
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Explainable Graph Representation Learning via Graph Pattern Analysis

Xudong Wang1 , Ziheng Sun1,2 , Chris Ding1 and Jicong Fan1,2,∗

1School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), China
2Shenzhen Research Institute of Big Data, Shenzhen, China

{xudongwang, zihengsun}@link.cuhk.edu.cn, {chrisding, fanjicong}@cuhk.edu.cn

Abstract
Explainable artificial intelligence (XAI) is an im-
portant area in the AI community, and interpretabil-
ity is crucial for building robust and trustworthy AI
models. While previous work has explored model-
level and instance-level explainable graph learning,
there has been limited investigation into explain-
able graph representation learning. In this paper,
we focus on representation-level explainable graph
learning and ask a fundamental question: What
specific information about a graph is captured in
graph representations? Our approach is inspired
by graph kernels, which evaluate graph similari-
ties by counting substructures within specific graph
patterns. Although the pattern counting vector can
serve as an explainable representation, it has lim-
itations such as ignoring node features and being
high-dimensional. To address these limitations, we
introduce a framework (PXGL-GNN) for learning
and explaining graph representations through graph
pattern analysis. We start by sampling graph sub-
structures of various patterns. Then, we learn the
representations of these patterns and combine them
using a weighted sum, where the weights indicate
the importance of each graph pattern’s contribu-
tion. We also provide theoretical analyses of our
methods, including robustness and generalization.
In our experiments, we show how to learn and ex-
plain graph representations for real-world data us-
ing pattern analysis. Additionally, we compare our
method against multiple baselines in both super-
vised and unsupervised learning tasks to demon-
strate its effectiveness.

1 Introduction
The research field of explainable artificial intelligence (XAI)
[Adadi and Berrada, 2018; Angelov et al., 2021; Hassija
et al., 2024] is gaining significant attention in both AI and
science communities. Interpretability is crucial for creat-
ing robust and trustworthy AI models, especially in crit-
ical domains like transportation, healthcare, law, and fi-

∗Corresponding author.

nance. Graph learning [Sun et al., 2023; Sun and Fan, 2024;
Wang and Fan, 2024] is an important area of AI that par-
ticularly focuses on graph-structured data that widely exists
in social science, biology, chemistry, etc. Explainable graph
learning (XGL) [Kosan et al., 2023] can be generally classi-
fied into two categories: model-level methods and instance-
level methods.

Model-level methods of XGL provide transparency by an-
alyzing the model behavior. Examples include XGNN [Yuan
et al., 2020], GLG-Explainer [Azzolin et al., 2022], and
GCFExplainer [Huang et al., 2023]. Instance-level methods
of XGL offer explanations tailored to specific predictions,
focusing on why particular instances are classified in a cer-
tain manner. For instance, GNNExplainer [Ying et al., 2019]
identifies a compact subgraph structure crucial for a GNN’s
prediction. PGExplainer [Luo et al., 2020] trains a graph gen-
erator to incorporate global information and parameterize the
explanation generation process. AutoGR [Wang et al., 2021]
introduces an explainable AutoML approach for graph repre-
sentation learning.

However, these works mainly focus on enhancing the trans-
parency of GNN models or identifying the most important
substructures that contribute to predictions. The exploration
of representation-level explainable graph learning (XGL) is
limited. We propose explainable graph representation learn-
ing and ask a fundamental question: What specific infor-
mation about a graph is captured in graph representa-
tions? Formally, if we represent a graphG as a d-dimensional
vector g, our goal is to understand what specific informa-
tion about the graph G is embedded in the representation
g. This problem is important and has practical applications.
Some graph patterns are highly practical and crucial in vari-
ous real-world tasks, and we want this information to be cap-
tured in representations. For instance, in molecular chem-
istry, bonds between atoms or functional groups often form
cycles (rings), which indicate a molecule’s properties and can
be used to generate molecular fingerprints [Morgan, 1965;
Alon et al., 2008; Rahman et al., 2009; O’Boyle and Sayle,
2016]. Similarly, cliques characterize protein complexes in
Protein-Protein Interaction networks and help identify com-
munity structures in social networks [Girvan and Newman,
2002; Jiang et al., 2010; Fox et al., 2020].

Although some previous works such as [Kosan et al., 2023]
aimed to find the most critical subgraph S by solving opti-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

mization problems based on perturbation-based reasoning, ei-
ther factual or counterfactual, this kind of approach assumes
that the most important subgraph S mainly contributes to the
representation g, neglecting other aspects of the graph, which
doesn’t align well with our goal of thoroughly understanding
graph representations. Analyzing all subgraphs of a graph
G is impractical due to their vast number. To address the
challenge, we propose to group the subgraphs into different
graph patterns, like paths, trees, cycles, cliques, etc, and then
analyze the contribution of each graph pattern to the graph
representation g.

Our idea of pattern analysis is inspired by graph kernels,
which compare substructures of specific graph patterns to
evaluate the similarity between two graphs [Kriege et al.,
2020]. For example, random walk kernels [Borgwardt et al.,
2005; Gärtner et al., 2003] use path patterns, sub-tree ker-
nels [Da San Martino et al., 2012; Smola and Vishwanathan,
2002] examine tree patterns, and graphlet kernels [Pržulj,
2007] focus on graphlet patterns. The graph kernel involves
learning a pattern counting representation vector h, which
counts the occurrences of substructures of a specific pattern
within the graph G. While the pattern counting vector h is
an explainable representation, it has some limitations, such
as the high dimensionality and ignorance of node features.

There also exist some representation methods based on
subgraphs and substructures, such as Subgraph Neural Net-
works (SubGNN) [Kriege and Mutzel, 2012], Substructure
Assembling Network (SAN) [Zhao et al., 2018], Substruc-
ture Aware Graph Neural Networks (SAGNN) [Zeng et al.,
2023], and Mutual Information (MI) Induced Substructure-
aware GRL [Wang et al., 2020]. However, these methods
mainly focus on increasing expressiveness and do not provide
explainability for representation learning.

In this work, we propose a novel framework to learn and
explain graph representations via graph pattern analysis. We
start by sampling graph substructures of various patterns.
Then, we learn the representations of these patterns and com-
bine them adaptively, where the weights indicate the impor-
tance of each graph pattern’s contribution. We also provide
theoretical analyses of our methods, including robustness and
generalization. Additionally, we compare our method against
multiple baselines in both supervised and unsupervised learn-
ing tasks to demonstrate its effectiveness and superiority. Our
contributions are summarized as follows:

• Unlike previous model-level and instance-level XGL,
we introduce a new issue — representation-level ex-
plainable graph learning. This issue focuses on under-
standing what specific information about a graph is em-
bedded within its representations.

• We propose two strategies to learn and explain graph
representations, including a graph ensemble kernel
method (PXGL-EGK) and a pattern analysis GNN
method (PXGL-GNN). The latter involves using GNNs
to learn the representations of each pattern and evaluate
its contribution to the ensemble graph representation.

• We provide theoretical analyses of our methods, includ-
ing robustness and generalization.

2 Notations
In this work, we use x, x, X , and X (or X) to denote
scalar, vector, matrix, and set, respectively. We denote
[n] = {1, 2, ..., n}. Let G = (V,E) be a graph with n
nodes and d-dimensional node features {xv ∈ Rd | v ∈
V }. We denote A ∈ {0, 1}n×n the adjacency matrix and
X = [x1, . . . ,xn]

⊤ ∈ Rn×d the node features matrix. Let
G = {G1, . . . , GN} be a dataset of N graphs belonging C
classes, where Gi = (Vi, Ei). For Gi, we denote its num-
ber of nodes as ni, the one-hot graph label as yi ∈ {0, 1}C ,
the graph-level representation as a vector gi ∈ Rd, the adja-
cency matrix as Ai, and the node feature matrix as Xi. Let
S = (VS , ES) be a subgraph of graph G = (V,E) such that
VS ⊆ V and ES ⊆ E. The the adjacency matrix of S is de-
noted as AS ∈ {0, 1}|VS |×|VS | and the node feature matrix of
S is sampled from the rows of X , denoted as XS ∈ R|VS |×d.

The graph pattern is defined as a set of all graphs that share
certain properties, denoted as P = {P1, P2, . . . , Pi, . . .},
where Pi is the i-th example of this pattern. In this work, the
graph patterns are basic graph families such as paths, trees,
cycles, cliques, etc. For example:

• Ppath = {ph1, ph2, . . . , phi, . . .} is a path pattern with
phi as a path of length i.

• PT = {T1, T2, . . . , Ti, . . .} is a tree pattern where Ti is
the i-th tree.

• Pgl = {gl1, gl2, . . . , gli, . . .} is a graphlet pattern where
gli is the i-th graphlet.

Figure 1 illustrates some intuitive examples of graph pat-
terns. Notably, there are overlaps among different patterns;
for instance, the graph T3 ∈ PT and gl2 ∈ Pgl are identi-
cal, being both a tree and a graphlet. Overlaps are inevitable
due to the predefined nature of these basic graph families in
graph theory. We denote a set of M different patterns as
{P1,P2, . . . ,Pm, . . . ,PM}. Given the pattern Pm and the
graph Gi, the pattern sampling set is denoted as S(m)

i and the
pattern representation is denoted as z(m)

i ∈ Rd.

3 XGL via Ensemble Graph Kernel
In this section, we learn and explain the pattern counting
graph representation via graph kernels.

3.1 Pattern Counting Kernel
A graph kernel K : G × G → R aims to evaluate the sim-
ilarity between two graphs. Let Gi and Gj be two graphs
in the graph dataset G and let H be a high-dimensional vec-
tor space. The key to a graph kernel is defining a mapping
from the graph space to the high-dimensional vector space as
ϕ : G → H, where hi = ϕ(Gi) and hj = ϕ(Gj). Then,
the graph kernel can be defined as the inner product of hi and
hj , i.e., K(Gi, Gj) := h⊤

i hj . The most widely used map-
ping ϕ is the one counting the occurrences of each example
in the pattern P within graph G. The corresponding pattern
counting vector is defined as follows:

Definition 3.1 (Pattern Counting Vector). Given a graph G
and a pattern P = {P1, P2, . . . , Pi, . . .}, a pattern counting

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Examples of graph patterns: Ppath, PT and Pgl

mapping ϕ : G → H is defined as

h = ϕ(G;P), with h = [h(1), h(2), . . . , h(i), . . .], (1)

where h(i) is the number of occurrences of pattern example
Pi as a substructure within graph G. We call h a pattern
counting vector of G related to pattern P .

Then the pattern counting kernel KP : G×G → R based
on pattern P is defined as:

Definition 3.2 (Pattern Counting Kernel). Given the a pat-
tern counting mapping ϕ(G;P), a pattern counting kernel is
defined as

KP(Gi, Gj) := ⟨ϕ(Gi;P), ϕ(Gj ;P)⟩ = h⊤
i hj (2)

The pattern counting kernel KP is uniquely determined
by the pattern P . For example, if P is selected as the path
pattern Ppath, we obtain a random walk kernel [Borgwardt
et al., 2005; Gärtner et al., 2003]. If P is the tree pattern
PT , we get a sub-tree kernel [Da San Martino et al., 2012;
Smola and Vishwanathan, 2002]. Similarly, if P is the
graphlet pattern Pgl, we derive a graphlet kernel [Pržulj,
2007].

3.2 Pattern Analysis Using Graph Kernels
Let {P1,P2, . . . ,PM} be a set ofM different graph patterns.
For instance, P1 represents the path pattern and P2 represents
the tree pattern. Then, we can define a set of M different
graph kernels as {KP1

,KP2
, . . . ,KPM

}. Since the pattern
counting kernel KPm

is uniquely determined by the pattern
Pm, we can analyse the importance of pattern Pm by evalu-
ating the importance of its pattern counting kernel KPm

. To
achieve this, we define a learnable ensemble kernel as fol-
lows:

Definition 3.3 (Learnable Ensemble Kernel). Let λ =
[λ1, λ2, ..., λm, ..., λM]⊤ be a positive weight parameter
vector. The ensemble kernel matrix K(λ) ∈ R|G|×|G|

is defined as the weighted sum of M different kernels
{KP1 ,KP2 , . . . ,KPM

}. Given two graphs Gi and Gj in G,
the element at the i-th row and j-th column of K(λ) is given
by

Kij(λ) :=
M∑

m=1

λm KPm
(Gi, Gj), s.t

M∑
m=1

λm = 1,

and λm ≥ 0, ∀m ∈ [M].

(3)

Here, the weight parameter λm indicates the importance
of the kernel KPm

as well as the corresponding graph

pattern Pm within the dataset G. Instead of the con-
strained optimization (3), we may consider replacing λm with
exp(wm)/

∑M
m=1 exp(wm) such that the constraints are sat-

isfied inherently, which leads to an unconstrained optimiza-
tion in terms of w = [w1, . . . , wM]⊤. In the following con-
text, for convenience, we focus on (3), though all results are
applicable to the unconstrained optimization. To obtain the
weight parameter λ, we provide the supervised and unsuper-
vised loss functions as follows.
Supervised Contrastive Loss. Following [Oord et al.,
2018], given a kernel matrix K ∈ RN×N , we define the su-
pervised InfoNEC loss of K as follows

LSCL(K(λ)) = −
∑
i̸=j

I[yi=yj](logKij(λ)

− log[
∑
k

I[yi=yk,i ̸=k]Kik(λ) + µ
∑
k

I[yi ̸=yk]Kik(λ)]),

(4)
where I[·] is an indicator function and µ > 0 is a hyperparam-
eter.
Unsupervised KL Divergence. Inspired by [Xie et al.,
2016], given a kernel matrix K ∈ RN×N , we define the un-
supervised KL divergence loss as follows
LKL(K(λ)) = KL(K(λ),K ′(λ)),

with K ′
ij(λ) =

K2
ij(λ)/rj∑

j′ K
2
ij′(λ)/rj′

and rj =
∑
j

Kij(λ),

(5)
where rj are soft cluster frequencies. By minimizing the KL
divergence, the model adjusts the parameters λ to more accu-
rately represent the natural clustering property of the dataset.

We use the LSCL or LKL as our loss function, i.e.,
Lker(λ) = LSCL(K(λ)) or LKL(K(λ)), when the graphs
are labeled or unlabeled. Then the weight parameter λ can be
obtain by solving

λ∗ = argmin 1⊤
Mλ=1, λ≥0 Lker(λ), (6)

where λ∗ = [λ∗1, ..., λ
∗
m, ...λ

∗
M]⊤ and λ∗m indicates the im-

portance of kernel KPm
as well as pattern Pm. In Figure

2, we can see that the ensemble Kernel performs better than
each single kernel and the pattern analysis identifies the im-
portance of each kernel as well as the related graph pattern.
We call this method pattern-based XGL with ensemble graph
kernel, abbreviated as PXGL-EGK. This method not only
yields explainable similarity learning but also provides an ap-
proach to selecting graph kernels and their hyperparameters
automatically if we consider different kernel types with dif-
ferent hyperparameters.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) λ (b) K(λ): ensemble

∑M
m=1 λm KPm

(c) KP1 : path

(λ1 = 0.7502)

(d) KP2 : tree

(λ2 = 0.1707)

(e) KP3 : graphlet

(λ3 = 0.07912)

Figure 2: t-SNE visualizations of PXGL-EGK’s different kernel embeddings for the dataset PROTEINS.

3.3 Limitations of Pattern Counting Vector
The pattern counting vector h from Definition 3.1 is easy
to understand and its importance can be evaluated using the
weight parameter λ∗ from (6). However, it cannot directly
explain the representation of graph G due to the following
limitations:

• Ignoring Node Features: h captures the topology of
G but ignores node features X . As shown by previous
GNN works, node features are crucial for learning graph
representations.

• High Dimensionality: The pattern set P =
{P1, P2, . . . , Pi, . . .} can be vast, making h high-
dimensional and impractical for many tasks.

• Time Complexity: Counting patterns Pi in G is time-
consuming due to the large number of patterns in P . The
function ϕ(G;P) needs to be run for each new graph.

• Lacking Implicit Information and Strong Expres-
siveness: h is fixed and not learnable. GNN [Kipf and
Welling, 2016] shows that message passing can learn
implicit information and provide better representations,
which should be considered if possible.

4 Learning Explainable Graph
Representations via GNNs

In this section, we address the limitations pointed out in Sec-
tion 3.3 by proposing a GNN framework to learn and explain
graph representations via pattern analysis. First, we sample
graph substructures of various patterns from graph G. Given
that overlaps may occur between patterns, we use the WL-test
[Huang and Villar, 2021] in each sampling phase to ensure
that new samples are unique from existing ones. The pattern
sampling set S is defined as follows.

Definition 4.1 (Pattern Sampling Set). Let S be a subgraph
sampled from graph G. Given a graph pattern P , the pattern
sampling set S with Q subgraphs of G is defined as

S := {S1, S2, . . . , Sq, . . . , SQ}, where Sq ∈ P , ∀ q ∈ [Q].
(7)

Then, the pattern representation z is learned from the pat-
tern sampling set as follows.

Definition 4.2 (Pattern Representation). Given a graphG and
a pattern P , we can obtain a pattern sampling set S using a
sampling function Φ. For each subgraph S in the set S , its ad-
jacency matrix is AS and its node feature matrix is XS . Let
F : {0, 1}|VS |×|VS | × R|VS |×d → Rd be a pattern represen-
tation learning function with parameter W , then the pattern
representation z ∈ Rd related to G and P is defined as

z =
1

|S|
∑
S∈S

F (AS ,XS ;W). (8)

Finally, the ensemble representation g is the weighted sum
of the M pattern representations as follows.

Definition 4.3 (Ensemble Representation). Given a set of
patterns {P1,P2, . . . ,Pm, . . . ,PM} and a graph G, the pat-
tern sampling set S(m) and the pattern representation z(m)

are related to the m-th pattern Pm. The representation learn-
ing function F (·, ·;W(m)) is used to learn z(m) from S(m).
Let λ = [λ1, λ2, . . . , λm, . . . , λM]⊤ be a positive weight pa-
rameter vector, then the ensemble representation g ∈ Rd of
graph G is defined as

g =
M∑

m=1

λmz(m), with

z(m) =
1

|S(m)|
∑

S∈S(m)

F (AS ,XS ;W(m)), ∀m ∈ [M].

(9)
The weight parameter vector λ is constrained by 1⊤

Mλ = 1
and λ ≥ 0, and we can use the same softmax trick in com-
puting the ensemble kernel (3) to remove this constraint.

Let W := {W(1),W(2), . . . ,W(m), . . . ,W(M)} denote
the trainable parameters of the GNN framework. To obtain
the GNN parameters and the weight parameter λ in ensemble
representation learning (9), we define the supervised loss and
unsupervised loss functions as follows.

Supervised Classification Loss. Given a graph G, let y =
[y1, y2, . . . , yc, . . . , yC]

⊤ ∈ {0, 1}C be the ground truth label
and ŷ = [ŷ1, ŷ2, . . . , ŷc, . . . , ŷC]

⊤ ∈ RC be the predicted
label. Let fc : Rd → RC be a classifier with softmax, i.e.,
ŷ = fc(g), where the parameter is WC . Then the multi-class

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 3: Framework of our proposed Pattern-based Explainable Graph Representation Learning with GNNs (PXGL-GNN)

cross-entropy loss is defined as:

LCE(λ,W) =
1

|G|
∑
G∈G

ℓCE(λ,W;G)

= − 1

|G|
∑
G∈G

C∑
c=1

yc log ŷc, with ŷ = fc(g).

(10)

Unsupervised KL Divergence. We use the same KL diver-
gence defined in Eq. (5) as follows:

LKL(K(λ,W)) = KL(K(λ,W),K ′(λ,W)),

with Kij(λ,W) = exp

(
−∥gi − gj∥2

γ

)
,

(11)

where LKL(K(λ,W)) is a Gaussian kernel matrix of graph
representations and γ is a positive parameter.

Finally, let L(λ,W) be the supervised or unsupervised loss
function when the graphs are labeled or unlabeled. The GNN
parameters W and the weight parameters λ can be computed
by solving

λ∗,W∗ = argmin W,1⊤
Mλ=1, λ≥0 L(λ,W), (12)

where λ∗ = [λ∗1, . . . , λ
∗
m, . . . , λ

∗
M]⊤ and λ∗m indicates the

contribution of the pattern representation z(m) to the en-
semble graph representation g. For convenience, we call
this method pattern-based XGL with GNNs, abbreviated as
PXGL-GNN.

5 Theoretical Analysis
In this section, we provide a theoretical analysis of our
method, focusing on robustness, generality, and complexity.
We provide all detailed proof in the supplementary materials.

5.1 Robustness Analysis
Following [O’Bray et al., 2021], a learning method should
be robust to small perturbations. Let ∆A and ∆X be per-
turbations on the adjacency matrix and node attributes. The

perturbed graph is G̃ = (A + ∆A,X + ∆X), of which the
representation is denoted as g̃. We seek the upper bound
of ∥g̃ − g∥. Assume the representation learning function
F is an L-layer GCN [Kipf and Welling, 2016] with ac-
tivation function σ(·) and average pooling as the output.
For pattern Pm, F (A,X;W(m)) has parameters W(m) =
{W (m,1), . . . ,W (m,L)}, where W (m,L) is the parameter in
the l-th layer.

Theorem 5.1. Let Ã = A+∆A and X̃ = X+∆X . Suppose
∥A∥2 ≤ βA, ∥X∥F ≤ βX , ∥W (m,l)∥2 ≤ βW for all m ∈
[M] and l ∈ [L], and σ(·) is ρ-Lipschitz continuous. Let α be
the minimum node degree, and ∆D := I−diag(1⊤(I+A+

∆A))
1
2 diag(1⊤A)−

1
2 . Then,

∥g̃ − g∥ ≤ 1√
n
ρLβL

W (1 + βA + ∥∆A∥2)L−1(1 + α)−L

· [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2LβX(1 + βA)∥∆D∥2]
The bound reveals that the method is sensitive to the per-

turbation on the graph structure, i.e., A, when L is large.
It is relatively insensitive to the perturbation on X . On the
other hand, when α, the minimum node degree, is larger, the
method is more robust.

5.2 Generalization Analysis
Following [Bousquet and Elisseeff, 2002; Feldman and Von-
drak, 2019], we use uniform stability to derive the gener-
alization bound for our model. Let λ and W be known
parameters. The supervised loss ℓCE in Eq.(10) is guaran-
teed with a uniform stability parameter η. The empirical
risk E [ℓCE(λ,W;G)] := 1

N

∑N
i=1 ℓCE(λ,W;Gi) and true

risk E[ℓCE(λ,W;G)] have a high-probability generalization
bound: for constant c and δ ∈ (0, 1),

Pr

[
|E[ℓCE(λ,W;G)− E [ℓCE(λ,W;G)]| ≥

c

(
η log(N) log

(
N

δ

)
+

√
log(1/δ)

N

)]
≤ δ.

(13)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Let D := {G1, . . . , GN} be the training data.
By removing the i-th graph Gi, we get D\i =
{G1, . . . , Gi−1, Gi+1, . . . , GN}. Let λD and
WD := {WC ,W

(m,l)
D , ∀m ∈ [M], l ∈ [L]}

be the parameters trained on D. Let λD\i and
WD\i := {WC\i ,W

(m,l)

D\i , ∀m ∈ [M], l ∈ [L]} be the
parameters trained on D\i. We aim to find η such that

|ℓCE(λD,WD;G)− ℓCE(λD\i ,WD\i ;G)| ≤ η (14)

Theorem 5.2. Suppose

max
m∈[M], l∈[L]

{
∥W (m,l)

D ∥2, ∥W (m,l)

D\i ∥2
}
≤ β̂W

max
m∈[M],l∈[L]

∥W (m,l)
D −W

(m,l)

D\i ∥2 ≤ β̂∆W

∥WC −WC\i∥2 ≤ γ∆C , ∥WC\i∥2 ≤ γC

Suppose the fc in ℓCE (10) is a linear classifier, which is τ -
Lipschitz continuous. Suppose Thus the η for estimation error
(13) and uniform stability (14) is:

η =
τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L[

β̂W γ∆C + γC

(
2β̂W + Lβ̂∆W

)] (15)

Invoking (15) into (13), we obtain the generalization error
bound of our model. We see that when α is larger and βA, βX
are smaller, the generalization ability is stronger.

5.3 Time and Space Complexity
Given a dataset with N graphs (each has n nodes and e
edges), we select M different patterns and sample Q sub-
graphs of each pattern. First, our PXGL-EGK requires com-
puting M kernel matrices, of which the space complexity is
O(MN2), and the time complexity is related to those of dif-
ferent graph kernels. Assume ψm is the time complexity of
the m-th kernel, the total time complexity of PXGL-EGK is
O(N2

∑M
m=1 ψm). When N is large, the method has high

time and space complexities.
Regarding PXGL-GNN, suppose each representation

learning function Fm is an L-layer GCN, of which the width
is linear with d. Let the batch size in the optimization be B
for both supervised and unsupervised learning. In supervised
learning, the space complexity and time complexity of super-
vised learning are O(BMQ(e + nd) + MLd2 + Cd) and
O(BMQL(ed + nd2)) respectively. In unsupervised learn-
ing, the space complexity and time complexity of supervised
learning are O(BMQ(e + nd) + MLd2 + Cd + B2) and
O(BMQL(ed + nd2) + B2) respectively. This method is
scalable to large graph datasets because the complexities are
linear with BMQ and B2, where the B2 term, referring to
Eq. (11), comes from computing the Gaussian kernel matrix
between all pairs of examples in a batch.

6 Related Works
Due to space limitations, we introduce previous works on ex-
plainable graph learning (XGL), graph representation learn-
ing (GCL), and graph kernels in the supplementary materials.

Name # of
graphs

of
classes

of
nodes

node
labels

node
attributes

MUTAG 188 2 17.9 yes no
PROTEINS 1113 2 39.1 yes yes

DD 1178 2 284.32 yes no
NCI1 4110 2 29.9 yes no

COLLAB 5000 3 74.49 no no
IMDB-B 1000 2 19.8 no no

REDDIT-B 2000 2 429.63 no no
REDDIT-M5K 4999 5 508.52 no no

Table 1: Statistics of Datasets

7 Experiments
We test our method on the TUdataset [Morris et al., 2020] for
both supervised and unsupervised learning tasks, as shown
in Table 1. Our goal is to learn explainable graph represen-
tations. We provide the weight parameter λ and visualize
the ensemble representation g and the pattern representation
z(m). We use seven graph patterns: paths, trees, graphlets,
cycles, cliques, wheels, and stars, sampling Q = 10 sub-
graphs for each. We select these patterns based on their dis-
criminative power and computational feasibility. In practice,
one could use a subset of these seven patterns and adjust the
sampling cardinality Q based on domain knowledge or com-
putational constraints. We use a 5-layer GCN for the repre-
sentation learning function F and a 3-layer DNN with soft-
max for the classification function fc. Experiments are re-
peated ten times and the average value and standard devia-
tion are reported. Due to the space limitation, the results of
PXGL-EGK and other figures are shown in the supplemen-
tary materials.

7.1 Supervised Learning
We conduct supervised XGL via pattern analysis, the pro-
posed PXGL-GNN, by solving optimization (12) with the
classification loss (10). The dataset is split into 80% training,
10% validation, and 10% testing data. The learned weight pa-
rameter λ, indicating each pattern’s contribution to graph rep-
resentation learning, is reported in Table 2. We also visualize
the graph representation g and three pattern representations
z(m) of PROTEINS in Figure 4. Results show the paths pat-
tern is most important for learning g, and the ensemble repre-
sentation g outperforms single pattern representations z(m),
which reveal underlying structural characteristics and natu-
rally align with domain knowledge since paths are crucial for
reflecting protein folding pathways [Yan et al., 2011].

The compared baselines include classical GNNs like GIN
[Xu et al., 2018], DiffPool [Ying et al., 2018], DGCNN
[Zhang et al., 2018], GRAPHSAGE [Hamilton et al., 2017];
subgraph-based GNNs like SubGNN [Kriege and Mutzel,
2012], SAN [Zhao et al., 2018], SAGNN [Zeng et al., 2023];
and recent methods like S2GAE [Tan et al., 2023] and ICL
[Zhao et al., 2024]. The accuracies in Table 3 show that our
method performs the best.

7.2 Unsupervised Learning
We conduct unsupervised XGL via pattern analysis, the pro-
posed PXGL-GNN, by solving optimization (12) with the KL

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) g: ensemble

∑M
m=1 λmz(m)

(b) z(1): path

(λ1 = 0.5504)

(c) z(2): tree

(λ2 = 0.0746)

(d) z(3): graphlet

(λ3 = 0.08103)

Figure 4: t-SNE visualizations of PXGL-GNN’s pattern representations (supervised) for PROTEINS.

Pattern MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

paths 0.095± 0.014 0.550± 0.070 0.093± 0.012 0.022± 0.002 0.587± 0.065 0.145± 0.018 0.131± 0.027 0.027± 0.003
trees 0.046± 0.005 0.074± 0.009 0.054± 0.006 0.063± 0.008 0.105± 0.013 0.022± 0.003 0.055± 0.007 0.025± 0.003

graphlets 0.062± 0.008 0.081± 0.011 0.125± 0.015 0.101± 0.013 0.063± 0.008 0.084± 0.011 0.026± 0.003 0.054± 0.007
cycles 0.654± 0.085 0.099± 0.013 0.094± 0.012 0.176± 0.022 0.022± 0.003 0.123± 0.016 0.039± 0.005 0.037± 0.005
cliques 0.082± 0.011 0.098± 0.012 0.572± 0.073 0.574± 0.075 0.134± 0.017 0.453± 0.054 0.279± 0.069 0.256± 0.067
wheels 0.026± 0.003 0.039± 0.005 0.051± 0.007 0.012± 0.002 0.068± 0.009 0.037± 0.004 0.036± 0.005 0.023± 0.003
stars 0.035± 0.005 0.056± 0.007 0.011± 0.002 0.052± 0.007 0.021± 0.003 0.136± 0.017 0.447± 0.006 0.578± 0.033

Table 2: The learned λ of PXGL-GNN (supervised). The largest value is bold and the second largest value is blue.

Method MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

GIN 84.53 ± 2.38 73.38 ±2.16 76.38 ±1.58 73.36 ±1.78 75.83 ± 1.29 72.52 ± 1.62 83.27 ± 1.30 52.48 ± 1.57
DiffPool 86.72 ± 1.95 76.07 ±1.62 77.42 ±2.14 75.42 ±2.16 78.77 ± 1.36 73.55 ± 2.14 84.16 ± 1.28 51.39 ± 1.48
DGCNN 84.29 ± 1.16 75.53 ±2.14 76.57 ±1.09 74.81 ±1.53 77.59 ± 2.24 72.19 ± 1.97 86.33 ± 2.29 53.18 ± 2.41

GRAPHSAGE 86.35 ± 1.31 74.21 ±1.85 79.24 ±2.25 77.93 ±2.04 76.37 ± 2.11 73.86 ± 2.17 85.59 ± 1.92 51.65 ± 2.55
SubGNN 87.52 ± 2.37 76.38 ±1.57 82.51 ±1.67 82.58 ±1.79 81.26 ± 1.53 71.58 ± 1.20 88.47 ± 1.83 53.27 ± 1.93

SAN 92.65 ± 1.53 75.62 ±2.39 81.36 ±2.10 83.07 ±1.54 82.73 ± 1.92 75.27 ± 1.43 90.38 ± 1.54 55.49 ± 1.75
SAGNN 93.24 ± 2.51 75.61 ±2.28 84.12 ±1.73 81.29 ±1.22 79.94 ± 1.83 74.53 ± 2.57 89.57 ± 2.13 54.11 ± 1.22

ICL 91.34 ± 2.19 75.44 ±1.26 82.77 ±1.42 83.45 ±1.78 81.45 ± 1.21 73.29 ± 1.46 90.13 ± 1.40 56.21 ± 1.35
S2GAE 89.27 ± 1.53 76.47 ±1.12 84.30 ±1.77 82.37 ±2.24 82.35 ± 2.34 75.77 ± 1.72 90.21 ± 1.52 54.53 ± 2.17

PXGL-GNN 94.87 ± 2.26 78.23 ±2.46 86.54 ±1.95 85.78 ±2.07 83.96 ± 1.59 77.35 ± 2.32 91.84 ± 1.69 57.36 ± 2.14

Table 3: Accuracy (%) of Graph Classification. The best accuracy is bold and the second best is blue.

divergence loss (11). The learned weight parameter λ for
XGL is reported in the supplementary materials. The visual-
izations of unsupervised XGL results are in the supplemen-
tary materials. Results show that the ensemble representation
g outperforms single pattern representations z(m).

For clustering performance, we use clustering accuracy
(ACC) and Normalized Mutual Information (NMI). Base-
lines include four kernels: Random walk kernel (RW) [Borg-
wardt et al., 2005], Sub-tree kernels [Da San Martino et al.,
2012], Graphlet kernels [Pržulj, 2007], Weisfeiler-Lehman
(WL) kernels [Kriege and Mutzel, 2012]; and three unsuper-
vised graph representation learning methods with Gaussian
kernel in Eq. (11): InfoGraph [Sun et al., 2019], GCL [You
et al., 2020], GraphACL [Luo et al., 2023]. The results are in
Table 4 in our supplementary materials, and Table 5 reports
the performance of PXGL-EGK. Our methods outperformed
all benchmarks in almost all cases.

8 Conclusion
This paper investigates the explainability of graph represen-
tations through two novel approaches. First, we develop
PXGL-EGK based on graph ensemble kernels that captures
structural similarities while maintaining interpretability. Sec-

ond, we introduce PXGL-GNN, a framework that incorpo-
rates diverse graph patterns (paths, trees, etc.) into GNNs
to enhance both performance and explainability. We estab-
lish theoretical guarantees for our proposed methods, includ-
ing robustness certification against perturbations and non-
asymptotic generalization bounds. Extensive empirical evalu-
ation demonstrates that our approaches not only achieve supe-
rior performance on classification and clustering tasks across
multiple datasets, but also provide interpretable explanations
for the learned graph representations.

Acknowledgements
This work was supported by the National Natural Sci-
ence Foundation of China under Grant No.62376236,
the Guangdong Provincial Key Laboratory of Math-
ematical Foundations for Artificial Intelligence
(2023B1212010001), Shenzhen Science and Technol-
ogy Program ZDSYS20230626091302006 (Shenzhen Key
Lab of Multi-Modal Cognitive Computing), and Shenzhen
Stability Science Program 2023.

Contribution Statement
Xudong Wang and Ziheng Sun contributed equally.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Adadi and Berrada, 2018] Amina Adadi and Mohammed

Berrada. Peeking inside the black-box: a survey on
explainable artificial intelligence (xai). IEEE access,
6:52138–52160, 2018.

[Alon et al., 2008] Noga Alon, Phuong Dao, Iman Hajira-
souliha, Fereydoun Hormozdiari, and S Cenk Sahinalp.
Biomolecular network motif counting and discovery by
color coding. Bioinformatics, 24(13):i241–i249, 2008.

[Angelov et al., 2021] Plamen P Angelov, Eduardo A
Soares, Richard Jiang, Nicholas I Arnold, and Peter M
Atkinson. Explainable artificial intelligence: an analyti-
cal review. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 11(5):e1424, 2021.

[Azzolin et al., 2022] Steve Azzolin, Antonio Longa, Pietro
Barbiero, Pietro Liò, and Andrea Passerini. Global ex-
plainability of gnns via logic combination of learned con-
cepts. arXiv preprint arXiv:2210.07147, 2022.

[Borgwardt et al., 2005] Karsten M Borgwardt, Cheng Soon
Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function predic-
tion via graph kernels. Bioinformatics, 21(suppl 1):i47–
i56, 2005.

[Bousquet and Elisseeff, 2002] Olivier Bousquet and André
Elisseeff. Stability and generalization. The Journal of Ma-
chine Learning Research, 2:499–526, 2002.

[Da San Martino et al., 2012] Giovanni Da San Martino, Ni-
colo Navarin, and Alessandro Sperduti. A tree-based ker-
nel for graphs. In Proceedings of the 2012 SIAM Interna-
tional Conference on Data Mining, pages 975–986. SIAM,
2012.

[Feldman and Vondrak, 2019] Vitaly Feldman and Jan Von-
drak. High probability generalization bounds for uni-
formly stable algorithms with nearly optimal rate. In Con-
ference on Learning Theory, pages 1270–1279. PMLR,
2019.

[Fox et al., 2020] Jacob Fox, Tim Roughgarden, C Se-
shadhri, Fan Wei, and Nicole Wein. Finding cliques in
social networks: A new distribution-free model. SIAM
journal on computing, 49(2):448–464, 2020.

[Gärtner et al., 2003] Thomas Gärtner, Peter Flach, and Ste-
fan Wrobel. On graph kernels: Hardness results and effi-
cient alternatives. In Learning theory and kernel machines,
pages 129–143. Springer, 2003.

[Girvan and Newman, 2002] Michelle Girvan and Mark EJ
Newman. Community structure in social and biological
networks. Proceedings of the national academy of sci-
ences, 99(12):7821–7826, 2002.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing sys-
tems, 30, 2017.

[Hassija et al., 2024] Vikas Hassija, Vinay Chamola,
Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel,

Kaizhu Huang, Simone Scardapane, Indro Spinelli, Mufti
Mahmud, and Amir Hussain. Interpreting black-box
models: a review on explainable artificial intelligence.
Cognitive Computation, 16(1):45–74, 2024.

[Huang and Villar, 2021] Ningyuan Teresa Huang and
Soledad Villar. A short tutorial on the weisfeiler-lehman
test and its variants. In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8533–8537. IEEE, 2021.

[Huang et al., 2023] Zexi Huang, Mert Kosan, Sourav Me-
dya, Sayan Ranu, and Ambuj Singh. Global counterfactual
explainer for graph neural networks. In Proceedings of the
Sixteenth ACM International Conference on Web Search
and Data Mining, pages 141–149, 2023.

[Jiang et al., 2010] Chuntao Jiang, Frans Coenen, and
Michele Zito. Finding frequent subgraphs in longitudi-
nal social network data using a weighted graph mining
approach. In Advanced Data Mining and Applications:
6th International Conference, ADMA 2010, Chongqing,
China, November 19-21, 2010, Proceedings, Part I 6,
pages 405–416. Springer, 2010.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Kosan et al., 2023] Mert Kosan, Samidha Verma, Burouj
Armgaan, Khushbu Pahwa, Ambuj Singh, Sourav Medya,
and Sayan Ranu. Gnnx-bench: Unravelling the utility of
perturbation-based gnn explainers through in-depth bench-
marking. arXiv preprint arXiv:2310.01794, 2023.

[Kriege and Mutzel, 2012] Nils Kriege and Petra Mutzel.
Subgraph matching kernels for attributed graphs. arXiv
preprint arXiv:1206.6483, 2012.

[Kriege et al., 2020] Nils M Kriege, Fredrik D Johansson,
and Christopher Morris. A survey on graph kernels. Ap-
plied Network Science, 5:1–42, 2020.

[Luo et al., 2020] Dongsheng Luo, Wei Cheng, Dongkuan
Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural net-
work. Advances in neural information processing systems,
33:19620–19631, 2020.

[Luo et al., 2023] Xiao Luo, Wei Ju, Yiyang Gu, Zhengyang
Mao, Luchen Liu, Yuhui Yuan, and Ming Zhang. Self-
supervised graph-level representation learning with adver-
sarial contrastive learning. ACM Transactions on Knowl-
edge Discovery from Data, 2023.

[Morgan, 1965] Harry L Morgan. The generation of a unique
machine description for chemical structures-a technique
developed at chemical abstracts service. Journal of chem-
ical documentation, 5(2):107–113, 1965.

[Morris et al., 2020] Christopher Morris, Nils M. Kriege,
Franka Bause, Kristian Kersting, Petra Mutzel, and Mar-
ion Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. In ICML 2020 Workshop
on Graph Representation Learning and Beyond (GRL+
2020), 2020.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[O’Bray et al., 2021] Leslie O’Bray, Max Horn, Bastian
Rieck, and Karsten Borgwardt. Evaluation metrics for
graph generative models: Problems, pitfalls, and practical
solutions. arXiv preprint arXiv:2106.01098, 2021.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[O’Boyle and Sayle, 2016] Noel M O’Boyle and Roger A
Sayle. Comparing structural fingerprints using a literature-
based similarity benchmark. Journal of cheminformatics,
8:1–14, 2016.

[Pržulj, 2007] Nataša Pržulj. Biological network compar-
ison using graphlet degree distribution. Bioinformatics,
23:e177–e183, 2007.

[Rahman et al., 2009] Syed Asad Rahman, Matthew Bash-
ton, Gemma L Holliday, Rainer Schrader, and Janet M
Thornton. Small molecule subgraph detector (smsd)
toolkit. Journal of cheminformatics, 1:1–13, 2009.

[Smola and Vishwanathan, 2002] Alex Smola and SVN
Vishwanathan. Fast kernels for string and tree matching.
Advances in neural information processing systems, 15,
2002.

[Sun and Fan, 2024] Yan Sun and Jicong Fan. Mmd graph
kernel: Effective metric learning for graphs via maximum
mean discrepancy. In ICLR, 2024.

[Sun et al., 2019] Fan-Yun Sun, Jordan Hoffmann, Vikas
Verma, and Jian Tang. Infograph: Unsupervised
and semi-supervised graph-level representation learning
via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

[Sun et al., 2023] Ziheng Sun, Chris Ding, and Jicong Fan.
Lovász principle for unsupervised graph representation
learning. In Advances in Neural Information Processing
Systems, volume 36, pages 58290–58311. Curran Asso-
ciates, Inc., 2023.

[Tan et al., 2023] Qiaoyu Tan, Ninghao Liu, Xiao Huang,
Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae: self-
supervised graph autoencoders are generalizable learners
with graph masking. In Proceedings of the sixteenth ACM
international conference on web search and data mining,
pages 787–795, 2023.

[Wang and Fan, 2024] Zixiao Wang and Jicong Fan. Graph
classification via reference distribution learning: Theory
and practice. In Advances in Neural Information Process-
ing Systems, volume 37, pages 137698–137740. Curran
Associates, Inc., 2024.

[Wang et al., 2020] Pengyang Wang, Yanjie Fu, Yuanchun
Zhou, Kunpeng Liu, Xiaolin Li, and Kien A Hua. Ex-
ploiting mutual information for substructure-aware graph
representation learning. In IJCAI, pages 3415–3421, 2020.

[Wang et al., 2021] Xin Wang, Shuyi Fan, Kun Kuang, and
Wenwu Zhu. Explainable automated graph representation
learning with hyperparameter importance. In International
Conference on Machine Learning, pages 10727–10737.
PMLR, 2021.

[Xie et al., 2016] Junyuan Xie, Ross Girshick, and Ali
Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learn-
ing, pages 478–487. PMLR, 2016.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826, 2018.

[Yan et al., 2011] Yan Yan, Shenggui Zhang, and Fang-
Xiang Wu. Applications of graph theory in protein struc-
ture identification. Proteome science, 9:1–10, 2011.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differen-
tiable pooling. Advances in neural information processing
systems, 31, 2018.

[Ying et al., 2019] Zhitao Ying, Dylan Bourgeois, Jiaxuan
You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Ad-
vances in neural information processing systems, 32,
2019.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. Advances in Neural
Information Processing Systems, 33:5812–5823, 2020.

[Yuan et al., 2020] Hao Yuan, Jiliang Tang, Xia Hu, and
Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discov-
ery & data mining, pages 430–438, 2020.

[Zeng et al., 2023] Dingyi Zeng, Wanlong Liu, Wenyu
Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure
aware graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages
11129–11137, 2023.

[Zhang et al., 2018] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An end-to-end deep learn-
ing architecture for graph classification. In Proceedings of
the AAAI conference on artificial intelligence, volume 32,
2018.

[Zhao et al., 2018] Xiaohan Zhao, Bo Zong, Ziyu Guan, Kai
Zhang, and Wei Zhao. Substructure assembling network
for graph classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

[Zhao et al., 2024] Zhe Zhao, Pengkun Wang, Haibin Wen,
Yudong Zhang, Zhengyang Zhou, and Yang Wang. A
twist for graph classification: Optimizing causal informa-
tion flow in graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
pages 17042–17050, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

