal evolution. Compared with the novel HTGNN, our
method achieves better results by modeling heterogeneous
high-order interaction. We believe this can be attributed to
the sparsity of the network structure, and HTHGN rescues
this through heterogeneous hyperedges and significantly im-
proves the attention encoder performance. Similar and more
significant experimental conclusions can be drawn from the
more challenging new link prediction experiment, which is
reported in Appendix E.1.

Impact of Hypergraph Construction For the k-hop/k-
ring hyperedge construction method proposed in this paper,
we set different values for k and compare its performance
on 3 datasets under the HTHGN model. From Table 4 in
Appendix E.2, we can observe that when k = 1, the perfor-

mance gap between 1-hop and 1-ring is not obvious. This
may be because when k = 1, the hyperedge is equivalent to
its direct neighbors, so there is no functional difference be-
tween 1-hop and 1-ring hyperedges. In addition, we should
also notice that in all 3 datasets, the model performance grad-
ually increases when k increases. This reflects that increasing
the group interaction receptive field for HTHGN can enrich
the heterogeneous relationship semantic and thereby improve
performance. It should be noted that in all 3 datasets, the
HTHGN of 3-ring hyperedge is significantly better than that
of 3-hop hyperedge. We believe that due to the 2-layer de-
sign of the HTHGN encoder, 2-order neighbors can complete
message-passing through low-order interactions. Therefore,
the 3-ring hyperedge focuses on heterogeneous nodes with a
distance of exactly 3, which can bring more pure and inspir-
ing high-order interactive information.

Impact of P -uniform To explore the impact of P-uniform
on HTHGN representation learning performance, we ana-
lyzed the hyperedge numbers and model performance under
different values of P , which are reported in Figure 5. It can
be seen from the results that as P increases, the size of the
hyperedge in HTHG increases sharply. This is because the
expansion of the hypergraph often leads to a significant in-
crease in the number of nodes and edges. On the contrary,
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Figure 5: Impact of P -uniform on HTHGN. (a) shows AUC and AP
scores; (b) shows the number of low- and high-order hyperedges
on the Yelp dataset. Results indicate that increasing P enlarges the
hypergraph but HTHGN maintains stable performance.
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Figure 6: Ablation results of HTHGN and its five ablated variants on
three datasets (Yelp, DBLP, and AMiner) with AUC and AP as eval-
uation metrics. The results demonstrate the performance contribution
of each component in the model.

P -uniform HTHG usually has fewer nodes and edges in the
converted ordinary graph, which can balance the contradic-
tion between model performance and computing resources
and improve computing efficiency. In addition, it is worth
noting that the model performance of the proposed HTHGN
is relatively stable under different values of P . This result
shows the proposed HTHGN can also perform constantly
well under a smaller hyperedge scale, verifying that high-
order relationships are important for improving the general
validity of learning performance. Besides, this result demon-
strates that compared with the naive cluster/star expansion
algorithm, HTHGN can significantly improve computational
efficiency by controlling the P -uniform hyperedges.

Parameter Sensitive Analysis Here, we analyze the im-
pact of the main hyperparameters in HTHGN on model per-
formance. As shown in Figure 3 and 4, HTHGN’s per-
formance fluctuates slightly under different configurations,
which shows that the model is stable on most tasks and
datasets.

Ablation Study To verify the effectiveness of each mod-
ule, we performed ablation experiments and reported the re-
sults as shown in Figure 6 and Appendix E.4. Among them,
w/o Hyper means removing the hypergraph structure, and w/o
Low means removing the low-order structure. Both of them
significantly affect the performance of each dataset. w/o Uni-
form uses ununiformed hyperedges. w/o TA and w/o HA re-
spectively represent the removal of the Temporal and Het-
erogeneous Attention Aggregation modules. Their impact on
performance verifies that both temporal dependence and het-
erogeneous semantics are indispensable.

5 Related Works
Graph representation learning. Real-world complex net-
works containing heterogeneity and dynamics are ubiqui-
tous, and representation learning and link prediction about
them are usually divided into two separate research direc-
tions. On the one hand, methods for heterogeneity mod-
eling include meta-path-based methods [Wang et al., 2019;
Ji et al., 2023; Yang et al., 2023; Fang et al., 2022; Wang et
al., 2022] and heterogeneous message-passing-based meth-
ods [Schlichtkrull et al., 2018; Hu et al., 2020; Dalvi et
al., 2022; Mao et al., 2023; Fan et al., 2022]. On the

other hand, methods for dynamics include decomposition-
based methods [Yu et al., 2017; Ma et al., 2017], temporal
random walk-based methods [Liu et al., 2020; Huan et al.,
2023], and deep learning-based methods [Pareja et al., 2020;
Liu et al., 2024]. However, these methods cannot simulta-
neously effectively capture the dynamics, heterogeneity, and
high-order interaction.

Hypergraph representation learning. Hypergraph rep-
resentation learning aims to embed the hypergraph into a
low-dimensional space and maintain the original hypergraph
structural information [Antelmi et al., 2023]. Early hyper-
graph representation learning methods were based on spectral
theory [Zhou et al., 2006; Saito et al., 2018] and structure-
preserving [Sybrandt et al., 2022; Sybrandt and Safro, 2020]
learning node representations. However, these methods are
shallow and cannot model highly nonlinear relationships.
The advent of GNN-based methods offered a breakthrough
with their end-to-end learning and scalability [Antelmi et
al., 2023; Yadati et al., 2019; Huang and Yang, 2021;
Gao et al., 2023a; Jiao et al., 2024], which define the hy-
pergraph Laplacian and train classic GNNs on hypergraphs.
Besides, GNNs designed for heterogeneous hypergraphs usu-
ally use hyperedge type [Baytas et al., 2018; Sun et al., 2021;
Lu et al., 2023] or meta-path [Li et al., 2023; Yan et al., 2023]
to decompose the heterogeneous hypergraph into different se-
mantic relations. This dependency on specific prior knowl-
edge and the static nature limits their efficiency in capturing
the dynamic within hypergraphs.

6 Conclusions

In this paper, we propose a HTHGN method to construct and
learn heterogeneous high-order interactions in dynamic het-
erogeneous graphs without additional knowledge. To better
divide different receptive fields, we define and analyze two
different types of heterogeneous uniform hyperedge construc-
tion methods. The effectiveness of the HTHGN proposed in
this paper is verified through extensive experiments on three
real-world datasets. The limitation of this work is that the
process of HTHGN modeling high-order semantic informa-
tion is relatively complex, and the interpretability of its effec-
tiveness still needs to be explored.
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