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Abstract

With the development of wearable cardiac ul-
trasound devices, it is no longer sufficient to
solely rely on doctors for diagnosing long-term
echocardiogram videos. Automated diagnosis of
echocardiogram videos has now become a re-
search hotspot. Existing studies only analyze
echocardiogram video through discriminative mod-
els, which have limited question-answering capa-
bilities. Therefore, this study innovatively proposes
a large language model with cardiac ultrasound
diagnostic capabilities—EchoGPT. EchoGPT inte-
grates the robust communication and comprehen-
sion capabilities of large language models (LLMs)
with the diagnostic prowess of traditional medi-
cal models, empowering patients to obtain accu-
rate medical indicator data and comprehend their
health conditions through interactive questioning
with the model. The model is capable of local de-
ployment on personal computers, effectively safe
guarding user privacy. EchoGPT operates through
three main components: left ventricle segmenta-
tion, left ventricular ejection fraction (LVEF) pre-
diction, and finetuning of video-text LLMs. Ex-
perimental results demonstrate EchoGPT’s supe-
rior accuracy in predicting LVEF compared to other
models, and positive feedback from professional
physicians through questionnaire surveys, validat-
ing its potential in practical applications. The
demo is available at https://github.com/zhuqh19/
EchoGPT.

1 Introduction
In the realm of modern medicine, the continuous develop-
ment of new materials and the proliferation of wearable de-
vices have led to an increasing demand for portable physio-
logical data monitoring devices. Particularly in the field of

∗Corresponding author.

echocardiogram video monitoring, advancements in Bioad-
hesive Ultrasound (BAUS) [Liu et al., 2024b; Wang et al.,
2022] technology have opened new possibilities for cardiac
health monitoring. However, given that the video data col-
lected by wearable devices tend to be of considerable duration
(usually exceeding one hour), it is extremely challenging for
physicians to manually diagnose echocardiogram videos, and
the accuracy of such diagnoses cannot be guaranteed. Auto-
mated diagnosis of echocardiogram videos has now become
a research hotspot.

In order to address the aforementioned issue, it is necessary
to develop a multimodal model capable of diagnosing based
on echocardiogram videos. Multimodal models like CLIP,
including BioMedCLIP, PubMedCLIP and EchoCLIP [Rad-
ford et al., 2021; Zhang et al., 2024b; Eslami et al., 2023;
Christensen et al., 2024], excel in understanding tasks and
offer preliminary diagnostics. However, they often over-
look patients’ comprehension, hindering effective communi-
cation. Additionally, their accuracy in medical metrics and
general question-answering capabilities are limited compared
to larger language models, restricting their interactive and
precise utility. With the development of large language mod-
els [OpenAI et al., 2024; Sun et al., 2025], especially multi-
modal large language models, a new avenue has been paved
for patients to gain immediate insights into their health con-
ditions. Existing video-text multimodal large models [Wang
et al., 2024; Ataallah et al., 2024a; Zhang et al., 2024c;
Cheng et al., 2024], trained mostly on general datasets, strug-
gle to accurately capture the features of medical data, re-
sulting in inaccurate responses. In some medical imaging
fields, relevant multimodal image-text large language mod-
els (LLMs) have emerged. For instance, SkinGPT [Zhou et
al., 2024] is a multimodal LLM designed for the diagnosis of
dermatological images. However, there remains a dearth of
corresponding multimodal LLMs in the domain of medical
video diagnosis, especially echocardiogram video.

In light of these challenges, as shown in Figure 1, this
study introduces an innovative medical diagnostic large lan-
guage model tailored for echocardiogram videos—EchoGPT.
This model combines the powerful communication and com-
prehension capabilities of large language models with the di-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/zhuqh19/EchoGPT
https://github.com/zhuqh19/EchoGPT


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

agnostic capabilities of traditional medical models, enabling
patients to receive accurate medical indicator data and un-
derstand their health conditions through interactive question-
ing with the model. This not only enhances patients’ self-
monitoring capabilities and alleviates the workload of physi-
cians but also supports local deployment on personal comput-
ers, effectively safeguarding users’ personal privacy.

The predicted 
LVEF=45.0%.

This is an 
echocardiogram. This echocardiogram 

video shows LVEF=56.0%.

Diagnosis  No 
diagnosis

Segment-
ation

CLIP-Like Models General LLMs EchoGPT

Better
diagnosis

Strong 
Q&A

Strong 
Q&A

Weak 
Q&A

Figure 1: Challenge and our solution.

The primary contributions of our paper are as follows:

• Pioneering Application of LLM in Echocardiogram Di-
agnosis: To the best of our knowledge, EchoGPT is the
first multimodal echocardiogram diagnosis large language
model (LLM). EchoGPT represents the first instance of
leveraging LLM in the field of medical video modeling,
especially echocardiogram video diagnosis, marking a sig-
nificant advancement in the application of AI technology
for cardiac health monitoring.

• Local Deployment for Enhanced Privacy and Accessi-
bility: EchoGPT’s capability for local deployment on per-
sonal computers positions it at the forefront of privacy pro-
tection in medical diagnostics. As advanced sensors be-
come more ubiquitous, the model’s advantages in safe-
guarding user privacy and facilitating convenient access to
healthcare insights will become increasingly evident.

• State-of-the-Art Performance in Diagnostic Accuracy
and Interactivity: EchoGPT achieves cutting-edge perfor-
mance in both diagnostic accuracy and interactivity. The
model’s sophisticated understanding of echocardiogram
videos and its ability to engage in interactive questioning
with patients set new standards for AI-assisted medical di-
agnostics.

2 Related Work
Medical Vision-Language Models. The integration of vi-
sual and linguistic data in medicine has led to advanced mod-
els that boost understanding and analysis. These models han-
dle both visual and textual medical data, aiding in diagno-
sis, research, and patient care. This development is a ma-
jor step in medical AI, offering tools to enhance healthcare
professionals’ expertise and patient outcomes. While CLIP

[Radford et al., 2021] has been influential, its general train-
ing has limitations in medical contexts. PubMedCLIP [Es-
lami et al., 2023], fine-tuned on radiographic data, shows bet-
ter performance in radiology tasks. BioMedCLIP [Zhang et
al., 2024b], pre-trained on scientific data, outperforms gen-
eral models in biomedical tasks. EchoCLIP [Christensen et
al., 2024], tailored for echocardiogram videos, improves per-
formance on relevant datasets. However, these models still
face challenges in user interactivity and data accuracy due to
CLIP’s inherent constraints.

Video-Text Multimodal LLMs. In the general video de-
scription domain, multimodal LLMs such as Alibaba’s
Qwen2-VL [Bai et al., 2023; Wang et al., 2024] with vi-
sual enhancement, Peking University’s LLava-Video [Zhang
et al., 2024c] with two-stage training, and Video-Llama2
[Zhang et al., 2023; Cheng et al., 2024] from the Video-
LLaMA series are advancing rapidly. MiniGPT4-Video
[Ataallah et al., 2024a; Ataallah et al., 2024b; Chen et al.,
2023; Zhu et al., 2023] is notable for translating visual fea-
tures into LLM space. However, these models perform poorly
in medical data comprehension despite excelling in general
video understanding and interactivity. These AI models in-
tegrate visual and linguistic processing for innovative health-
care applications. In medical 2D imaging, numerous mul-
timodal image-text LLMs have emerged, such as SkinGPT
for dermatology, CheXGPT for chest X-rays, Dia-LLaMA
for CT report generation, ECG-LLM for electrocardiography,
and miniGPT-Med for general medical visual question an-
swering [Zhou et al., 2024; Gu et al., 2024; Chen et al., 2024;
Yu et al., 2024; Alkhaldi et al., 2024]. Nevertheless, there are
still no relevant multimodal LLMs applied to echocardiogram
video diagnosis.

3 Method
3.1 Problem Formulation
The model framework proposed in this study aims to achieve
automated assessment of cardiac function through the inte-
grated analysis of echocardiogram videos and user-submitted
textual queries. The inputs to the model include an echocar-
diogram video x and a user query text y. The format of the
video data x is defined as x ∈ RH×W×C×T , where H , W , C,
and T represent the height, width, number of color channels,
and the number of frames of the video, respectively. For the
user query text y, its format is defined as y ∈ RN×M , where
N denotes the number of words, and M denotes the vector
dimension of each word. The objective of this research is to
ultimately output an echocardiogram video xseg with a left
ventricular segmentation mask to provide a visual result to
aid in clinical diagnosis. Furthermore, we aspire to gener-
ate a medical diagnostic report that includes the specific left
ventricular ejection fraction (LVEF) and enable the model to
provide corresponding responses to user queries y.

3.2 Model Framework of EchoGPT
Our model framework, as depicted in Figure 2, comprises the
following three parts:
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Part 1: Left Ventricle Segmentation. The objective of this
module is to precisely segment the left ventricle region from
echocardiogram videos, providing visual reference and guid-
ance for both physicians and users. The input video x is first
divided into a sequence of frames, then deep visual features
are extracted through an Atrous Convolution network, fol-
lowed by a linear layer that maps these features to a segmen-
tation mask space. The final output is a video with a left ven-
tricle segmentation mask, offering physicians assisting visual
diagnostic results and aiding users in more intuitively under-
standing the diagnostic outcomes.

Part 2: LVEF Prediction. In this part, the model aims to
predict the left ventricular ejection fraction (LVEF) based on
echocardiogram videos. Visual features are extracted from
the video data x through 3D CNNs and spatiotemporal convo-
lutional networks, followed by a linear layer that maps these
features to the ejection fraction space to obtain the predicted
LVEF value. This LVEF value serves as prompting informa-
tion, transmitted alongside the user’s query to the Text To-
kenizer to obtain corresponding textual features, which are
then mapped into the context space of the large language
model LLM.

Part 3: Finetuning Video-Text LLM. The inputs for this
part include the echocardiogram video x, the user query text
y, and the LVEF value obtained from Part 2. The video x
is divided into a sequence of frames and visual features are
extracted through a Vision Transformer (ViT). To accommo-
date the context window limitations of the LLM, we perform
a concatenate operation on the visual tokens output by ViT to
reduce the number of tokens, achieving information compres-
sion. The compressed visual features are then mapped to the
context space of the LLM through a linear layer. After inte-
grating the aforementioned context features, the LLM gener-
ates corresponding diagnostic reports or responses based on
the user’s query.

3.3 Left Ventricle Segmentation Model
This model employs a semantic segmentation architecture
based on DeepLabV3-ResNet50 [Chen et al., 2017], incorpo-
rating Atrous Convolution technology, dedicated to the seg-
mentation task of the left ventricle in echocardiogram video
sequences. Given that the echocardiogram video sequences
in the EchoNet-Dynamic dataset are only annotated with ex-
pert segmentation masks at two key frames, end-systole and
end-diastole, this research fully leverages this sparsely anno-
tated characteristic and devises corresponding weakly super-
vised training strategies. The core features of the adopted
DeepLabV3-ResNet50 model are reflected in: multi-scale
feature extraction, capturing contextual information through
Atrous Convolutions with varying dilation rates; spatial pyra-
mid pooling, integrating multi-scale feature representations;
and an encoder-decoder structure, ensuring the precision of
segmentation boundaries. After processing the input data
through Atrous Convolution, informative feature maps are
obtained, which are ultimately mapped to binary segmenta-
tion masks via a linear layer to distinguish between left ven-
tricular and non-left ventricular regions. In terms of train-
ing strategy, this study opts to train the model from scratch,

Algorithm 1: Forward Propagation of EchoGPT

Input : Echocardiogram video x ∈ RH×W×C×T ,
User question text y ∈ RN×M

Output: Segmented video xseg , LVEF value,
Responses

1 Part 1: Left Ventricle Segmentation
2 for each frame in video x do
3 extract frame features using Atrous Convolution
4 project features to segmentation mask space using

a linear layer
5 end
6 combine segmentation masks to get xseg

7 Part 2: LVEF Prediction
8 extract visual features from x using 3D CNN and

Spatiotemporal convolutions
9 map features to LVEF space using a linear layer to get

LVEF
10 Part 3: Finetuning Video-Text LLM
11 for each frame in video x do
12 extract frame features using Vision Transformer
13 end
14 concatenate ViT output to reduce token numbers
15 map visual features to LLM context space using a

linear layer
16 generate responses based on y, LVEF, and context

using LLM

rather than directly applying pre-trained weights, to better
adapt to the unique characteristics of echocardiogram data.
After training for 50 epochs, the segmentation model is capa-
ble of accurately segmenting the left ventricle from echocar-
diogram video sequences, with visualization results that can
assist physicians in diagnosis and help users gain a deeper
understanding of diagnostic outcomes.

3.4 LVEF Prediction Model
This model employs a three-dimensional convolutional neu-
ral network architecture based on R2Plus1D-18 [Tran et al.,
2014; Tran et al., 2017], aimed at predicting the ejection frac-
tion of echocardiogram videos through spatiotemporal fea-
ture extraction. The method fully leverages the advantages
of transfer learning from pre-trained models and has been
specifically optimized for the characteristics of echocardio-
gram images. Specifically, the model utilizes the pre-trained
R2Plus1D-18 as the backbone network and incorporates the
following key improvements to adapt to the ejection frac-
tion prediction task: firstly, replacing the original classifi-
cation layer with a single-output linear layer for regression
prediction; secondly, retaining the feature extraction capa-
bility of spatiotemporal convolutional layers to capture key
spatiotemporal features in the videos; and lastly, integrat-
ing residual connections to ensure the effective propagation
of deep features. With these enhancements, the prediction
model can effectively predict the corresponding left ventric-
ular ejection fraction from echocardiogram videos. The ob-
tained precise ejection fraction indices will be combined with
user queries as prompts, transmitted to the large language
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Text Tokenizer
Stage1:        Report

Stage2:          VQA

Part 3: Adapting Video-Text LLM

LinearViT

concatenate

This echocardiography video 
shows the heart’s pumping 
function, and LVEF=56.0%.

The normal range is 50%-70%.

Describe this video

y

x

t

Part 2: LVEF Prediction Model

Fram
e 1 to N

...

LLaM
a-2-7b-chat

LoRA

Text Tokenizer

LVEF
Prompting

Weak supervision Atrous convolutions

Part 1: Left Ventricle Segmentation Model

Linear Linear

Spatiotem
poral

convolutions

LVEF +  Q
uery

Figure 2: The framework of EchoGPT.

model, to achieve more accurate interaction and analysis.

3.5 Finetuning Video-Text Large Language Model
The training process in this part is divided into two stages:
Stage1 : Echocardiogram video-Medical Report pair pre-
training. In this stage, the model processes multiple video
frames to comprehend the video content. Specifically, a
maximum of N frames are sampled from each video, with
N, equal to 45, determined by the context window size of
the language model. We employed predefined prompts with
the following template: < s > [INST ] < Img ><
FrameFeature1 > ... < Img >< FrameFeatureN ><
Instruction >< /INST >. A linear layer was trained
to project the visual features encoded by the visual encoder
[Dosovitskiy et al., 2021; Li et al., 2023; Sun et al., 2023;
Chen et al., 2020] (e.g., ViT) into the text space of the LLM
[Touvron et al., 2023; Zhang et al., 2024a], utilizing im-
age description loss (captioning loss). The encoded video
frames were input into the model alongside the correspond-
ing medical reports; < FrameFeature > in the prompt
was replaced with the encoded sampled video frames, and
< Instruction > was replaced with randomly selected in-
structions from a predefined set, which included the left ven-
tricular ejection fraction (LVEF) corresponding to the video,
such as ”Generate a report according to this video whose
LVEF is 56%.” The EchoNet-Dynamic dataset, annotated with
corresponding medical report data, was used for large-scale
medical report generation training.
Stage 2 : Echocardiogram Video question answering in-
struction finetuning. The same training strategy as the
first stage was employed in this stage, but with a focus

on using high-quality medical visual question-and-answer
datasets for instruction fine-tuning [Liu et al., 2024a]. This
helps enhance the model’s ability to interpret input videos
and generate precise answers to corresponding questions.
The template was the same as in the second phase, except
that < Instruction > was replaced with general ques-
tions mentioned in the question-and-answer dataset. The
EchoNet-Dynamic dataset, annotated with relevant medical
visual question-and-answer data, was used for medical visual
question-and-answer training.

Regarding training details, both stages maintained a batch
size of 2 and utilized the AdamW optimizer with a cosine
learning rate scheduler, setting the learning rate to 1e-4. The
visual backbone was the Vision Transformer with frozen
weights. The linear projection layer was trained from scratch,
and the LoRA (Low-rank Adaptation) method [Hu et al.,
2021] was used for efficient fine-tuning of the large language
model Llama2-7B-Chat. Specifically, the Wq and Wv com-
ponents were fine-tuned, with the rank (r) set to 64 and the
LoRA-alpha value equal to 16. The entire model maintained
a consistent image resolution of 224×224 pixels throughout
all stages to ensure uniformity.

4 Experiments
4.1 Datasets and Evaluation Metrics
Datasets
Table 1 presents a detailed overview of the publicly available
echocardiogram video dataset EchoNet-Dynamic, our corre-
sponding diagnostic report annotation dataset, and the asso-
ciated medical visual question-answering dataset.
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Dataset Content Type Example Amount
EchoNet-Dynamic Echocardiogram videos

from Stanford University
Medical Center

- - 10030

Diagnosis Report Medical text report anno-
tation of Echocardiogram
videos

- This is the report...
Examination area:
Heart...resulting in an
LVEF of 49.7%...The
left ventricular systolic
and diastolic functions
of the heart are reduced,
and further diagnosis
and treatment are recom-
mended.

7465

Descriptive Q:What kind of video is
this?
A:It is an echocardio-
gram video.

18596

Visual Question Answering Echocardiogram video
related Question An-
swering

Explanatory Q:What is EF (Ejection
Fraction)?
A:EF (Ejection Fraction)
refers to the proportion of
blood volume in the left
ventricle that is pumped
out during contraction.

21577

Advisory Q:My LVEF is below the
normal range, is it neces-
sary to quit smoking?
A:Yes, smoking is ex-
tremely detrimental to
heart health...

12320

Table 1: Introduction of Datasets.

EchoNet-Dynamic Dataset. The EchoNet-Dynamic dataset
[Ouyang et al., 2020; Ouyang et al., 2019] includes over
10,000 cardiac ultrasound videos from Stanford University
Medical Center, featuring diverse patients. Each video,
recorded from the apical four-chamber view, comes with clin-
ical data like EF, ESV, and EDV, and includes left ventricular
mask annotations by doctors at end-systolic and end-diastolic
phases.
Diagnosis Report Annotation of Echocardiogram Videos.
We invited an experienced echocardiogram physician to an-
notate each video with detailed medical reports. These re-
ports describe the videos and assess left ventricular pump
function using LVEF, aiming to support cardiac function anal-
ysis and clinical decisions.
Construction of Video Question Answering (VQA)
Dataset. Our VQA dataset includes three question types: de-
scriptive, explanatory, and advisory. Descriptive questions
help users understand echocardiogram video features. Ex-
planatory questions provide insights into cardiac ultrasound
data for better heart health comprehension. Advisory ques-
tions offer professional advice on treatment and lifestyle
changes, particularly for those at risk of heart pump insuf-
ficiency or failure, along with early intervention suggestions.

Evaluation Metrics
Left ventricular ejection fraction (LVEF) is a critical cardiac
performance metric that quantifies the percentage of blood
pumped out of the left ventricle with each contraction, re-
flecting the heart’s ability to efficiently circulate blood. To
systematically assess the performance of the model proposed
in this study compared to other existing models in predicting
the accuracy of LVEF, a series of quantitative metrics were
adopted for experimental evaluation:

• AUC (40%): Measures the model’s ability to distinguish
between LVEF values below and above 40%.

• AUC (50%): Assesses the model’s capability to differenti-
ate LVEF values below and above 50%, important for iden-
tifying cardiac insufficiency.

• AUC (70%): Evaluates the model’s performance in ex-
treme cases.

• R²: Reflects the proportion of LVEF variation explained by
the model.

• MAE (Mean Absolute Error): Measures the average dif-
ference between predicted and actual LVEF values.
In summary, these metrics collectively form a multidimen-

sional assessment framework for comprehensively evaluating
and comparing the performance of different models in pre-
dicting LVEF.

4.2 Experimental Implementation
Quantitative Experiment. In the quantitative segment of
this study, a comparative experiment was conducted to evalu-
ate the performance of various models in predicting the ac-
curacy of LVEF. Specifically, we selected models such as
EchoCLIP, CLIP, BioMedCLIP, and PubMedCLIP [Chris-
tensen et al., 2024; Radford et al., 2021; Zhang et al., 2024b;
Eslami et al., 2023], and applied them to over 1200 test videos
from the EchoNet-Dynamic dataset to predict left ventricu-
lar ejection fraction. By comparing the predicted outcomes
of these models with actual clinical data, we quantified their
accuracy and performed statistical analysis. Concurrently, in
order to empirically validate the efficacy of EchoGPT in prac-
tical applications, we have solicited feedback from a cohort of
seasoned physicians specializing in echocardiogram through
a structured questionnaire survey. This methodological ap-
proach was employed to gather expert opinions and assess the
real-world utility of the model within the domain of cardiac
ultrasound imaging.
Qualitative Experiment. In the qualitative experimental
phase, we focused on assessing the capabilities of large-
scale visual-text multimodal language models in generat-
ing diagnostic reports and answering medical-related ques-
tions. To this end, we selected models including MiniGPT4-
Video, Qwen2-VL, Video-Llama2, and Llava-Video [Ataal-
lah et al., 2024a; Wang et al., 2024; Cheng et al., 2024;
Zhang et al., 2024c], and employed a case study approach
to demonstrate the effectiveness of these models in practical
applications by presenting specific cases to reflect the differ-
ences in their performance. In conjunction with this, to sub-
stantiate the efficacy of our two-stage training strategy, we
conducted ablation studies to compare the actual performance
of EchoGPT, which underwent the complete two-stage train-
ing regimen, with that of EchoGPT variants trained solely in
stage 1 and stage 2, respectively. This comparative analysis
was designed to elucidate the contributions of each training
phase to the overall performance of the model.

All experiments were conducted in a high-performance
computing environment equipped with four RTX-4090 GPUs
and an Intel(R) Xeon(R) Platinum 8336C CPU, ensuring the
sufficiency of computational resources and the reliability of
the experimental results.

4.3 Quantitative Results
Comparison of Predictive Accuracy for Left Ventricular
Ejection Fraction (LVEF). In our study, we compared the
performance of various models in predicting left ventricu-
lar ejection fraction (LVEF). The experimental results in Ta-
ble 2 demonstrated that our proposed EchoGPT model out-
performed all other models across all evaluated metrics.
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Specifically, EchoGPT achieved AUC values of 0.9519,
0.9221, and 0.8475 for the thresholds of 40%, 50%, and
70%, respectively, which are significantly higher than the
performance of other models. This indicates that EchoGPT
possesses an exceedingly high degree of accuracy in iden-
tifying samples with ejection fractions below 40%, below
50%, and above 70%. In terms of the R² score, EchoGPT
reached 0.6848, implying that our model accounts for ap-
proximately 68.48% of the variability in ejection fraction,
the highest proportion among all compared models. Further-
more, EchoGPT’s mean absolute error (MAE) was 7.5934,
the lowest among all models, which further corroborates the
high precision of EchoGPT in predicting left ventricular ejec-
tion fraction. In comparison, other models such as EchoCLIP,
BioMedCLIP, PubMedCLIP, and CLIP did not perform as
well as EchoGPT.

In summary, the EchoGPT model demonstrated superior
performance in predicting left ventricular ejection fraction,
both in terms of distinguishing the severity of ejection frac-
tion and overall predictive accuracy, significantly outperform-
ing other models under comparison. These results substanti-
ate the potential application of EchoGPT in the field of car-
diac function assessment, offering a robust tool for clinical
decision-making.

Method Interactable
EchoNet-Dynamic

AUC (40%) ↑ AUC (50%)↑ AUC (70%)↑ R²↑ MAE↓
BioMedCLIP ✗ 0.4973 0.5003 0.4641 0.0001 13.8036
PubMedCLIP ✗ 0.5799 0.5805 0.5199 0.0096 24.0842
CLIP ✗ 0.5815 0.5658 0.5641 0.0171 8.8818
EchoCLIP ✗ 0.8393 0.7920 0.7707 0.4067 10.3734

EchoGPT (ours) ✓ 0.9519 0.9221 0.8475 0.6848 7.5934

Table 2: Comparison of Predictive Accuracy for Left Ventricular
Ejection Fraction (LVEF).

Questionnaire-based Evaluation of EchoGPT. To assess
the diagnostic accuracy of EchoGPT and its practical util-
ity to users, we engaged a panel of five physicians specializ-
ing in echocardiogram to evaluate the system’s performance.
For this evaluation, we randomly selected 100 videos from
the test set of the EchoNet-Dynamic dataset and employed
a questionnaire-based assessment methodology.We provided
EchoGPT with the following prompts to elicit responses:

1. Could you describe this echocardiogram video for me?

2. My LVEF is not in the normal range, what should I do
for this case?

Based on the responses provided by EchoGPT, physicians
were queried on the accuracy and relevance of its diagnosis,
the informativeness of its answers, the utility of its sugges-
tions, its capacity to assist in medical diagnosis, its ability to
enhance users’ understanding of their health conditions, the
privacy protection afforded by local deployment, and their
willingness to utilize EchoGPT. The results, as depicted in the
table, indicate that in the majority of cases, physicians con-
curred with EchoGPT’s responses, often expressing agree-
ment or strong agreement. Figure 3 indicates that EchoGPT
demonstrates commendable performance in both the accu-
racy of its diagnoses and the practicality of its interactive ca-
pabilities.

Evaluation of EchoGPT

1.    EchoGPT’s diagnosis is correct or relevant.

Strongly agree Agree Neutral Disagree Strongly disagree

0% 50% 100%

2.    EchoGPT’s description is informative.

3.    EchoGPT’s suggestions are useful.
4.    EchoGPT can help doctors with diagnosis.
5.    EchoGPT can help understand health condition.
6.   EchoGPT pretects users’ privacy.
7.    Willingness to use EchoGPT

Figure 3: Questionnaire-based evaluation of EchoGPT.

4.4 Qualitative Results

Ablation Study. To ensure that EchoGPT provides accurate
diagnostic reports while maintaining a high level of inter-
activity, we adopted the two-stage training strategy as men-
tioned in Section 3.5. To validate the substantial benefits
of this training strategy in enhancing the model’s actual per-
formance, we conducted ablation experiments to confirm the
necessity of both training stages. As illustrated in Figure 4,
the first image depicts a communication dialogue between a
physician and a patient, while the second image shows an
interactive dialogue between EchoGPT and a user. It can
be observed that EchoGPT, after undergoing the two-stage
training, is capable of accurately providing correct diagnos-
tic reports and responding to user-related inquiries with con-
cise language. The third image demonstrates the responses of
EchoGPT trained only in the first stage; although it can pro-
vide correct diagnostic reports, it fails to respond precisely
and concisely to other user queries, often including redun-
dant information. The fourth image displays the performance
of EchoGPT trained solely in the second stage, which evi-
dently cannot provide accurate diagnostic reports. In sum-
mary, the results of the ablation experiments substantiate the
effectiveness and necessity of the two-stage training strategy.
EchoGPT, after being trained in both stages, can achieve di-
agnostic results comparable to those of physicians and can
accurately and concisely answer user-related questions.
Comparative Experiment. To verify the superior perfor-
mance of EchoGPT in terms of interactivity and diagnostic
report generation capabilities, we also compared it with other
Video-Text Large Language Models (LLMs). As shown in
the four lower images of Figure 4, these illustrate the ac-
tual conversational effects of four different Video-Text LLMs
with users. MiniGPT4-Video and Video-Llama2 were both
unable to correctly identify the characteristics of echocardio-
gram videos, and even failed to provide correct descriptions
of the echocardiogram videos. While Qwen2-VL and Llava-
Video could correctly recognize echocardiogram videos and
provide some descriptive language, none of the aforemen-
tioned models were able to calculate the left ventricular ejec-
tion fraction, and thus could not provide actual diagnostic re-
sults. In contrast, the second image at the top demonstrates
the conversational effect of EchoGPT, which not only pos-
sesses the strong interactivity of large language models but
also can provide accurate diagnostic results, effectively as-
sisting users in understanding their health conditions.
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Describe this video

This echocardiography 
video shows the heart’s 
pumping function, and 

LVEF=56.0%.The normal 
range for LVEF in adults 

is 50-70%.

When LVEF is below the 
normal range, is it necessary 

to quit smoking?

Yes, smoking is extremely 
detrimental to heart health.
If LVEF is below the normal 
range, quitting smoking is 

crucial for improving 
cardiac function.

Describe this video

According to this 
echocardiography video, 
your LVEF=56.0%, which 

indicates your left 
ventricular contraction 

runction is normal.

When LVEF is below the 
normal range, is it necessary 

to quit smoking?

Of course, smoking can 
seriously damage the heart 
contraction function. When 

your ejaculation score is 
lower than the normal 

range, quitting smoking is 
very necessary.

Describe this video

This echocardiography 
video shows the heart’s 
pumping function, and 

LVEF=56.0%.The normal 
range is 50-70%.

When LVEF is below the 
normal range, is it necessary 

to quit smoking?
This is a critical area in the 

image where LVEF (left 
ventricular ejection fraction) 

is shown.  It can also 
increase the risk of heart 
failure if not addressed 

through lifestyle 
modifications like quitting 

smoking .

Describe this video

This is an echocardiogram 
video. Its modality is 
ultrasound...From the 
video, we can get LP.

When LVEF is below the 
normal range, is it necessary 

to quit smoking?

Yes, smoking is extremely 
detrimental to heart health.
If LVEF is below the normal 
range, quitting smoking is 

crucial for improving 
cardiac function.

D
octor

EchoG
PT

EchoG
PT

Stage1 only

EchoG
PT

Stage2 only

Describe this video

This ultrasound video is 
an echocardiogram, which 
is a non-invasive imaging 

test that uses sound 
waves to create pictures 
of the heart. The video 

provides a detailed view of 
the heart’s structures...

Can you calculate LVEF of 
this video?

I’m sorry, but I cannot 
calculate the LVEF from 
the provided ultrasound 

image alone. To 
accurately determine the 

LVEF, a trained healthcare 
professional would need 

to analyze the full 
echocardiogram study...

Describe this video

Sure, the video shows a 
close up of an X-ray like 
imaging screen showing 

what appears to be 
medical equipment. The 
camera then cuts away 
from it before revealing 

that there is actually just 
someone checking for 

menstrual flow on 
themselves in order ...

Can you calculate LVEF of 
this video?

I'm sorry, but LVEF (Laser 
Valve Error Factor) is a 

measure of the quality and 
accuracy achieved in galley 
laser engraving or cutting. 

Describe this video

This video presents a 
series of ultrasound 

images that depict the 
internal structure of a 

human heart. The images 
are in grayscale, with 

varying shades of gray 
representing different 
tissue densities and 
structures within the 

heart.

Can you calculate LVEF of 
this video?

No, it is not possible to 
calculate LVEF from this 

video as there are no 
measurements or reference 

points provided.

Describe this video

The video shows a series 
of images depicting the 
development of a baby 

inside the womb from 20 
weeks to birth. The 
images capture the 

growth and development 
of the baby’s head, 

stomach, heart rate, and 
size over time.

Can you calculate LVEF of 
this video?

Unfortunately, I cannot 
calculate the LVEF of this 

video as it does not 
contain enough 

information to determine 
the left ventricular ejection 

fraction.

Q
w

en2-VL

M
iniG

PT4-Video

Llava-Video

Video-Llam
a2

Accurate Diagnosis + Helpful Answer Accurate Diagnosis + Redundant Answer No Diagnosis + Helpful Answer

No Diagnosis + Unhelpful Answer No Diagnosis + Unhelpful Answer No Diagnosis + Unhelpful Answer No Diagnosis + Unhelpful Answer

Accurate Diagnosis + Helpful Answer

Figure 4: Qualitative Results of Ablation Study and Comparative Experiment.

5 Conclusion
This study successfully developed and validated EchoGPT,
a large language model for medical diagnosis tailored to
echocardiogram videos. EchoGPT not only enhances pa-
tients’ ability for self-monitoring and alleviates the work-
load of physicians but also protects users’ personal privacy
through local deployment. EchoGPT demonstrates excep-
tional performance in diagnostic accuracy and user interac-
tivity, setting a new standard for AI-assisted medical diag-
nostics. Employing a two-stage training strategy, EchoGPT is
capable of providing accurate diagnostic reports and respond-
ing to user inquiries with concise language. Furthermore,
EchoGPT outperforms existing models in predicting left ven-
tricular ejection fraction, garnering recognition from clinical
physicians. Future work will explore the local deployment of

EchoGPT on mobile devices and further optimize its conver-
sational capabilities.
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