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Abstract

Concern for image authenticity spurs research in
image forgery detection and localization (IFDL).
Most deep learning-based methods focus primar-
ily on spatial domain modeling and have not fully
explored frequency domain strategies. In this pa-
per, we observe and analyze the frequency charac-
teristic changes caused by image tampering. Ob-
servations indicate that manipulation traces are es-
pecially prominent in phase components and span
both low and high-frequency bands. Based on these
findings, we propose a forensic frequency decom-
position network (F2D-Net), which incorporates
deep Fourier transforms and leverages both phase
information and high and low-frequency compo-
nents to enhance IFDL. Specifically, F2D-Net con-
sists of the Spectral Decomposition Subnetwork
(SDSN) and the Frequency Separation Subnetwork
(FSSN). The former decomposes the image into
amplitude and phase, focusing on learning the se-
mantic content in the phase spectrum to identify
forged objects, thus improving forgery detection
accuracy. The latter further adaptively decomposes
the output of the SDSN to obtain corresponding
high and low frequencies, and applies a divide-
and-conquer strategy to refine each frequency band,
mitigating the optimization difficulties caused by
coupled forgery traces across different frequencies,
thereby better capturing the pixels belonging to the
forged object to improve localization accuracy. Ex-
periments on multiple datasets demonstrate that our
method outperforms state-of-the-art image forgery
detection and localization techniques both qualita-
tively and quantitatively.

1 Introduction

With the development of image editing and generation
technologies[Goodfellow er al., 2020; Ho er al., 2020;
Ramesh er al., 2022], image forgery has become increas-
ingly easier and more prevalent. This advancement has raised
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Figure 1: Observing frequency characteristic changes caused by im-
age tampering. (a) The phase and amplitude spectra of real and
forged images are subtracted to reveal the changes introduced by
tampering. (b) The residual distributions between real and forged
images are statistically analyzed across different frequency bands.

widespread public concern, as forgeries pose threats to per-
sonal and societal security and privacy, potentially even caus-
ing panic. For instance, malicious users can easily modify
objects in images using advanced forgery techniques, creat-
ing fake news or falsifying evidence in court. Therefore, it is
crucial to develop effective and robust methods for detecting
and localizing image forgeries.

In fact, significant progress has been made in forensic
forgery detection technologies in recent years. Some works
are based on clearly defined low-level features, such as JPEG
compression, demosaicking, or interpolation [Bammey et al.,
2020]. Certain detectors show favorable results for specific
types of image tampering, such as splicing. The academic
community has also made milestone achievements in gen-
eral image forgery detection. For example, RGB-N [Zhou
et al., 2018] distinguishes real and manipulated regions by
analyzing noise inconsistencies in steganalysis model filters.
MVSS-Net [Chen et al., 2021b] learns multi-view features
by utilizing noise patterns and edge artifacts. ObjectFormer
[Wang et al., 2022a] uses high-frequency information to de-
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tect subtle manipulations. However, most existing methods
either focus solely on spatial domain forgery features or treat
frequency features as a separate modality, with limited explo-
ration of the frequency-domain characteristics presented by
forged objects. While artifacts introduced by image editing
are not visible in the RGB domain, they often become evi-
dent in the frequency domain [Chen et al., 2021a], inspiring
us to further investigate the frequency characteristic changes
caused by image tampering.

As shown in Figure 1, we apply Fourier transform to both
real and forged images to analyze the changes caused by im-
age tampering. On one hand, we subtract their amplitude
and phase spectra to observe the changes. To facilitate vi-
sualization, the frequency domain residuals, amplitude, and
phase spectra in Figure la are subjected to inverse Fourier
transform. It can be observed that the changes in the im-
age phase components are more closely related to the tam-
pering mask, indicating that manipulation traces are more
easily detectable in the phase component. This is because
most forgery methods typically manipulate images at the ob-
ject level (semantic content), and the phase components in
the Fourier space correspond to the semantic information of
the image, while amplitude components correspond to style
information [Xu et al., 2021]. On the other hand, we also an-
alyze the impact of forgery on the high- and low-frequency
bands of the image. We randomly select a thousand pairs of
real and forged images and statistically analyze the residual
distributions of real and forged images across different fre-
quency bands. As shown in Figure 1b, the changes caused
by forgery exist in both high and low frequencies, which
is more universal than previous studies that suggest forgery is
concentrated in high frequencies [Wang er al., 2022al.

Based on these observations, we propose a learnable foren-
sic frequency decomposition network (F2D-Net) for image
forgery detection and localization. Specifically, F2D-Net
consists of two components: the Spectrum Decomposition
Subnetwork (SDSN) and the Frequency Separation Subnet-
work (FSSN). The SDSN decomposes the image into ampli-
tude and phase spectra, focusing on learning the phase spec-
trum to capture forgery traces and identify forged objects,
thereby improving forgery detection accuracy. The SDSN
also includes spatial-frequency interaction blocks to facili-
tate the interaction of forgery features in both spatial and fre-
quency domains, further enhancing detection accuracy. The
FSSN is responsible for adaptively decomposing the output
of the SDSN into high and low frequencies, and applying a
divide-and-conquer strategy to refine each frequency band.
This approach mitigates the optimization difficulty caused
by the coupling of forgery traces across different frequen-
cies, allowing for better capture of the pixels belonging to
the forged object, and thus improving localization accuracy.
Our method improves detection and localization accuracy by
leveraging phase semantic information and decoupled high-
and low-frequency domain information to assist the model in
distinguishing and capturing forged objects. In summary, our
contributions are as follows:

e We analyze the frequency characteristics changes caused
by image tampering and propose a new Fourier-based method
for image forgery detection and localization—F2D-Net.

e We develop the spectral decomposition subnetwork, which
focuses on learning manipulation traces in the phase spec-
trum, thereby accurately capturing subtle changes in the
phase of forged objects and enhancing forgery detection.

e We design the frequency separation subnetwork to reduce
the interference between forgery traces in different frequency
bands, further improving the precision of forgery localization.

We conduct extensive experiments on multiple benchmarks
and demonstrate that our method outperforms state-of-the-art
methods both qualitatively and quantitatively.

2 Related Works

Image forgery detection and localization. Most early works
propose to localize a specific type of forgery, including splic-
ing [Huh et al., 2018], copy-move [Cozzolino et al., 2015],
and removal [Aloraini et al., 2020]. Although these methods
perform well in detecting the specific forgery type, they are
obviously insufficient in dealing with real-world cases due to
the unknown real forgery types. Therefore, tackling multi-
ple forgery types in one model has been emphasized in recent
work. RGB-N [Zhou et al., 2018] uses a dual-stream network
to extract RGB and noise features for detecting and localiz-
ing image forgery by capturing visual artifacts and modeling
region inconsistencies. ManTra-net [Wu er al., 2019] lever-
ages an end-to-end network, which extracts image manipu-
lation trace features and identifies anomalous regions by as-
sessing how different a local feature is from its reference fea-
tures. SPAN [Hu et al., 2020] attempts to model the spatial
correlation via local self-attention blocks and pyramid prop-
agation. MVSS-Net [Chen et al., 2021b] has designed an
edge-supervised branch that uses edge residual blocks to cap-
ture fine-grained boundary detail in a shallow to deep manner.
PSCCNet [Liu et al., 2022] uses a progressive spatial-channel
correlation module that uses features at different scales and
dense cross-connections to generate operational masks in a
coarse-to-fine fashion. HiFi_IFDL [Guo e al., 2023] employs
a hierarchical fine-grained approach for IFDL representation
learning, utilizing level-wise classification and dependencies
for improved performance. In this work, We design a deep
Fourier-based network to enhance phase features and adap-
tively learn low-high frequencies for improved IFDL.

3 Methodology

3.1 Fourier transform of images

For the forgery, some subtle manipulation traces are no longer
visible in the spatial domain. Previous works rarely learn the
features of tampering artifacts in the frequency domain. To
this end, we revisit the forged images via Fourier transform
and design a forensic frequency decomposition network to
capture the frequency representations of forgery effectively.
As recognized, the Fourier transform is widely used to ana-
lyze the frequency content of images. Given a single channel
image = with the shape of H x W, the Fourier transform F
converts to the Fourier space as a complex component F (),
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Figure 2: An overview of the proposed framework. The input is a suspicious image (H x W x 3), and the output is a predicted mask

(H x W x 1), which localizes the forged regions

which is expressed as:
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and F~! (z) defines the inverse Fourier transform accord-
ingly. Since an image or feature may contain multiple chan-
nels, we separately apply Fourier transform to each chan-
nel in our work with the FFT [Frigo and Johnson, 1998].
The amplitude component A (z) (u,v) and phase component
P (z) (u,v) are expressed as:

A(z) (u,v) = VR () (u,0) + I* () (u, v),

I (z) (u,v) } @)
R(x) (u,v) ]’

where R(x) and I(z) represent the real and imaginary parts
of F (z) respectively.

Targeting at Image forgery detection and localization, we
employ Fourier transform to conduct the detailed frequency
analysis of forgery, as shown in Figure 1. There are two ob-
servations in frequency domain: 1) Manipulation traces are
more easily detected on the phase components; 2) variations
caused by image manipulation are spread over both high and
low frequency components. Therefore, it is logical to per-
form effective learning on the phase component and model
low-high frequency components adaptively.

F(z) (u,v) =

P (2) (u,v) = arctan [

3.2 Overview

Based on the above analysis, we design a simple but effective
F2D-Net framework as shown in Figure 2. The input image
is represented as X € R¥*Wx3 where H and W represent
the height and width of the image. First, the image is input
to the spectral decomposition subnetwork, obtaining G, €
RHxWsxCs Next, G, and Xg € RHs*WsxCs obtained by
downsampling X are transformed into frequency domain by
Fourier transform:

A(GT) , P (GT) - -F(Gr) ) 3
A(Xaq), P (Xa) = F (Xa), )

where A(-) and P(-) indicate the amplitude and phase respec-
tively. To reduce the effect of altered amplitude component,
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Figure 3: Phase-emphasized interaction block (PEI). Space-
frequency dual cross attention (SFDCA) is shown in Figure 4.

we recombine to obtain G, € RHs*xWsxCs.

G’ = Conv(F~ 1 (A(Xy), P(G,)) + G,), ©)
where Conv denotes a 1 x 1 convolution layer. Follow-
ing [Chen et al., 2021b; Wang et al., 2022b], we also use
CNN s to extract edges from coarse features as a kind of su-
pervised information. Meanwhile, the coarse features G'. are
adaptively divided into low-high frequency for learning sepa-
rately through a predicted frequency demarcation. Then, the
features after the frequency separation subnetwork are fused
with spatial information to output the predicted localization
map. Finally, we pool the predicted probability map and use
a fully connected layer for forgery detection.

3.3 Spectral decomposition subnetwork

Most forged images are carefully processed to hide tamper-
ing artifacts, making it challenging to model inconsistencies
in the spatial domain. To overcome this challenge, SDSN em-
ploys deep Fourier transforms to independently process the
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Figure 4: Space-frequency dual cross attention (SFDCA).

amplitude and phase spectra of images, with a heightened fo-
cus on phase learning.

We use ResNet-50 pretrained on ImageNet [Deng et al.,
2009] as the backbone network of the spectral decomposition
subnetwork. To enhance the phase characterization, we de-
sign the phase-emphasized interaction (PEI) block and place
it alternately with the ResNet block, as shown in Figure 3.
The PEI blocks specifically learn the phase information of
forged images, and progressively improve the network’s abil-
ity to capture the tampered artifacts, thus improving the accu-
racy of the forgery localization.

We illustrate the PEI block as shown in Figure 3. Ac-
cording to spectral convolution theorem in Fourier theory
[Katznelson, 20041, processing information in Fourier space
is capable of capturing the global frequency representation in
the frequency domain. In contrast, the normal convolution fo-
cuses on learning local representations in the spatial domain.
Thus, we introduce the dual domain information interaction
to facilitate the information flow and learn the complemen-
tary representation. Specifically, it comprises a spatial branch
and a frequency branch for processing spatial and frequency
representations. Denoting G, € RH»*W»*Ch ag the input
features of the PLB block, the frequency branch first uses a
1 x 1 convolution to process G, that obtains G, and then
adopts Fourier transform to convert it to the Fourier space:

A(Gfo)ﬂP(Gfo):]:(Gfo)' (6)

Next, we adopt the operation O F (-) that consists of 1x 1 con-
volution layers on its phase component, and then recompose
the operated result with the amplitude component to obtain
Gy, € REXWoxCh which is expressed as:

G =F " (A(Gy,), OF(P(G ), @)

In this way, Gy, is the processed result of the frequency-
domain representation with enhanced phase information.
Meanwhile, the spatial branch processes information in the
spatial domain to obtain G, € RF»*WpxCs.

Gs, =08 ((Gp)) ) 3

where OS denotes a residual block with 3 x 3 convolution
layers. Then, inspired by [Luo ef al., 2021], we introduce
the space-frequency dual cross attention (SFDCA) to interact
with frequency domain features and spatial features. As Fig-
ure 4 illustrates, SFDCA employs shared attention to facili-
tate the comprehensive interplay between the two domains, a
process that can be described as:

', Gy, = fsrpea(Gy, + Gy,), ©)

where G’ and G are the output of the interacted spatial
branch and frequency branch. And they both get the comple-
mentary representation, which benefits for these two branches
to obtain more representational features. The following spa-
tial and frequency branches are formulated in the same way
as above and output Gy, and G, :

Gy, = F 1 (A(G},), OF(P(GY))) , (10)
G, =08 ((GL)) - (11)

Finally, we concatenate Gy, and G, and then apply a1 x 1
convolution operation to integrate them:

G. = Conv (Cat(Gy,,Gs,)) , (12)

where G, € RH»*WoxCy ig the output of PEI block. The
phase information of the forged images is effectively en-
hanced by the subnetwork with five PEI blocks allowing to
obtain features containing more forgery traces.

3.4 Frequency separation subnetwork

As described in Sec. 3.2, the coarse features G, are fed into
adaptive frequency separation subnetwork. It adaptively di-
vides the forged image into low and high frequencies compo-
nents with different gradients respectively, and uses the spa-
tial branch for information compensation.

G! € RHs*xWsxCs g firgt transformed into frequency do-
main by Fourier Transform:

A(G)),P(G))=F(G,). (13)

Then, the subnetwork predicts a two-dimensional mask with
mask prediction network (MPN). Specifically, the G is
mapped into one-dimensional vector by global average pool-
ing and then pass through the fully-connected layers to gen-
erate two scalars « and (3 in the range of 0 to 1:

a, 8 = o(FC(GAP(GL)), (14)

where o denotes the sigmoid activation function. The mask
M € RH<*Ws jg obtained by setting the corresponding
bounding box as 1 and the remaining as 0:

H « H w g w B

o
M|=—--H:—+-H ——--W:—+-W|=1
2 2 g Tty Wiy W
(15)

Then, based on the obtained mask, we filter out the low and
high frequencies parts of the coarse features G.. Meanwhile,
the convolution operation is performed over amplitude to en-
hance the learning ability of the subnetwork:

GL=F (Mo A(G,),0F (P(G}))),

Gg=F'((1-M)©A(G)),0F (P(G))),
where © is the Hadamard product, OF(-) denotes two 1 x
1 convolution layers, G, and G g7 denote the low frequency
and high frequency components, respectively. Next, the two

components are processed with convolution layers separately
in the spatial domain and fused:

Gp = Conv (Cat (0S (G1),08 (Gy))), (7

where G € R7sxWsxCs ig the overall frequency features,
OS denotes a residual block with 3 x 3 convolution layers

(16)
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Loc. | Data [.COl__Cov. CAS. NLI6 IM.20 Loc Cov. CAS. NL16 Det. AUC(%) FL(%)
: Metric: AUC(%) — Pre-trained : Metric: AUC(%) / F1(%) — Fine-tuned ManTra 59.04 56.60
ManTra | 64K | 82.4 819 81.7 795 748 RGB-N | 81.7/43.7 79.5/40.8  93.7/72.2 ' :
SPAN | 96k | 93.6 922 797 840 750 SPAN | 93.7/55.8 83.8/382  96.1/58.2 SPAN | 6733 6348
PSCC | 100k | 982 847 829 855  80.6 PSCC | 94.1/72.3 87.5/55.4 99.6/81.9 PSCC 99.65 97.12
ObFo. | 62K | 955 928 843 872 821 Ob.Fo. | 957/75.8 88.2/57.9  99.6/82.4 Ob.Fo. 99.70 9734
TANet | 60K | 987 914 853 89.8 849 TANet | 97.8/78.2 89.3/61.4  99.7/86.5 e S
HiFi | 100k | 983 932 858 870 829 HiFi | 96.1/80.1 88.5/61.6  98.9/85.0 HiFi 99.50 9740
Ours | 60K | 98.5 942 91.0 899 852 Ours | 98.3/81.5 92.6/653  99.8/87.2 Ours 99.73 97.52
(@) (b) (©

Table 1: Image forgery detection and localization results. (a) Localization performance of the pre-train model. (b) Localization performance
of the fine-tuned model. (c) Detection performance on CASIA-D dataset. (Bold means best, underline means second best).

and Conv is the 1 x 1 convolution. Besides, we also adopt
a residual block to process the spatial branch. For the fusion
of the two branches, We follow [Chen ef al., 2021b] to adopt
the Dual Attention (DA) module [Fu ef al., 2019]. DA in-
cludes both channel attention and position attention. It can
effectively fuse two branches. The process can be written as:

Gs =0S8(G,), (18)
G, = DA (Gr,G5s). (19)

Then, we transform G, € R7s*WsXx1 with bilinear upsam-
pling into the final predicted mask G,,; € RT*Wx1  For
the detector, we apply the ConvGeM proposed by MVSS-
Net++ [Dong et al., 2023], which can convert localization re-
sults G+ into detection prediction D,,;. ConvGeM strikes
a good balance between detection and localization through a
decayed skip connection. Thus, we use ConvGem to obtain a
more accurate detection result:

Dyt = ConvGeM (Gout) (20)

3.5 Optimization

Following most studies [Chen et al., 2021b; Salloum er al.,
2018; Wang er al., 2022b], we also employ the edge supervi-
sion. However, this is not the focus of this work, so we have
used some common methods. Following [Chen et al., 2021b],
we use the Sobel layer and the residual block to obtain the
edge prediction G, € RH<*Wex1 in a shallow-to-deep man-
ner. For edge loss, the ground-truth edges £ € RA*Wx1 jg
downsampled to a smaller size £/ € RH<*Wex1to match G..
This strategy outperforms upsampling GG, in terms of compu-
tational cost and performance. The overall loss function can
be written as:

L= Oéﬁl(}/, Gout>+5£2(ya Dout)+<1_a_ﬁ)£3(E/a C(val))a
where £; and L3 denote the Dice loss [Chen et al., 2021b],
L5 is BCE loss, y is a label that represents the authenticity of
the image, Y € R *Wx1 ig the ground-truth mask, and «, 3
are the hyperparameters to balance the loss function. In prac-
tice, «v is set as 0.60 and (3 is set as 0.2. Note that authentic
images are only used to compute Lo.

4 Experiments

4.1 Experimental Setup

Pre-training Data We create a sizable image tampering
dataset and use it to pre-train our model. This dataset includes

three categories: 1) splicing, 2) copy-move, and 3) removal.
We ensure that the training and test datasets are dissimilar.
Testing Datasets Following [Liu e al., 2022; Wang et al.,
2022al, we evaluate our model on CASIA [Dong et al., 2013],
Coverage [Wen et al., 2016], Columbia [Hsu and Chang,
2006], NIST16 [Guan et al., 2019] and IMD20 [Novozam-
sky et al., 2020]. Specifically, IMD20 collects real-life ma-
nipulated images from Internet. We apply the same train-
ing/testing splits as [Hu er al., 2020; Wang et al., 2022a] to
fine-tune our model for fair comparisons.

4.2 Image Forgery Localization

Following SPAN [Hu et al., 2020], our model is compared
with other state-of-the-art tampering localization methods un-
der two settings: 1) training on the synthetic dataset and eval-
uating on the full test datasets, and 2) fine-tuning the pre-
trained model on the training split of test datasets and evalu-
ating on their test split. The pre-trained model demonstrates
generalizability, while the fine-tuned model shows local per-
formance after reducing domain discrepancy.

Pre-trained Model Table 1a shows the localization perfor-
mance of pre-trained models for different methods on five
datasets under pixel-level AUC. We compare our model F2D-
Net with MantraNet [Wu ez al., 2019], SPAN [Hu et al.,
2020], PSCCNet [Liu et al., 2022], ObjectFormer [Wang et
al., 2022a], TANet [Shi et al., 2023], and HiFi_IFDL [Guo
et al., 2023] when evaluating pre-trained models. The pre-
trained F2D-Net achieves the best localization performance
on Coverage, CASIA, and NIST16, IMD20 and ranks the
second on Columbia. Especially, F2D-Net achieves 94.2 %
on the copy-move dataset COVER, whose image forgery re-
gions are indistinguishable from the background. This val-
idates our model owns the superior ability to capture tam-
pering traces. We fail to achieve the best performance on
Columbia, despite surpassing TANet 0.2 % under AUC. We
contend that the explanation may be that the distribution of
their synthesized training data closely resembles that of the
Columbia dataset. This is further supported by the results
in Table 1b, which show that F2D-Net performs better than
TANet in terms of both AUC and F1 scores. Furthermore, it
is worth pointing out F2D-Net achieves decent results with
less pre-training data.

Fine-tuned Model The network weights of the pretrained
model are used to initiate the fine-tuned models that will be
trained on the training split of Coverage, CASIA, and NIST16
datasets, respectively. We evaluate the fine-tuned models of
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Figure 5: Visualization of the predicted manipulation mask by different methods. From top to bottom, we show forged images, GT masks,

predictions of ManTraNet, SPAN, PSCC-Net, HiFi-Net and ours.

Distortion \SPAN ObjectFormer Ours

no distortion 83.95 87.18 89.89

Resize(0.78x) 83.24 87.17 89.76 0.13]
Resize(0.25 %) 80.32 86.33 88.17 1.72]
Blur(k = 3) 83.10 85.97 89.55 0.34|
Blur(k = 15) 79.15 80.26 87.94 1.95]
Noise(o = 3) 75.17 79.58 88.63 1.26/
Noise(o = 15) 67.28 78.15 83.58 6.31]
Compress(q = 100) | 83.59 86.37 89.80 0.09)
Compress(qg = 50) | 80.68 86.24 89.21 0.68)

Table 2: Localization performance on NIST16 dataset under various
distortions. AUC scores are reported (in %), (Blur: GaussianBlur,
Noise: GaussianNoise, Compress: JPEGCompress.)

different methods in Table 1b. As for AUC and F1, our model
achieves significant performance gains. This validates that
F2D-Net could precisely capture subtle tampering traces by
phase leaning and adaptive low-high frequency learning.

4.3 Image Forgery Detection

To avoid false alarms, we engage in forgery detection tasks.
Following the ObjectFormer [Wang er al., 2022a], we con-
duct experimental comparisons on the CASIA-D dataset in-
troduced by [Liu er al., 2022]. As shown in Table lc, our
method delivers exceptional detection performance, with an
AUC of 99.73% and an F1 score of 97.52%. Our method
learns to differentiate and conquer forgery features in the fre-
quency domain, which allows for the distinct separation of

CASIA NIST16
AUC F1 AUC Fl
baseline 70.5 367 762 51.6
w/o ALP 713 492 874 629
w/o SFDCA 87.1 528 956 783
w/o FSSN 88.5 539 972 80.1
Ours 92.6 653 998 872

Variants

Table 3: Ablation results on CASIA and NIST16 dataset using dif-
ferent variants of F2D-Net. AUC and F1 scores (%) are reported.

forged images from authentic ones.

4.4 Robustness Evaluation

To analyze the robustness of F2D-Net for localization, we
follow the distortion settings in [Wang er al., 2022a] to de-
grade the raw forged images from NIST16. These distortions
types include resizing images to different scales (Resize), ap-
plying Gaussian blur with a kernel size k (GaussianBlur),
adding Gaussian noise with a standard deviation o (Gaus-
sianNoise), and performing JPEG compression with a quality
factor ¢ (JPEGCompress). We compare the forgery localiza-
tion performance (AUC scores) of our pretrained models with
SPAN[Hu et al., 2020] and ObjectFormer on these corrupted
data, and report the results in Table 2. F2D-Net demonstrates
better robustness against various distortion techniques. It is
worth noting that JPEG compression is commonly performed
when uploading images to social media. Our model outper-
forms others on compressed images.
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Figure 6: AUC score of our framework with different numbers of
the PEI blocks.

Figure 7: Feature visualization of different representations in the
PEI block.

4.5 Ablation Analysis

In this section, we conduct experiments to demonstrate the
effectiveness of our method F2D-Net. More ablation stud-
ies are provided in supplementary materials. The F2D-Net
contains two key components: spectral decomposition sub-
network with the phase-emphasized interaction (PEI) block
and frequency separation subnetwork. The PEI block com-
prises two designs: one is an enhanced learning dedicated
to phase spectra, termed as the additional learning of phase
(ALP), and the other is the space-frequency dual cross atten-
tion (SFDCA) used for spatial-frequency interaction. The fre-
quency separation subnetwork (FSSN) is designed to decom-
pose the tampering traces into low and high frequencies. To
evaluate the effectiveness of ALP, SFDCA and FSSN, we re-
move them separately from F2D-Net and evaluate the forgery
localization performance on CASIA and NIST16 datasets.

Table 3 presents the quantitative outcomes. The baseline
denotes that we just use ResNet-50 and ResBlock. It can be
observed that without FSSN, the AUC scores decrease by 4.4
% on CASIA and 2.5 % on NIST16, while without SFDCA,
the AUC scores decrease by 5.9 % on CASIA and 4.1 % on
NIST16. Moreover, when ALP is discarded, significant per-
formance degradation in Table 3, i.e., 16.5 % in terms of AUC
and 24.6 % in terms of F1 on CASIA can be observed.

In Figure 6, we show the different numbers of the phase-
emphasized interaction (PEI) block to verify its effect over
three datasets. There is an overall incremental trend in the
forger location performance as the number of PEI increases,
but the performance saturates after reaching a critical point.
It is obvious that the setting of 5 is the optimal solution.

wl/o PEI

Forged Mask w/o FSSN ours

Figure 8: Visualization of our framework. From left to right, we dis-
play the forged images, masks, GradCAM of the feature map with-
out (w/o) and with (w) PEI and FSSN.

4.6 Visualization Results

Qualitative results. We provide predicted forgery masks of
different methods in Figure 5. Since the source code of Ob-
jectFormer [Wang et al., 2022a] is not available, their pre-
dictions are not available. It benefits from the ability of
our model to capture subtle tampering traces and decompose
them into low and high frequencies.

Visualization of PEIL. To verify the effect of the phase-
emphasized interaction (PEI) block, we show the feature vi-
sualization of different representations in the PEI block in
Figure 7. As can be seen, since features after interaction can
obtain complementary representations from each other, f ]’cl
obtains more spatial information and the details in f; are
enhanced. It benefits for these two branches to obtain more
representational features. Besides, we show the change of
features before and after PEI in Figure 8. It is clear that PEI
enforces the forgery features learning.

Visualization of FSSN. To verify the usefulness of the fre-
quency separation subnetwork (FSSN), the change of fea-
tures before and after FSSN is shown in Figure 8. The results
demonstrate that the FSSN can effectively refine forgery lo-
calization and prevents false alarms, thus helping our model
to perform well.

5 Conclusion

In this paper, we explore image forgery from a frequency per-
spective and propose a novel cascade frequency learning net-
work for Image forgery detection and localization. In detail,
we first adopt deep Fourier transform and introduce a phase-
emphasized interaction block to learn the phase information
for capturing manipulation traces precisely. Then, we design
an adaptive frequency separation subnetwork to decompose
the tampering traces into low and high frequencies, realizing
forgery localization refinement. Extensive experimental re-
sults on several benchmarks demonstrate the effectiveness of
the proposed algorithm.
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