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Code-BT: A Code-Driven Approach to Behavior Tree Generation for Robot Tasks
Planning with Large Language Models

Siyang Zhang1,2 , Bin Li2,∗ , Jingtao Qi2 , Xueying Wang2 , Fu Li2 , Jianan Wang1,2 , En
Zhu1 and Jinjing Sun2

1College of Computer Science and Technology - National University of Defense Technology
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Abstract
Behavior trees (BTs) provide a systematic and
structured control architecture extensively em-
ployed in game AI and robotic behavior control,
owing to their modularity, reactivity, and reusabil-
ity. Nonetheless, manual BTs design requires sig-
nificant expertise and becomes inefficient as task
complexity increases. Recent automation technolo-
gies have avoided manual work, but often have high
application barriers and face challenges in adapt-
ing to new tasks, making it difficult to easily con-
figure them to specific requirements. Code-BT in-
troduces a novel approach that utilizes large lan-
guage models (LLMs) to automatically generate
BTs, representing the task planning process as the
process of coding and organizing sequences. By
retrieving control flow information from the gen-
erated code, BTs can be efficiently constructed to
address the complexity and diversity of task plan-
ning challenges. Rather than relying on manual de-
sign, Code-BT uses task instructions to guide the
selection of relevant APIs, and then systematically
assembles these APIs into modular code to align
with the BTs structure. Finally, action sequences
and control logic are extracted from the gener-
ated code to construct the BTs. Our approach not
only ensures the automation of BTs generation but
also guarantees the scalability and adaptability for
long-term tasks. Experimental results demonstrate
that Code-BT substantially improves LLM perfor-
mance in BTs generation, achieving improvements
ranging from 16.67% to 29.17%.

1 Introduction
Recently, the application of Large Language Models (LLMs)
in robotics has attracted considerable attention. Models from
the GPT series, in particular, have demonstrated remarkable
capabilities in analogical reasoning, emergent intelligence
[Brown et al., 2020], and code comprehension and genera-
tion [Jiang et al., 2024a]. Several investigations have suc-
cessfully leveraged LLMs for task planning in robotics. This

*Corresponding author.

includes translating natural language instructions into Plan-
ning Domain Definition Language (PDDL) [Aeronautiques et
al., 1998], replacing traditional planners with LLMs to gen-
erate task plans [Zhou et al., 2024b], and utilizing LLMs to
produce Python planning programs for specific domains and
tasks [Silver et al., 2024]. Moreover, some studies have intro-
duced world-state information to enable dynamic expansion
and updates of object properties [Chen et al., 2023]. These
works demonstrate that LLMs possess strong domain knowl-
edge and common-sense priors, which are essential for many
of planning tasks.

However, despite the promising prospects of these stud-
ies, several inherent challenges have been revealed. A sig-
nificant challenge is the development of domain knowledge
libraries, which is still laborious and time-intensive, partic-
ularly when it necessitates frequent manual revisions. For
example, a knowledge base predefined for task planning in
a factory environment must be manually modified whenever
there are changes in processes or equipment, otherwise, the
generated task plans will fail. Another challenge is the lim-
ited generalization and flexibility across different task types.
While LLMs can generate task plans for specific domains,
current methods often struggle to generalize these plans to
other types of tasks. For instance, a planning approach de-
signed specifically for gear assembly may not be flexible or
adaptable enough to handle household tasks. These issues
highlight the gap between existing methods and the actual re-
quirements of robotic task planning.

BTs are a control architecture that allows agents to flexi-
bly switch between different tasks [Colledanchise and Ögren,
2018], and are widely used in robot control [Colledanchise
and Natale, 2021][Wen et al., 2024a]. Compared to tradi-
tional task representation methods such as finite state ma-
chines and decision trees, behavior trees offer advantages in
modularity and flexibility. However, the manual design of
BTs requires complex domain knowledge and tedious expe-
riential details, which results in increased time and cost. This
has spurred some explorations into automatic BTs generation
methods based on LLMs. [Izzo et al., 2024][Lykov et al.,
2023] construct BTs datasets to fine-tune models to improve
the direct output of BTs, while [Ao et al., 2024] and [Chen et
al., 2024] combine planning for BTs generation, using LLMs
to transform goals into planning languages, and then using
BTs expansion algorithms to construct behavior trees. How-
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ever, these methods either require substantial costs in collect-
ing or constructing datasets for fine-tuning, or building do-
main knowledge libraries for each individual task scenarios,
which lacks generalization and flexibility.

Code represents a fundamental medium for the realization
and deployment of BTs 1 2. A fact is that LLMs have been
extensively trained on high-quality code data, which has con-
currently enhanced their code generation capabilities, now a
key metric of their performance. This has inspired us to use
code generation for the automatic design of BTs. Compared
to directly generating BTs or planning languages for robotic
tasks, LLMs have been extensively trained on high-level pro-
gramming languages like Python. Code’s primary benefit is
its generality and its ability to encapsulate complex logic with
expressive power. Utilizing the strong code generation abili-
ties of LLMs, we intend to create a comprehensive and adapt-
able framework for BTs generation, facilitating effective task
planning in diverse robotic scenarios.

We introduce a code driven approach for Behavior Trees
generation Code-BT. Code-BT consists of a three-phase
framework that utilizes code to assist LLMs in planning BTs
for solving robotic tasks. This code generation approach
is bottom-up, emulating the programmer’s methodology of
crafting subtask functions prior to tackling the complete task
within the code. In the first phase, the LLM selects relevant
code APIs according to the task instructions. Subsequently,
the LLM organizes these APIs into modular solutions, while
adhering to constraint rules to regulate the control flow struc-
ture. Given the inherent complexity, this process is iterative
and feedback-driven, as producing an accurate and reliable
solution in a single attempt is rarely feasible. Finally, we in-
troduce a parsing algorithm to extract control flow from the
generated code, mapping it into a Behavior Tree representa-
tion.

The principal contributions of this paper are as follows.

• We propose Code-BT, the first framework leveraging
LLMs’ code generation capabilities to automate Behav-
ior Trees creation for robotic tasks.

• We design targeted rules to enforce structural constraints
on code generated by LLMs, ensuring alignment with
the BTs. To improve reliability, we incorporate an itera-
tive feedback mechanism, organizing APIs in a bottom-
up manner and preserving the modularity of BTs.

• We devise an innovative algorithm leveraging Abstract
Syntax Trees (ASTs) to accurately extract control flow
from Python code and map it into an equivalent XML-
formatted BTs representation.

• Compared to generalizable methods like Chain-of-
Thought (CoT) and code generation approaches, our
method significantly improves BTs generation pass rate
and quality across diverse task scenarios.

1https://py-trees.readthedocs.io/en/devel/
2https://www.behaviortree.dev/

2 Related Work
2.1 Planning and Learning Methods for BTs

Generation
The automatic generation of BTs is a significant research
direction in robotics and artificial intelligence. Some stud-
ies have focused on planning-based approaches to ensure
the generated tree structures are both logical and complete.
For instance, [Cai et al., 2021] introduced a STRIPS-based
BTs expansion method that constructs coherent and com-
prehensive behavior trees using state space formulations.
[Gugliermo et al., 2023] combined decision trees and logical
decomposition to create interpretable behavior trees. [Rovida
et al., 2017] utilized a PDDL planner to initialize task se-
quences, followed by hierarchical task network (HTN) de-
composition to obtain hierarchical trees, which were then re-
organized and optimized to generate behavior trees. [Chen et
al., 2024] convert task instructions into first-order logic for-
mulas and using the Optimal Behavior Tree Expansion Algo-
rithm (OBTEA) to construct minimum-cost behavior trees.

Moreover, learning-based BTs generation methods have
demonstrated their potential in representing patterns within
BTs structures effectively. [Potteiger and Koutsoukos, 2023]
employed reinforcement learning to develop an Evolving Be-
havior Tree (EBT) model. [Iovino et al., 2021] used genetic
programming to learn the structure of behavior trees, address-
ing robotic tasks in unpredictable environments. [Jain et al.,
2024] adopted a learning from demonstration approach to de-
rive behavior trees from task demonstrations.

While planning-based methods ensure the reliability of the
generated behavior trees, they often require substantial time
and effort to manually write PDDL domain and problem
files. Additionally, learning-based methods are computation-
ally expensive, and they have limited generalization capabili-
ties.

2.2 Integrating LLMs for Robot Program
Generation

Code generation aims to automatically produce executable
code from high-level abstract descriptions, such as natu-
ral language or requirement specifications, thereby reducing
the workload of manual coding. In recent years, large lan-
guage models (LLMs) have demonstrated significant poten-
tial in natural language processing and code generation. Re-
cent advancements have seen the introduction of numerous
LLMs, including DeepSeek v2[Liu et al., 2024] , Qwen 2.5
[Yang et al., 2024], and GPT-4[Achiam et al., 2023], which
have achieved state-of-the-art (SOTA) results in various code-
related tasks, such as code generation [Wen et al., 2024b] and
code summarization [Zhou et al., 2024c].

Program code serves as one of the primary interfaces for
specifying robotic planning and control commands, playing
a crucial role in implementing robotic functionalities and
tasks[Yang et al., 2022]. Consequently, LLM-generated code
can serve as an expressive means to control robots. For exam-
ple, [Vemprala et al., 2024] demonstrated the ability of LLMs
to generate deployable code based on task descriptions and
available API information. [Liang et al., 2023] showed how
LLMs can recursively generate undefined functions, enabling
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the development of more complex code policies for robots.
Additionally, [Burns et al., 2024] illustrated the potential of
LLMs to generate relevant code for high-precision manipula-
tion tasks within the correct action space.

These studies highlight the significant potential of code
generation techniques in the field of robotics. However, cur-
rent methods primarily focus on low-level action control and
lack the capability to handle long-term complex tasks.

2.3 Integrating LLMs for BTs Generation
The strong language understanding and reasoning capabilities
of large language models (LLMs) have led researchers to ex-
plore innovative methods for directly constructing BTs using
LLMs. For example, [Cao and Lee, 2023] designed a Phase-
Step Prompt method that converts natural language descrip-
tions into robot actions, thereby building complete behavior
trees. In [Zhou et al., 2024a], a keyword parser based on
BERT was developed to parse sequential steps into an initial
behavior tree, which is subsequently dynamically expanded.
Some studies have used LLMs to directly generate XML-
formatted behavior trees [Izzo et al., 2024], [Mower et al.,
2024]. [Ao et al., 2024] employs LLMs as planners by pro-
viding initial states, goal descriptions, and PDDL knowledge,
using different context learning methods to generate behavior
trees.

Unlike the aforementioned works, our approach parses
behavior trees from generated high-level programming lan-
guages rather than from rough natural language descriptions.
This method incorporates more precise API and control flow
information and does not rely on additional training or prede-
fined planning domain knowledge.

3 Method
In this section, we introduce the workflow and design details
of our method, including API selection, code generation, and
control flow to BTs mapping. Our method framework is il-
lustrated in Figure 1. To better leverage the code generation
capabilities of LLMs for generating usable behavior trees for
robotic tasks, we have constructed a pipeline consisting of the
following phases.

3.1 API Selection
This phase ultimately yields a set of callable API functions,
which fall into two categories: condition checks and action
executions.

We instruct the LLM to combine the task description with
the API library to select the necessary and relevant APIs for
the task, and output the results in JSON format. Given the
diversity of platforms, scenarios, and tools in the robotics do-
main, these APIs are not limited to any specific platform or
library. The API library provides a diverse set of robotic ac-
tions, including essential descriptive names and correspond-
ing functional annotations, while hiding the intricate details
of the functions, similar to the definition in [Vemprala et al.,
2024].

The advantage of this method is that it significantly reduces
the complexity of constructing the function library, requiring
only the function names and their corresponding descriptions,

which enhances its generality. Whether manually or automat-
ically created, there is no need for specific, strict implemen-
tations or runtime details, making it easy to construct an API
library. Furthermore, additional parameters or detailed com-
ments can be added to the function headers if necessary.

Specifically, regarding the API function library, when a
new scenario or task arises, relevant APIs can be easily in-
corporated into the library in code form, without the need for
detailed function implementations. This increases the gener-
alization across different scenarios. Additionally, the highly
abstracted nature of the APIs in the library facilitates easy
updates, modifications, or deletions.

3.2 Rule-Constrained Multi-Round Code
Generation

Decision trees have been shown to be equivalent to behavior
trees when action nodes always return ”running” [Colledan-
chise and Ögren, 2016], as illustrated in Figure 2. In prac-
tice, decision trees can be easily implemented using ”if-else”
branching structures in code. However, behavior tree nodes
may return either ”success” or ”failure.” Therefore, simple
”if-else” structures are insufficient to fully represent behav-
ior trees. There are already open-source libraries, such as
pytrees, that assist in implementing behavior trees, but these
libraries have not achieved the same level of popularity as
ROS in the robotics operating system domain. Consequently,
we aim to generate more general-purpose code to repre-
sent behavior trees without relying on complex predefined li-
braries.

In previous code generation tasks, benchmarks like
Humaneval[Chen et al., 2021] and MBPP[Austin et al., 2021]
have been used to evaluate the performance of models in
generating code. However, there is currently no benchmark
available for evaluating the generation capability of person-
alized code, such as robot functions or specific coding con-
ventions. Notably, the work on SCoT (Structure Chain of
Thought) [Li et al., 2023] explored the method of incorpo-
rating structured intermediate steps into code generation by
leveraging sequence, branching, and looping structural infor-
mation, which effectively improved the quality of code gen-
eration.

Inspired by decision trees and SCoT, we aim to effectively
extract control structure information (control flow) from code
to generate BTs. Based on the set of available API functions
obtained from the previous step, we leverage the LLMs to or-
ganize these API functions through code generation. Specifi-
cally, the code generation step has three core settings:

Constraint Rules:
1. In addition to using the if-else keywords, we al-

low the use of not to evaluate the execution results of
nodes. The return keyword is used to indicate the re-
sult, which can only be failure or success, represented
by boolean values (False or True).

2. The control flow within code blocks follows two logical
patterns:If the condition is not met (if not), execute
the corresponding function; otherwise, return True.If
the condition is met or the operation is successful (if),
execute the corresponding function; otherwise, return
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Singe Round Code Results
def Empty_Ashtray():
    '''The plan includes picking up the ashtray, … '''

if Pick_Up_Ashtray():
if Move_To_Garbage_Can():

if not empty_ashtray_into_garbage_can():
                return False
            else:
                return True
        else:
            return False
    else:
        return False

Codition functions

Action functions

Task description

def move_to_ashtray():
    '''The robot moves to the 
location of the ashtray.'''
    return True
def pick_up_ashtray():
    '''The robot grasps and lifts 
the ashtray.'''
    return True

(LLM)

API Functions Library

The robot task is to empty an 
ashtray. The goal is to ensure 
that the ashtray is no longer 
filled with ash and that the ash 
should be inside the garbage 
can. …….

……..

select

def is_near_ashtray():
    '''Check if the robot is near the 
ashtray on the breakfast table, 
and return True if the distance is 
less than the gripper contact 
range of the robot.'''
    return True
def ……..

1.API Selection 2.Code Generation 3.BT Conversion

LLM

[ 未使用API节点]

Prompt

1. Rules
2. Task Description
3. I/O format
4. One-shot

def Move_To_Ashtray():
    '''Ensure the agent is near ...'''

if not is_near_ashtray():
if not move_to_ashtray():

            return False
        else:
            return True
    else:
        return True

Previous Code Results

[ 未使用API节点]

def empty_ashtray_into_garbage_can() :
    ……

API functions

Iterative Feedback

1. Output format Check
2. Code Format Check
3. Code Structure Improvement
4. Other Error Check

Single
Round

× N

BT Conversion Algorithm

？

Subtree： 
Move_To_Ashtray

？

Subtree： 
Move_To_Garbage_Can

Behavior Tree 

？

→

？
……

……

if 

if not if not 

if not if not 

Module Organization

Figure 1: Overview of Code-BT. Phase 1: API Selection, where the task description for the agent (emptying an ashtray) is provided. The
LLM selects appropriate condition functions and action functions from the library. Phase 2: Code Generation, where prompts are crafted
based on constraint rules, task descriptions, I/O formats, and one-shot examples. This step is iterative, with each response leveraging historical
code results. This step integrates a feedback process to enhance instruction adherence, optimize code structure, and reduce errors. Phase 3:
Control Flow to BTs Mapping (BT conversion), we transform the generated code into a behavior tree. The conversion algorithm maps the
control flow in the code to subtrees in the behavior tree. Each node in the behavior tree corresponds to a specific action or condition, with
control nodes determined by keywords such as ”if (not)-else” and ”return”.

False.If all steps are successful, return True; other-
wise, return False.

3. Each code block can only use nested if(not) state-
ments: Specifically, nested if(not) keywords are
used to determine whether to proceed with the execu-
tion of the next function. Within a code block, only one
if-else structure with the lowest indentation level is al-
lowed, and this if-else structure contains all the control
structure information of a behavior tree (subtree).

These constraint rules ensure that the generated code ad-
heres to a structured and predictable control flow. By limit-
ing the complexity of the if-else structures and using boolean
values for results, the rules facilitate the generation of reliable
and efficient behavior trees.

Figure 2: Decision Tree to Behavior Tree Conversion

Multi-Round Generation: For tasks involving multiple
APIs, requiring the generation of code to organize all APIs in
a single response increases the challenge for LLMs. There-
fore, we allow the LLM to use only a subset of the API col-
lection in a single response to generate a code block. The
multi-round generation process corresponds to the generation
of multiple subtrees. Each round of generation involves orga-
nizing subtrees and nodes, which fully leverages the modular
advantages of behavior trees. This approach aligns the code
generation process with the bottom-up modular design pro-
cess of behavior trees. For example, when a robot completes
the task of cleaning an ashtray, it involves stages such as mov-

ing, judging, picking up, and cleaning. During the generation
process, APIs are organized into these modules, and these
modules are then used to generate the final code.

Iterative Feedback: We mandate that the LLM generates
responses in JSON format. To ensure compliance with con-
straint rules and optimize the code structure, we introduce
a feedback mechanism that mitigates errors and hallucina-
tions. This mechanism primarily includes: Output Format
Validation: Verify that the output adheres to the JSON for-
mat, ensuring the completeness and accuracy of keys and
values. Syntax Validation: Ensure that the generated code
complies with the syntax rules of the target programming lan-
guage. Rule Validation: Verify that the generated code struc-
ture aligns with the predefined rules. If the code fails valida-
tion, the system provides specific feedback to guide the model
in regenerating the code. This process continues until all rules
are satisfied or the maximum feedback limit is reached.

In summary, compared to approaches that either utilize se-
quential API functions (as illustrated in Figure 3) or adopt
decision tree control architectures, our solution incorporates
a richer set of keywords and control flow information. By
embedding rule constraints into the code generation process,
our framework subsequently maps the generated code to be-
havior trees for robotic control, ensuring alignment with the
modular design principles of behavior trees.

3.3 Control Flow to BTs Mapping
The goal of this phase is to convert the generated Python code
into XML format representing a behavior tree. Compared to
the intricate details of the pytrees library, such as the writ-
ing and updating processes of nodes to the blackboard, we
focus more on how the generated code organizes available
APIs according to control flow to accomplish tasks. We have
designed a conversion algorithm that leverages Abstract Syn-
tax Trees (ASTs) to parse the control flow in the code and
map it to the structure of a behavior tree. The main steps of
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Chatgpt for robotics

def get_ingredients():
    # Go to the fridge and get the eggs.
    go_to_location(locate ("fridge"))
    pick_up("eggs")

   # Go to the counter and get the bowl.
    go_to_location(locate ("bowl"))
    pick_up("bowl")
    
    # Crack the eggs into the bowl.
    use_item("eggs")
    ……

Code-BT

def get_ingredients():
    """ Go to the fridge and get the eggs. """
   if go_to_location(locate ("fridge")):
       if pick_up("eggs"):
            if go_to_location(locate ("bowl")):
                if pick_up("bowl"):
                    if use_item("eggs") :  
                        return True
         else:
                        return False
                else:
                    return False

......       

Figure 3: Comparison of Two Different Code Structures for an Ex-
ample Robotic Task.

the conversion algorithm are as follows:

1. Abstract Syntax Tree (AST) Parsing: Initially, we
use Python’s ast module to parse the generated code
and generate the corresponding AST. AST is a tree-like
structure that clearly extracts the syntactic structure of
the code.

2. Control Flow Extraction: Based on the AST pars-
ing, we extract control flow information from the code.
Control flow information primarily includes conditional
statements (such as if-else) and function calls. This con-
trol flow information will be used to construct nodes and
subtrees in the behavior tree.

3. Behavior Tree Node Mapping: We map condi-
tional statements in the code to condition nodes in
the behavior tree, and API function calls to action
nodes(Encapsulated functions are mapped to subtrees).
For control flow structures (such as nested if-else state-
ments), we map them to control flow nodes in the behav-
ior tree, such as Sequence Nodes or Fallback Nodes.

4. Behavior Tree Construction: After completing the
node mapping, we organize these nodes according to the
structural rules of behavior trees to form a complete be-
havior tree, which is then output in XML format.

4 Experiments
4.1 Experimental Setup
Benchmarks: Our experiments are conducted using the
BEHAVIOR-1K benchmark[Li et al., 2024], a comprehen-
sive simulation framework designed for robotics. The tasks
in BEHAVIOR-1K are characterized by their long-term na-
ture and reliance on complex manipulation skills, presenting
significant challenges for state-of-the-art robotic learning so-
lutions. We selected 24 tasks from this benchmark to ensure
a diverse representation of task scenarios and categories. For
each task, we extracted their corresponding task descriptions
and developed an API function library necessary for all tasks,
ensuring comprehensive coverage of all required operations.

These API functions are highly abstracted but include de-
tailed functional annotations, as illustrated in Figure 1.

LLMs: Code-BT is designed as a versatile framework,
independent of any specific LLM. For our experiments,
we selected four prominent LLMs: DeepseekV2.5-Chat

[DeepSeek-AI, 2024], GPT-4o[Hurst et al., 2024], Qwen2.5-
72B-Instruct[Yang et al., 2024] (denoted as qwen2.5-72b),
and Llama3.1-70B-Instruct [Dubey et al., 2024] (denoted
as llama3.1-70b). These models, representing a range of
parameter sizes and including both powerful open-source
(Deepseek) and closed-source (GPT-4o) models, ensure di-
verse results and accessibility.

Compared Methods: For the task of generating behav-
ior trees, there is currently no specific prompting method
designed to directly improve performance. Therefore, we
compared our method with general CoT (Chain of Thought)
method, as well as code generation methods such as SCoT
and CodeCoT (Code Chain of Thought). Our method and all
baselines use one-shot examples and are constructed using
the same problem setup. All comparison methods have been
adjusted to fit the behavior tree generation process.

• CoT[Wei et al., 2022]: The standard CoT method,
which generates intermediate reasoning steps before
solving language reasoning tasks, has been proven ef-
fective in improving the performance of LLMs in com-
monsense and arithmetic reasoning.

• SCoT: SCoT is a novel code generation prompting tech-
nique that requires the LLM to use program structures
(i.e., sequence, branching, and looping structures) to
construct the CoT, resulting in SCoT prompts. Com-
pared to CoT, SCoT prompts explicitly constrain the
LLM to think from the perspective of source code, fur-
ther enhancing the LLM’s performance in code genera-
tion.

• CodeCoT: Referring to the [Jiang et al., 2024b] setup,
we manually wrote detailed annotations for the behav-
ior tree XML in the example, enabling the LLM to use
the annotations as intermediate steps to guide the XML
generation process.

Evaluation Metrics: BTs evaluation usually relies on
manual inspection, where experts assess the correctness,
functionality, and performance of the BTs. However, this
approach presents several challenges: it is time-consuming,
susceptible to human error, and often inconsistent due to the
inherent subjectivity of manual judgment. In addition, tradi-
tional simulation tools, such as Gazebo[Koenig and Howard,
2004], are commonly used for BTs evaluation. While these
simulators accurately model physical processes and environ-
ments, they come with high computational demands and in-
efficiencies. Moreover, these tools often require considerable
effort to adapt to different scenarios, making them unsuitable
for evaluating BTs across diverse task environments.

To overcome these limitations, we employ two automated
evaluation methods to effectively demonstrate the improve-
ments introduced by Code-BT: the simulator and the evalua-
tor. The simulator allows BTs to be tested in virtual environ-
ments, ultimately assessing whether the BT can successfully
complete the task. Meanwhile, the evaluator systematically
evaluates various aspects of the BTs, such as its structure and
logic, and provides a corresponding score.

• LLM-based Simulator: This metric is derived from the
validation results of a behavior simulator [Wang et al.,
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Model Step Methods Passed (%) Evaluation

gpt-4o

Two-Step

Ours 83.33 81.57
Code CoT 58.33 79.38

CoT 66.67 80.79
SCoT 66.67 81.21

One-Step
Code CoT 25.00 79.28

CoT 54.17 80.42
Scot 33.33 80.35

deepseek-2.5

Two-Step

Ours 87.50 77.88
Code CoT 45.83 77.72

CoT 41.67 81.39
SCoT 37.50 80.19

One-Step
Code CoT 70.83 80.68

CoT 45.83 82.28
SCoT 66.67 82.32

llama3.1-70b

Two-Step

Ours 66.67 79.67
Code CoT 29.17 77.92

CoT 16.67 78.17
SCoT 8.33 78.92

One-Step
Code CoT 41.67 78.31

CoT 50.00 78.25
Scot 29.17 78.42

qwen2.5-72b

Two-Step

Ours 79.17 80.42
Code CoT 16.67 79.85

CoT 16.67 79.54
SCoT 20.83 79.97

One-Step
Code CoT 50.00 79.29

CoT 45.83 80.00
SCoT 50.00 78.56

Table 1: Results of Comparative Experiments on Benchmarks.

2024]. The simulator rapidly executes behavior trees
and categorizes the outcomes into three types: Good,
Bad Logic, and Unreachable. Behavior trees that yield a
”Good” result are deemed successful, and we calculate
the proportion of such successful outcomes.

• LLM-based Evaluator: We utilize Deepseek to evalu-
ate the behavior trees, providing a comprehensive score
based on five critical dimensions: logic and task com-
pletion, structure and readability, efficiency and perfor-
mance, error handling and robustness, and scalability
and maintainability. The total score is 100.

4.2 Method Performance
In our experiments, we divided the comparative methods into
two distinct settings. One-step: The LLM directly receives
the task description and outputs the XML-formatted behav-
ior tree. Two-step: The LLM first generates code with for-
mat constraints, which is then converted into a behavior tree
by the LLM. These settings allow us to systematically evalu-
ate the effectiveness of each approach in generating behavior
trees for robotic tasks. Table 1 summarizes the final experi-
mental results. We measured the extent to which our method
enhances the reasoning and planning capabilities of LLMs.
For the baseline methods, we provided the robot task descrip-

tions and available API functions as prompts to the LLMs,
enabling them to integrate planning through multi-round gen-
eration. During the generation process, errors were identi-
fied, and feedback was provided for improvement. To ensure
a fair comparison, we included a few demonstration exam-
ples. Across all models, Code-BT demonstrated significant
performance improvements. The results indicate that Code-
BT substantially increases the pass rate of behavior trees,
showcasing its overall capability to generate correct behavior
trees. Specifically, in terms of pass rate, our method achieved
a 16.67% improvement over the highest-performing base-
line method (DeepSeekV2.5, Llama3.1-70B-Instruct, GPT-
4o), and a 29.17% improvement (Qwen2.5-72B-Instruct).

Our method showed slightly lower improvements in LLM
Evaluation, which can be attributed to the inherent limitations
of LLMs. Even for humans, it is challenging to provide pre-
cise scores for behavior trees. Nevertheless, it is noteworthy
that LLM Evaluation still reflects the overall effectiveness of
the experiment. The suboptimal performance of the baseline
methods can be attributed to the lack of training data on be-
havior trees for LLMs, as well as the limited effectiveness
of intermediate steps in enhancing the planning of behavior
tree tasks. In contrast, the application of our method brought
about significant improvements. This demonstrates that the
proposed Code-BT effectively addresses the challenges faced
by existing LLMs in using behavior trees for task planning.

4.3 Ablation Study
In this section, we validate the effectiveness of several core
mechanisms in Code-BT by exploring the following ques-
tions:

• Can the multi-round generation setting reduce the rea-
soning difficulty for LLMS when organizing complex
tasks, thereby helping them produce better code re-
sponses?

• Can rule-constrained code generation align the control
flow in the code with the control logic in behavior trees?

• Can iterative feedback correct various errors in the out-
put of LLMs?

• Can the conversion algorithm accurately and reliably
transform code into XML-formatted behavior trees?

We observe that DeepSeek and GPT-4o outperform other
models, so we choose them as the main LLMs for ablation
studies. We explore several ablation settings to reflect the
specific effect of each mechanism. The results of the ablation
study are detailed in Figure 4.

Effectiveness of Multi-Round Generation: We com-
pared multi-round generation with one-turn generation. In
multi-round generation, the model does not need to consider
all functions at once. For example, in a pool-cleaning task,
the model is allowed to output only the code block for ”ob-
taining a brush” in one round, whereas one-turn generation
may require the model to output the entire code for the task
at once. We found that one-turn generation led to a signifi-
cant performance drop 23% (DeepSeek and GPT-4o), which
is attributed to the complexity of the task. Organizing all API
information to write code in a single round is challenging for
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(a) Pass Rate of DeepSeek and GPT-4o.
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Figure 4: The ablation experiment results on DeepSeek-V2.5-Chat
and GPT-4o. ”w/o Rules” represents the removal of format con-
straint prompts, ”w/o Feedback” represents the ablation of iterative
feedback, and ”LLMs conversion” indicates replacing the conver-
sion algorithm with LLMs.

LLMs, leading to a substantial increase in logical errors and
hallucinations. In contrast, multi-round generation reduces
the reasoning difficulty for LLMs by allowing them to focus
on completing ”subtasks,” thereby improving the reliability
of the generated results.

Effectiveness of Rule Constraints: Rule constraints play
a central role in the Code-BT framework, not only standardiz-
ing the structure of code generation but also ensuring that the
generated code can be seamlessly converted into the control
logic of behavior trees. To explore the effectiveness of rule
constraints, we analyzed the following aspects:

Without rule constraints, the code generated by LLMs
tends to be more free-form, potentially leading to unclear
control flow or logic that does not align with behavior trees.
For example, the generated code may contain non-standard
return results or redundant conditional judgments, which in-
creases the difficulty of subsequent conversion to behavior
trees and may lead to logical errors in the behavior trees.

In contrast, rule-constrained code generation restricts the
structure of the code (e.g., using return statements for code
block execution results, limiting the complexity of if-else
structures), allowing the LLMs to focus on necessary oper-
ations and ensuring that the generated code has clear con-
trol flow information. Experimental results show that rule-
constrained code generation significantly improves the pass

rate and evaluation scores of behavior trees.
Effectiveness of Iterative Feedback: The iterative feed-

back mechanism is another core component of the Code-BT
framework. When generating code, LLMs may produce for-
mat errors, logical errors, or outputs that do not comply with
rule constraints. Without a feedback mechanism, these er-
rors cannot be corrected in time, leading to lower-quality be-
havior trees. Therefore, the iterative feedback mechanism is
designed to optimize code quality through multi-round gen-
eration and feedback, ensuring that the generated code meets
task requirements.

To validate the effectiveness of iterative feedback, we con-
ducted comparative experiments with and without iterative
feedback. The results show that iterative feedback signifi-
cantly improves the quality of the output (with a 41.67% im-
provement in pass rate on DeepSeek and a 50% improvement
on GPT-4o).Through multi-round generation and feedback,
the LLM can gradually optimize the code structure, gener-
ating behavior trees that better align with task requirements.
Although multiple feedback rounds are allowed, most tasks
achieve satisfactory results within 3 feedback iterations, in-
dicating that the iterative feedback mechanism can quickly
identify and correct issues during the generation process.

Effectiveness of the Conversion Algorithm: Mapping the
generated Python code into XML-formatted behavior trees is
the final phase in the Code-BT framework and a crucial step
in ensuring that the generated results can be directly applied
to robotic tasks. To validate the effectiveness of the conver-
sion algorithm, we compared two methods: using the LLMs
to convert Python code into XML BTs and using an AST-
based parsing algorithm to convert code into behavior trees.

The LLM-based conversion method struggles to accu-
rately capture the control logic and action sequences in the
code when dealing with complex control flows, leading to a
41.67% drop in performance on deepseek and a 29.16% drop
on gpt-4o. In contrast, the conversion algorithm is designed
to precisely parse the control flow information in the code.
Experimental results show that the conversion algorithm can
accurately map the control flow to the structure of behavior
trees (nodes and subtrees), and generate behavior trees with
clear logic.

5 Conclusion

This paper introduces Code-BT, a framework for the auto-
matic generation of Behavior Trees leveraging the code gen-
eration capabilities of LLMs. Code-BT addresses the chal-
lenges of designing behavior trees for complex robotic tasks
by integrating the code generation prowess of LLMs with the
modular design principles of behavior trees. Experimental re-
sults demonstrate that Code-BT significantly outperforms ex-
isting baseline methods, particularly in complex tasks. Future
research could focus on further optimizing Code-BT’s gener-
ation mechanisms, expanding its application scenarios, and
exploring more powerful LLM support to meet the demands
of even more complex tasks.
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