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Abstract

In this work, we consider the design of Non-
Obviously Manipulable (NOM) mechanisms,
mechanisms that bounded rational agents may
fail to recognize as manipulable, for two rele-
vant classes of succinctly representable Hedonic
Games: Additively Separable and Fractional
Hedonic Games. In these classes, agents have
cardinal scores towards other agents, and their
preferences over coalitions are determined by
aggregating such scores. This aggregation results
in a utility function for each agent, which enables
the evaluation of outcomes via the utilitarian social
welfare. We first prove that, when scores can
be arbitrary, every optimal mechanism is NOM;
moreover, when scores are limited in a continuous
interval, an optimal mechanism that is NOM
exists. Given the hardness of computing optimal
outcomes in these settings, we turn our attention to
efficient and NOM mechanisms. To this aim, we
first prove a characterization of NOM mechanisms
that simplifies the class of mechanisms of interest.
Then, we design a NOM mechanism returning
approximations that asymptotically match the best-
known approximation achievable in polynomial
time. Finally, we focus on discrete scores, where
the compatibility of NOM with optimality depends
on the specific values. Therefore, we initiate a
systematic analysis to identify which discrete
values support this compatibility and which do not.

1 Introduction
Hedonic Games are a well-established model for describ-
ing coalition formation [Dreze and Greenberg, 1980]. In
these games, agents have preferences over possible coalitions,
and the goal is to compute a “good” partition of the agents,
which constitutes the outcome of the game. Two approaches
have been considered for the computation of these partitions:
a decentralized one, in which agents autonomously choose
their coalition; and a centralized one, where agents reveal
their preferences to a designer who determines the outcome.
While, in the first approach, it is assumed that the attained

partition satisfies some form of stability against either indi-
vidual or group deviation [Bloch and Diamantoudi, 2011;
Feldman et al., 2015; Gairing and Savani, 2010; Bogomol-
naia and Jackson, 2002; Banerjee et al., 2001; Elkind and
Wooldridge, 2009; Igarashi and Elkind, 2016], in the second,
it is instead necessary to design algorithms, a.k.a., mecha-
nisms, incentivizing agents to report their real preferences
[Flammini et al., 2021a; Flammini et al., 2022; Klaus et
al., 2023; Dimitrov and Sung, 2004; Dimitrov et al., 2006;
Rodrı́guez-Álvarez, 2009; Varricchio, 2023].

In the design of these mechanisms, the goal is thus to align
the scope of the designer, i.e., to compute partitions that sat-
isfy some useful property, with the one of the agents, that
is, being assigned to coalitions that they prefer. This align-
ment is usually achieved by requiring that the algorithm used
for computing partitions satisfies a property named strate-
gyproofness (SP). Strategyproofness ensures that an agent’s
best outcome, given the preferences of other agents, is ob-
tained by truthfully reporting her own preferences. Unfortu-
nately, strategyproofness has been proved to be often a too
demanding requirement: it indeed assumes that agents are
fully rational, meaning that they would be able to evaluate
which report would be the best for every possible realiza-
tion of the game (i.e., for every possible set of preferences
expressed by other agents). In some cases, this would be
computationally unaffordable due to the exponentially large
set of realizations to verify. In other cases, it requires an
agent to parse very complex mathematical proofs, which
is not feasible for agents with a scarce mathematical back-
ground. Moreover, it has been observed that in many settings
agents lack contingent reasoning [Charness and Levin, 2009;
Esponda and Vespa, 2014; Ngangoué and Weizsäcker, 2021],
i.e., they are not inclined to execute case analysis, and they
make their decision by aggregating different cases.

Moreover, asking for strategyproof mechanisms against
fully rational agents usually causes a very bad quality of
the computed partitions. In particular, Özyurt and Sanver
[2009] show that it is in general impossible to have non-
dictatorial strategyproof mechanisms. Similar impossibility
results have also been provided in more restricted settings and
specific coalitions’ quality measures [Amanatidis et al., 2017;
Brandl et al., 2018]. For example, Flammini et al. [2021a]
proved that no strategyproof mechanism can return a bounded
approximation of the optimal partition, even for games whose
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preferences are succinctly representable, and the partitions
are evaluated with respect to the social welfare.

Hence, it would be very natural to ask whether better parti-
tions can be achieved if one only requires that the mechanism
is strategyproof against bounded rational agents or, more pre-
cisely, against agents lacking contingent reasoning skills. Re-
call that these agents are supposed to submit false preferences
(i.e., to manipulate) only if this is convenient to them based
on an aggregation of the different possible realizations. In
particular, very recently, there has been a lot of attention on
Non-Obvious Manipulable (NOM) mechanisms [Troyan and
Morrill, 2020], that aggregate the realizations by only consid-
ering the best and worst cases. Specifically, in NOM mech-
anisms, an agent does not submit a false report only if: (i)
the best outcome (over all possible reports of other agents)
she can achieve for this report is not better than the best out-
come that the agent can achieve by submitting her real prefer-
ences; and (ii) the worst outcome achievable with this report
is not better than the worst outcome achievable with the true
report. This choice for aggregating the possible realizations
is motivated by empirical evidence from the failure of peo-
ple in recognizing profitable manipulations, mainly in school
choice and two-sided matching problems [Dur et al., 2018;
Pathak and Sönmez, 2008].

NOM mechanisms have been recently designed for dif-
ferent problems: school choice, two-sided matching, auc-
tions, bilateral trade [Troyan and Morrill, 2020], voting [Aziz
and Lam, 2021; Arribillaga and Bonifacio, 2024], fair di-
vision [Ortega and Segal-Halevi, 2022; Psomas and Verma,
2022], and single-parameter domains [Archbold et al., 2023a;
Archbold et al., 2023b; Archbold et al., 2024]. For many of
these, it has been shown that NOM mechanisms can produce
much better outcomes than SP mechanisms. Very recently,
similar results have been obtained by Flammini et al. [2025]
for hedonic games with friends’ appreciation preferences, a
special class of additively separable hedonic games. Hence,
the hope is that the same may occur also for more expressive
classes of hedonic games.

Our Contribution. We focus on two well-studied sub-
classes of hedonic games with succinct preference repre-
sentation: Fractional Hedonic Games (FHG) [Aziz et al.,
2019] and Additively Separable Hedonic Games (ASHG)
[Hajduková, 2006]. Here, preferences over coalitions are ex-
pressed by utilities computed from the scores assigned by an
agent to every other coalition member. This allows evaluating
the partition’s quality by using utilitarian social welfare, the
sum of agents’ utilities for the outcome.

We first show that, while no SP mechanism may return
even a bounded approximation of the optimal social welfare
[Flammini et al., 2021a], every mechanism that returns such
the optimum is NOM. Unfortunately, this result does not set-
tle the problem at all for two reasons. First, in both FHGs and
ASHGs, computing the social welfare maximizing partition
is a computationally hard problem [Flammini et al., 2022;
Aziz et al., 2015], and hence one would be interested in eval-
uating the approximation of the social welfare achievable by
mechanisms that are both NOM and computationally effi-
cient. Moreover, optimal mechanisms may fail to be NOM

as soon as scores are restricted to limited intervals.
We address the first issue by proving that an efficient NOM

mechanism that returns an n-approximation of the optimal
social welfare in ASHGs, where n is the number of agents,
and a 2-approximation in FHG exists. We stress that for
ASHGs the bound is tight, as an approximation better than
n cannot be computed in poly-time, unless P=NP, even if one
does not care about manipulability [Flammini et al., 2022].

On the route to achieve this, we prove another result that
may be of independent interest: We show that when one cares
about NOM mechanisms with bounded approximation, it is
without loss of generality to look at “natural” mechanisms,
i.e., mechanisms that determine whether two agents must be-
long to the same coalition, only by considering how much
they like/dislike each other (in total), regardless of the spe-
cific mutual scores. This characterization also allows us to
show that, while not every optimal mechanism is NOM, there
always exists an optimal mechanism that is NOM, even if
scores are bounded in a continuous interval.

In turn, such a result no longer holds true as soon as we turn
the attention to discrete values: for example, in [Flammini et
al., 2025] it has been proven that in ASHGs, if scores are in
{−n, 1}, then no optimal mechanism is NOM. In this work,
we elaborate more on these settings by providing an almost
full characterization of the existence of optimal NOM mecha-
nisms for ASHGs when scores can take values in {−x, 0, 1},
with x ≥ 1. Interestingly, we show that, when x > 2n−3, ev-
ery optimal mechanism is NOM, whereas no optimal mecha-
nism is NOM for x ∈ (1, 2n−3). However, for x = 1, 2n−3,
NOM is possibly compatible with optimality, delineating that
there is not a clear phase transition over the values of x.

Due to space limits, we defer some proofs to the full paper.

2 Notation and Preliminaries
This section presents the notation and preliminary results.

2.1 Hedonic Games
In Hedonic Games (HGs) we are given a set of n agents,
denoted by N = {1, . . . , n}, and the goal is to split them
into disjoint coalitions, that is, to provide a partition π =
{C1, . . . , Ck} such that ∪kh=1Ch = N . Such a partition π is
also called outcome or coalition structure. We might denote
by π(i) the coalition i ∈ N is assigned to in a partition π. The
grand coalition refers to a partition that consists of one coali-
tion containing all the agents; a singleton coalition refers to a
coalition containing only one agent. The main characteristic
of HGs is that agents have preferences over the possible out-
comes that solely depend on the coalition they are assigned to
and not on how the others aggregate. We denote the set of all
possible coalitions of i by Ni = {C ⊆ N|i ∈ C}.

Of particular interest are HGs classes where agents express
their preferences using utilities and admit succinct representa-
tion, meaning the memory used to store the necessary infor-
mation to compute agents’ preferences is polynomial in the
instance size. In fractional (FHGs) and additively separable
(ASHGs) HGs, agents report individual scores towards other
agents, and the utility they derive from the coalition they are
assigned to is based on the value they attribute to the other
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coalition members. More formally, each agent i has a weight
function wi : N → R that determines the score that agent
i assigns to any other participant. We always assume that
wi(i) = 0 and denote wij = wi(j).
In ASHGs and FHGs, the utility that agent i derives in being
in a coalition C ∈ Ni, is given by

ui(C) =
∑
j∈C

wij and ui(C) =

∑
j∈C wij

|C|
, respectively.

Note that ui(C) is well-defined only if C ∈ Ni.
In general,wij can be any value in R. Nonetheless, we may

also consider restrictions to specific settings. Specifically, we
say that the agents’ weights towards the other agents are:
• arbitrary if wij ∈ R, for all i, j ∈ N ;
• non-negative if wij ∈ R≥0, for all i, j ∈ N ;
• bounded if wij ∈ [−1, 1], for all i, j ∈ N ;
• general duplex if wij ∈ {−x, 0, 1}, for all i, j ∈ N and
x ∈ (0,∞) (in case x = 1 we simply say duplex).

The distinction in arbitrary, non-negative, bounded, and du-
plex weights has been presented in [Flammini et al., 2021a].
We introduce the notion of general duplex valuations to in-
clude the well-known class of friends and enemies games
[Dimitrov and Sung, 2004]. If we do not specify otherwise,
we assume the values are arbitrary real numbers.
Graph Representation and Flattened Graph. ASHGs
and FHGs have a very convenient representation by means
of directed and weighted graphs ~G = (N , {wi}i∈N ), where
N are the vertices and a directed edge (i, j) has weight wij ,
denoting the value i has for agent j. We always assume the
graphs to be complete: an edge exists even if its weight is 0.

Given two disjoint coalitions C1, C2 ⊆ N , we refer to the
cut (C1, C2) induced in the graph ~G by these two coalitions,
that is, Cut(C1, C2) = {(i, j), (j, i) | i ∈ C1, j ∈ C2}. The
value of the cut Cut(C1, C2) is

∑
i∈C1, j∈C2

(wij + wji).
Moreover, we denote by δ+(i) = {j 6= i |wij > 0} and
δ−(i) = {j 6= i |wij < 0} the set of positive and negative
neighbors of i, respectively.

When focusing on the utilitarian social welfare of a parti-
tion, given a pair of agents i, j, the values wij and wji either
both contribute to the social welfare or neither does. There-
fore, we may consider an undirected version of ~G where the
edge weight of an edge is given by the sum of the mutual val-
ues. More formally, we say that a weighted and undirected
graph G = (N , ŵ) is the flattened graph of a directed and
weighted graph ~G, if it has the same vertices of ~G and, for
each pair of directed edges (i, j) and (j, i) of weights wij and
wji in ~G, respectively, there is an undirected edge e = {i, j}
of weight ŵ(e) = ŵ(i, j) = wij + wji in G. Notice that
an ASHG or FHG instance is uniquely determined by the di-
rected graph ~G we described above; however, different in-
stances may have the same flattened graph G.
Proportional Graphs. Given two undirected and weighted
graphs G and G′ with the same set of vertices, and having
edge weights ŵ and ŵ′, we say that G and G′ are propor-
tional if there exists λ > 0 such that ŵ(i, j) = λ · ŵ′(i, j)

holds true for each pair of vertices i 6= j. Notice that propor-
tionality is an equivalence relation over the set of weighted
and undirected graphs; we writeG′ ∼P G′′ to denote that the
two graphs are proportional. We often slightly abuse notation,
and we will simply say that two instances, namely I, I ′, are
proportional, and write I ∼P I ′, if the flattened graphs mod-
eling these instances are proportional. In Section 4.2, propor-
tionality will turn out to be a useful property to characterize
mechanisms resistant to obvious manipulations.

2.2 Strategyproofness and Manipulability
In order to compute desirable partitions of the agents, we need
to know their preferences. However, the values wij might be
private information of agent i, so agents must reveal them.
Let d = (d1, . . . , dn) be the vector of agents’ declarations,
where the declaration di contains the information revealed by
agent i: by assuming direct revelation, di = {dij}j∈N\{i},
where dij represents the value that agent i declares for agent
j. We denote by D the space of all possible declarations.
For convenience, d−i denotes the declarations of all agents
except i, and D−i is the set of all feasible d−i. Similarly, we
denote by Di the space of feasible di.

We shall denote byM a mechanism and byM(d) its out-
put upon a declaration d ∈ D of the agents. We denote by
Mi(d) the coalition i is assigned to. Being our agents strate-
gic, an agent i could possibly declare di 6= wi, where wi con-
tains the real values assigned by agent i, and will be hence-
forth also called real type. In this context, a key challenge is
to design algorithms – commonly referred to as mechanisms –
encouraging agents to behave truthfully, i.e., to submit a dec-
laration di = wi where she reveals her true values towards
the other agents. The most desirable and widely studied char-
acteristic for such a kind of mechanisms is strategyproofness.

Definition 1 (Strategyproofness). A mechanismM is said to
be strategyproof (SP) if for each i ∈ N , and any declaration
of the other agents d−i

ui(M(wi,d−i)) ≥ ui(M(di,d−i)) (1)

holds true for any possible declaration di 6= wi of agent i.
In turn, a mechanism is said to be manipulable if there ex-

ists an agent i, a real type wi, and a declaration di 6= wi s.t.
Eq. 1 does not hold true. Such a di is called a manipulation.

Due to its demanding requirement, strategyproof mecha-
nisms have been shown to be highly inefficient; for this rea-
son, mechanisms satisfying milder conditions have been in-
troduced with the scope of obtaining more efficient outcomes.

Definition 2 (Non-Obvious Manipulability). A mechanism
M is said to be non-obviously manipulable (NOM) if for ev-
ery i ∈ N , real type wi, and any other declaration di the
following two conditions hold true:

1. sup
d−i

ui(M(wi,d−i)) ≥ sup
d−i

ui(M(di,d−i)), and

2. inf
d−i

ui(M(wi,d−i)) ≥ inf
d−i

ui(M(di,d−i)).

In case there exist i, wi, and di such that one of the aforemen-
tioned conditions is violated, thenM is obviously manipula-
ble and di is an obvious manipulation.
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In other words, to determine if a mechanism M is NOM
for an agent i, we need to consider the best- and the worst-
case scenario for i (according to her truthful preferences) of
M when i declares her true type wi and any other possi-
ble declaration di 6= wi. In particular, neither the best nor
the worst possible outcome when declaring wi can be strictly
worse than the best or the worst outcome, according to her
true preferences, attainable when declaring di.

Clearly, for any game class, SP ⇒ NOM. That is, SP is
more demanding than NOM as it requires verifying for every
declaration of the others if there exists a profitable manipula-
tion. However, the agents might not know upfront what the
others’ declarations are. This is circumvented by NOM.

In order to work with non-obvious manipulability, it is nec-
essary to understand the structure of outcomes guaranteeing
such a property. We here provide a first result in this direction:
a simple but still useful sufficient condition for a mechanism
being NOM. A finer characterization will be given later.

To this aim, let us introduce some necessary notation.
Given a mechanismM, for any di ∈ Di, let

OutMi (di) = {M(di,d−i) |d−i ∈ D−i}

be the set of possible outcomes if i declares di. Moreover,

CoalMi (di) = {Mi(di,d−i) |d−i ∈ D−i}

is the set of possible coalitions for i if she declares di.
Proposition 1. Given a mechanism M, if for each i ∈ N
and di ∈ Di, given the truthful declaration wi,

1. CoalMi (wi) = CoalMi (di) or

2. OutMi (wi) = OutMi (di),
then,M is NOM.

Proof. Suppose first that CoalMi (wi) = CoalMi (di). That
is, whatever the declaration of agent i is, the set of coalitions
i may end up with remains the same. Then, the best/worst
outcome remains the same as well, and the conditions (1) and
(2) in Definition 2 are always satisfied with the equality, and
thus NOM holds true. Note that OutMi (wi) = OutMi (di)
implies CoalMi (wi) = CoalMi (di), and thus the thesis fol-
lows even for the condition 2.

Proposition 1 provides two simple yet useful sufficient con-
ditions for determining whether a mechanism is NOM.

2.3 Optimal and Approximate Solutions
Being the agents’ preferences expressed by means of utilities,
we can evaluate the quality of outcomes through a social wel-
fare (SW). Specifically, let π be any outcome; the (utilitarian)
SW of π is given by SW(π) =

∑
i∈N ui(π(i)). We call so-

cial optimum, or simply the optimum, any outcome OPT in
arg maxπ SW(π) and we denote by opt the value SW(OPT).

In the considered classes of games, computing an optimal
outcome is often intractable. Therefore, we may focus on
finding approximate solutions.

Let optd the value of the social optimum for the declara-
tion d, i.e., optd = maxπ

∑
i∈N

∑
j∈π(i) dij for ASHG, and

optd = maxπ
∑
i∈N

∑
j∈π(i) dij

π(i) for FHG.

1 2
1

−ε

(a) Truthful declaration.

1 2
1

−M

(b) Manipulation of Agent 2.

Figure 1: No BAPX is SP. Dashed lines represent the only BAPX
partition for the given instance.

Definition 3 (Bounded approximation property (BAPX)). A
mechanismM satisfies the bounded approximation property
(BAPX) if

1 ≤ sup
d∈D

optd
SW(M(d))

≤ r(n)

holds true for a real-valued and bounded function r(n). We
denote by rM the approximation ratio of a mechanismM.

If optd = 0 the only bounded approximation mechanism
is the one returning the optimum.1

We ask our mechanisms to return solutions that guarantee
a non-negative SW, since there is at least one non-negative
solution (namely, each agent in a singleton), and hence also
the optimum is non-negative.

A mechanism that for any input instance returns an opti-
mum partition is called optimal.

As we already mentioned, strategyproofness turned out to
be extremely inefficient in terms of approximation to the so-
cial optimum. For the sake of completeness, we include the
next theorem, which is a restatement of results from [Flam-
mini et al., 2021a].

Proposition 2. For both ASHGs and FHGs with arbitrary
weights, no SP mechanism is BAPX.

Sketch. The following applies to both ASHGs and FHGs.
Assume there are two agents and the graph depicted in Fig-

ure 1a describes their truthful preferences. Any BAPX mech-
anism must put the agents in the same coalition. However,
this outcome guarantees to agent 2 a negative utility.

In turn, if agent 2 misreports, as shown in Figure 1b, the
only way to achieve BAPX in this instance is to put the agents
in singletons. This guarantees to agent 2 a higher utility and
shows there exists a manipulation.

Fortunately, NOM stands in contrast to this impossibility
result. We will demonstrate that NOM is, in fact, compatible
with optimality, and that any approximation algorithm with
BAPX can be transformed into a NOM mechanism that pre-
serves the same approximation guarantee.

3 Optimality and NOM
While strategyproofness is incompatible with any bounded
approximation of the optimum (see Proposition 2), in this
section, we show that non-obvious manipulability is instead
compatible with optimality, at least for arbitrary weights.

Theorem 1. For both ASHGs and FHGs with arbitrary
weights, any optimal mechanism is NOM.

1In this case, we assume “ 0
0
= 1”.
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Proof. The next arguments hold for both ASHGs and FHGs.
Let us fix an agent i, and letC ∈ Ni. We next show that for

any di ∈ Di there exists d−i ∈ D−i such that, in any optimal
partition π of instance d = (di,d−i), it holds π(i) = C.

Since the weights range in R, for any di we can select
d−i ∈ D−i in such a way that the flattened graph of the
instance, G = (N , ŵ), has the weights defined as follows:
ŵ(e) = 1, for all e = (j, j′) with j, j′ ∈ C, and ŵ(e) = −M ,
for a sufficiently large M , otherwise.

Let π be any optimal partition for such an instance, and
suppose that there is j ∈ π(i) such that j 6∈ C; then,
SW(π(i) \ {j}) − SW(π(i)) < 0, for an M large enough.
Being such a difference negative, it would be preferable to
move j to a singleton coalition, contradicting the optimality
of π. Therefore, π(i) ⊆ C.

Assume there exist two disjoint coalitions in π, C ′, C ′′,
both contained inC. Being π optimum, ∆ = SW(C ′∪C ′′)−
SW(C ′)− SW(C ′′) ≤ 0, as it must not be strictly more con-
venient to merge these two coalitions for the SW. However,
in the case of ASHGs, ∆ measures the total weight of the
cut (C ′, C ′′). Being this cut made of positive edges only, we
have ∆ > 0, a contradiction to the optimality of π. In FHGs,
∆ = (|C ′ ∪ C ′′| − 1) − (|C ′| − 1) − (|C ′′| − 1) > 0, again
a contradiction to the optimality of π.

In conclusion, for any optimal M, CoalMi (di) = Ni,
for each di ∈ Di, including the truthful declaration wi of
i. Therefore, the condition 1 of Proposition 1 is satisfied by
any optimal mechanism, and our claim follows.

Theorem 1 poses NOM in sharp contrast with SP. Unfortu-
nately, such a result does not hold for any class of weights as
the following example shows.

Example 1. Assume weights are bounded. The following ar-
guments apply to both ASHGs and FHGs.

LetM be an optimal mechanism that, whenever there are
two agents and d12+d21 = 0, works as follows: if d12 = −1,
the mechanism puts the two agents in distinct coalitions, oth-
erwise, the two agents are put in the same coalition. Note that
if d12 + d21 = 0, any partition of the two agents is optimal.

If the true type w1 of agent 1 is such that the score to-
wards agent 2 is −x, with x < 1, then, OutM1 (w1) =
{{N}, {{1}, {2}}}. In fact, whenever d21 > x (which is
possible as long as x < 1) the only optimum is achieved by
putting the agents in the same coalition; in turn, if d21 < x
the optimum must split the agents in separate coalition.

Assume agent 1 misreports by declaring d1 where d12 =
−1. In this case, OutM1 (d1) = {{{1}, {2}}}. In fact,
d12+d21 ≤ 0 as d21 ≤ 1, and hence, if d12+d21 < 0 any op-
timal outcome will put the agents in singletons, otherwise, the
mechanism will apply the tie-breaking rule described above,
showing that the only possible partition is {{1}, {2}}. There-
fore, this manipulation improves the worst case for 1, proving
that the optimal mechanismM is not NOM.

Even though optimal mechanisms may not necessarily be
NOM, in the next section, we provide a characterization of
BAPX and NOM mechanisms. As a result, this will show that
there always exists an optimal and NOM mechanism, both for
bounded and non-negative weights.

4 BAPX and NOM Mechanisms
In the previous section, we observed that while all optimal
mechanisms are NOM, when weights range in R, this is not
necessarily the case when weights are bounded. However,
looking back to Example 1, we highlight that some strange
behavior of the mechanism caused its obvious manipulability.
In particular, such a mechanism may return different optimal
outcomes for two proportional instances (instances having the
same flattened graph).

We notice that, given any outcome π, whenever two agents
i, j are in the same coalition, both wij and wji contribute
to the social welfare; conversely, if they are not in the same
coalition, neither wij nor wji contributes to it. For this rea-
son, the optimality of an outcome is scale-independent, that
is, if an outcome is optimum, it remains optimum for a pro-
portional instance. Leading to the following observation.

Observation 1. In ASHGs and FHGs, proportional instances
have the same optimal outcomes.

Therefore, since by Observation 1 proportional instances
share the same optimal solutions, it looks reasonable that,
when designing an optimal mechanism, one should care only
about the flattened graph of the instance, rather than the mu-
tual evaluations of the agents. For all these reasons, we intro-
duce the property of scale–independence for a mechanism.

Definition 4 (Scale-Independence (SI)). A mechanismM is
scale-independent (SI) if for any pair of proportional inputs,
d,d′, it returns the same outcome, that is,M(d) =M(d′).

SI requires the mechanism to be consistent with the flat-
tened graph, and any graph proportional to it, meaning that
the outcome should solely depend on the contribution of pairs
of agents to the social welfare, rather than the individual con-
tributions of the agents. This assumption looks quite natural,
as the mutual values of a pair of agents contribute to the social
welfare only if the agents are in the same coalition.

4.1 A Sufficient Condition for NOM
In Example 1, the presented optimal mechanism is not NOM
and does not even satisfy SI. With the next theorem, we fur-
ther emphasize the importance of considering SI mechanisms
as this suffices to guarantee NOM.

Theorem 2. For both ASHGs and FHGs with arbitrary, non-
negative, or bounded weights, SI ⇒ NOM .

Sketch. The bulk of our proof is given by the following ob-
servation, the proof can be found in the full paper. If D is the
space of arbitrary, bounded, or non-negative weights, then,
for each i ∈ N , the following holds true:

(?) for any di, d′i ∈ Di, and d−i ∈ D−i, there exists d′−i ∈
D−i such that (di,d−i) ∼P (d′i,d

′
−i).

Let M be an SI mechanism, and π = M(di,d−i) be an
outcome of OutMi (di). Being M scale-independent, and
given that (?) holds true, then, for any other d′i ∈ Di there
exists d′−i ∈ D−i such thatM(di,d−i) =M(d′i,d

′
−i), and

thus π ∈ OutMi (d′i). This shows that for any pair of di, d′i,
OutMi (di) = OutMi (d′i). Therefore, by choosing d′i = wi,
Proposition 1 provesM is NOM.
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4.2 A Characterization of BAPX and NOM
Let us now specifically focus on BAPX mechanisms. No-
tice that since optimal mechanisms may not be SI (see Exam-
ple 1), the same holds true for BAPX mechanisms.

We next show that, for any possible approximation ratio
ρ, there always exists an SI mechanism with approximation
factor exactly ρ. To this end, we will exploit some inter-
esting properties deriving from the definition of the equiv-
alence class ∼P over game instances. In particular, we in-
troduce a poly-time procedure which, for any pair of in-
stances I, I ′ such that I ∼P I ′, selects the same repre-
sentative for their equivalence class. We call this procedure
REPR and it works as follows: Given a game instance I,
it builds the corresponding flattened graph G ∈ Gn; next,
REPR transform G = (N , ŵ) into a proportional flattened
graph G′ = (N , ŵ′) such that the maximum weight in ab-
solute terms in G′ equals 1. This is clearly always possible
by normalizing weights by a factor maxi6=j |ŵ(i, j)|; finally,
by assuming that there is a prefixed ordering of the agents,
say 1, . . . , n, REPR returns an instance with agents N and
weights w′′i , for all i ∈ N , defined as follows:

w′′ij =

{
ŵ′(i, j) if i < j

0 otherwise.

We will call the instance returned by REPR(I) as the repre-
sentative instance of I.

It is not hard to see that REPR(I) ∼P I, and for any pair of
proportional instances I, I ′ we have REPR(I) = REPR(I ′).
Moreover, the procedure REPR works in polynomial time.

REPR turns out to be very helpful in transforming a mech-
anism into an SI mechanism while maintaining the same ap-
proximation guarantee, as the following lemmas show.

Lemma 1. For any mechanism M, the mechanism M′ =
M◦ REPR2 is SI.

Lemma 2. If M is a ρ-appoximating mechanism, then,
M′ =M◦ REPR is a ρ-appoximating mechanism as well.

Lemmas 1 and 2 together with Theorem 2 show the follow-
ing theorem.

Theorem 3. For any ρ ≥ 1, in ASHGs or FHGs with arbi-
trary, non-negative, or bounded weights, there exists a NOM
and ρ-approximating mechanism if and only if there exists an
SI and ρ-approximating mechanism.

Essentially, Theorem 3 allows us to focus our attention on
generic ρ-approximating mechanisms. Indeed, each such al-
gorithm can be turned into a ρ-approximating and SI mech-
anism, through the procedure REPR, and hence in a ρ-
approximating and NOM mechanism, by Theorem 2.

4.3 Approximate NOM Mechanism
We recall that, in ASHGs, whenever the agents’ weights are
non-negative, the optimum, which consists in grouping all
the agents in the same coalition, is SP. In turn, no SP mech-
anism has a bounded approximation ratio for arbitrary and
bounded weights. Moreover, regardless of the SP or NOM

2We denote f(g(·)) by f ◦ g(·).

requirement, no algorithm can provide an approximation in
ASHG that is O(n1−ε), for every ε > 0, even in simple cases
[Flammini et al., 2022], while computing welfare maximiz-
ing partitions in FHGs is NP-hard [Aziz et al., 2015]. In what
follows, we focus on determining NOM and efficient mecha-
nisms for both arbitrary, non-negative, and bounded weights.

Mechanism M1. Given an instance I, let M be a mecha-
nism that builds the flattened graph corresponding to I, com-
putes a maximum weighted matching on it, and creates a
coalition for each matched pair of agents; unmatched agents
are put in singletons. Then, we defineM1 =M◦ REPR.

Theorem 4. M1 is NOM for both ASHGs and FHGs un-
der unbounded, non-negative, and bounded weights. Further-
more, it provides an n-approximation of opt for ASHGs and
a 2-approximation for FHGs.

To show the theorem, we will make use of the following
well-known fact (see e.g. Problem 16.5 of [Soifer, 2009]):

Fact 1. Let K be a clique of size k. Its edges can be parti-
tioned into k−1, if k is even, and k, if odd, disjoint matchings.

Proof of Theorem 4. (NOM) By Lemma 1,M1 is SI; there-
fore, from Theorem 2, M1 is NOM for instances with arbi-
trary, non-negative, or bounded weights.

(Approximation) Let M be the subroutine as described
in the definition of M1. We next show the approxima-
tion guarantee of M for both ASHGs and FHGs. Being
M1 = M ◦ REPR, by Lemma 2, this approximation guar-
antee is preserved inM1. Let π denote the outcome ofM.

Consider an optimal partition OPT and let k be the num-
ber of its coalitions, say, C1, . . . , Ck. Let us compute for
each coalition Ch a maximum matching Mh whose edges
are in the subgraph by considering only the vertices in Ch,
and let vh be the value of this matching (the sum of its edges
weights). Let us now consider a coalition in the optimum Ch
of size |Ch| = ch. By Fact 1, the edges of Ch can be par-
titioned into either ch or ch − 1 disjoint matchings. Each of
these matchings has a value of at most vh, due to the maxi-
mality of Mh. Therefore,

∑
i,j∈Ch wij ≤ ch · vh ≤ n · vh.

Consider now the maximum matching M∗ computed by
M, and let us denote by v∗ its total value (the sum of the
weights of its undirected edges).

In the case of ASHGs, SW(Ch) =
∑
i,j∈Ch wij and being

opt =
∑k
h=1 SW(Ch) ≤

∑k
h=1 n · vh ≤ n · v∗ = n ·SW(π),

the approximation follows. Notice that the last inequality
holds true as M = ∪kh=1Mh is a matching in G, and being
M∗ optimal, the value of M cannot be larger than v∗.

In FHGs, SW (Ch) =
∑
i,j∈Ch

wij

Ch
≤ vh, and hence

opt =
∑k
h=1 SW(Ch) ≤

∑k
h=1 vh ≤ v∗ = 2 · SW(π).

Notice that if the value of a matching is v, then, the SW of
the corresponding partition equals v/2.

5 NOM and Optimality in Discrete Settings
So far we have seen that when weights range in R, R≥0, or
[−1, 1], optimality and NOM are compatible. However, in
[Flammini et al., 2025] it has been shown that for ASHGs
with weights in {−n, 1}, no optimal mechanism is NOM,
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while, if the weights are in {− 1
n , 1} there exists a NOM and

optimal mechanism. Therefore, even in simple discrete set-
tings, the compatibility of NOM with optimality depends on
the specific values the weights may take.

In what follows, we will dive into these known results to
provide a more complete understanding of the compatibility
of NOM with optimality in discrete settings. Since known re-
sults only focus on ASHGs, we here only consider this class,
and we assume general duplex valuations, i.e., weights that
may take values in {−x, 0, 1} for x ∈ [1,∞), that contains
and extends the setting considered in [Flammini et al., 2025].

We are able to prove the following characterization.

Theorem 5. For general duplex valuations with x ≥ 1, the
following hold true:

• For x > 2n− 3, any optimal mechanism is NOM;

• for x ∈ (1, 2n− 3), no optimal mechanism is NOM;

• for x ∈ {1, 2n − 3} there exists an optimal and NOM
mechanism.

Note that for x ∈ (0, 1) the compatibility of NOM with op-
timality remains open, besides the case x = 1

n
[Flammini et

al., 2025]. We believe this case is worth further investigation.
We next sketch the proof of some interesting cases of The-

orem 5. Hereafter, we denote by ∆+
i = δ+i (wi) ∪ {i} and

∆−i = δ−i (wi) ∪ {i}, where wi is the truthful type of i.

Case x > 2n − 3: any optimal mechanism is NOM. To
this end, we will make use of the following lemma.

Lemma 3. Under general duplex valuations with x > 2n −
3, for any optimal partition π, there is no negative relation
within the agents in any coalition C ∈ π.

We are ready to show that any optimal mechanism is NOM.
To this end, we will make sure that both the conditions of
Definition 2 are satisfied.
Worst-case) If i truthfully reports wi, by Lemma 3, no opti-
mal outcome can guarantee her a negative utility as no agent
in δ−(wi) can be put in her coalition. Consider now any di,
we show there exists d−i such that i ends up in a singleton
coalition. Indeed, by Lemma 3, it suffices to set dj(i) = −x,
for each j 6= i. In conclusion, the worst-case scenario by
truthfully reporting is to be assigned to the singleton coali-
tion, and this cannot be avoided by misreporting the prefer-
ences. Therefore, condition 1 of Definition 2 is satisfied.
Best-case) In this case, by truthfully reporting wi, agent i
will be assigned to the coalition ∆+

i whenever all agents in
δ+(wi) positively value only agents in ∆+

i and any other dec-
laration is set to −x. Since no coalition guarantees i a higher
utility, condition 2 of Definition 2 is satisfied.

Case x = 2n − 3: there exists and optimal and NOM
mechanism. Let us notice that if x = 2n − 3, Lemma 3
no longer holds true. Suppose indeed that C = N and there
exists a unique negative relation within the agents in C. Let
j be an agent incident to the negative relation. In this case,
both the outcomes π = {N} and π′ = {N \ {j}, {j}} are
optimal. However, from a close inspection of the proof of
Lemma 3, it turns out that it still holds as long as the optimal
mechanism breaks ties in favor of π′ rather than π. Hence, we

can derive the following fact: for any π output by this optimal
mechanism, there is no negative relation within the agents in
any coalition C ∈ π. Then, by replacing Lemma 3 with the
aforementioned fact in the proof for x < 2n− 3, we achieve
that this optimal mechanism is NOM for x = 2n− 3.

Although we just proved that a NOM and optimal mecha-
nism exists, it is natural to wonder if all optimal mechanisms
are NOM. Unfortunately, this is not the case.

Example 2. Let x = 2n − 3. Assume that in case of ties
between the outcomes π = {N} and π′ = {N \{j}, {j}} are
optimal, for some j ∈ N , an optimal mechanismM returns
π rather than π′.

Consider an instance where there are three agents, namely,
1, 2, 3, and w12 = −x while w13 = 1. If 1 truthfully re-
ports w1, then, due to the aforementioned tie-breaking rule,
the mechanism may return the grand coalition as the outcome
of the game, which guarantees 1 a negative utility. Notice
that this may not necessarily be the worst outcome for 1, but
we can infer that, in the worst case, 1 gets a negative utility.
However, if 1 reports d12 = d13 = −x, in every optimal par-
tition, i will be put in a singleton and obtains a utility equal
to 0, violating Condition 2 of Definition 2.

In conclusion, not every optimal mechanism is NOM.

6 Conclusions and Future Work
We explored the design of mechanisms for wide classes of
succinctly representable HGs that would be robust at least
against manipulations of bounded rational agents and re-
turn coalition structures of good quality. We followed re-
cent literature and considered NOM mechanisms, and we
proved that these mechanisms can always guarantee non-
manipulability (by agents lacking contingent reasoning) and
optimality, at least in the continuous case. We also proved
that if one requires computational efficiency, we can com-
pute non-manipulable outcomes that approach the best pos-
sible approximation achievable in polynomial time. We also
consider the discrete values showing a preliminary character-
ization of optimal and NOM mechanisms.

From a technical viewpoint, it would be clearly interesting
to address the questions left open in this work: to close the
gap between the best approximation achievable by a NOM
mechanism in FHGs, and to extend the optimality characteri-
zation to other discrete variants of ASHGs and FHGs.

Another intriguing future challenge is to understand to
what extent the results and techniques defined herein can be
extended beyond ASHG and FHG, either to other classes
of hedonic games, such as B-games [Cechlárová and Haj-
duková, 2003], W-games [Cechlárová and Hajduková, 2004],
or distance HGs [Flammini et al., 2021b], or even to general-
izations of hedonic games, such as the group activity selection
problem [Darmann et al., 2012]. Moreover, considering the
design of mechanisms that are not manipulable by bounded
rational agents beyond NOM represents an important future
work. Indeed, as discussed above, NOM considers a specific
way, for an agent lacking contingent reasoning, to aggregate
the possible realizations of the game. Hence, it is natural to
ask what may happen with other “simple” aggregation rules.
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