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Abstract

In this work, we show how the class of improve-
ment operators — a general class of iterated belief
change operators — can be used to define a learn-
ing model. Focusing on binary classification, we
present learning and inference algorithms suited to
this learning model and we evaluate them empiri-
cally. Our findings highlight two key insights: first,
that iterated belief change can be viewed as an ef-
fective form of online learning, and second, that
the well-established axiomatic foundations of be-
lief change operators offer a promising avenue for
the axiomatic study of classification tasks.

1 Introduction

Belief Change Theory [Alchourrén et al., 1985; Girdenfors,
1988; Katsuno and Mendelzon, 1991] provides a principled
framework for modifying an agent’s current beliefs in re-
sponse to new information. Iterated belief revision [Darwiche
and Pearl, 1997; Jin and Thielscher, 2007; Booth and Meyer,
2006] extends this framework to accommodate sequences
of new information, addressing the challenge of revising an
agent’s beliefs over time. In both cases, the ultimate goal is
to improve the agent’s beliefs to better reflect the real world.
While the methodologies of these two approaches differ, their
objective aligns with that of Machine Learning (ML): deriv-
ing an accurate approximation of the real world from data.

Despite this conceptual similarity, connections between
Belief Change Theory and ML remain largely unexplored,
apart from a few notable contributions in philosophical logic
[Kelly, 1998; Kelly, 2014; Baltag et al., 2011; Baltag et
al., 2019], inductive logic programming [Wrobel, 1994;
Pagnucco and Rajaratnam, 2005], and computational learn-
ing theory [Goldsmith et al., 2004].

A major difference is that primacy of update, which re-
quires fully adopting new information after each revision, is
a key principle in belief revision. However, this principle is
incompatible with typical ML scenarios involving noisy data,
as it leads to substantial changes in the agent’s epistemic state
at each learning step.

Improvement operators [Konieczny and Pino Pérez, 2008;
Konieczny et al., 20101, which generalize iterated belief re-
vision, relax the primacy of update. Soft improvement oper-

ators [Konieczny and Pino Pérez, 2008], in particular, allow
incremental changes that better reflect the iterative nature of
learning. When the same information is encountered again,
its reliability is slightly adjusted. This mirrors the behavior
of online ML methods for classification, where each labeled
example causes gradual changes to the estimated probabilities
of the classes.

Figure 1 illustrates this analogy. Most ML methods also
adjust examples similar to the labeled example, those “near”
the observed instance. A comparable mechanism can be in-
troduced into the iterated belief change framework: both the
observed example and its neighbors can have their reliability
updated through an improvement operator.

This paper focuses on binary classification and shows
that improvement-based models built this way deliver rea-
sonable learning performance. We compare them to stan-
dard ML methods on benchmark datasets. Results show the
improvement-based model slightly outperforms Naive Bayes
and achieves better recall than most existing methods. Thus,
soft improvement operators offer a promising new approach
to learning from examples.

Although an initial exploration, this connection is impor-
tant for both KR and ML communities. It links two fun-
damentally different tasks — belief revision and supervised
learning — with distinct goals and methods. From the ML
side, this work opens the way to learning models that empha-
size interpretability and offer strong guarantees linking the
model to the data. These properties are crucial for trustwor-
thy Al but often lacking in current ML models. If rationality
principles are established, they could serve as safeguards to
ensure the model evolves correctly with new evidence.

The proofs and code used to retrieve datasets and conduct
experiments are available in [Schwind et al., 2025].

2 Preliminaries

We assume the reader familiar with basics of ML, including
standard models (see, e.g., [Shalev-Shwartz and Ben-David,
2014] for an introduction). In this work, the focus is laid on
tabular datasets, where instances are represented as vectors
of Boolean features, aligning with many learning methods,
especially in data mining. Such a Boolean encoding aids nor-
malization, which often improves model performance. Al-
though features in tabular data are usually not Boolean in
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Figure 1: Analogies between classifier learning models and belief
change operators.

essence, they can be converted accordingly. Categorical fea-
tures are transformed via standard one-hot encoding, creating
a Boolean feature for each domain value. Numerical features
are converted by selecting thresholds within their domain to
produce Boolean features. These thresholds are chosen by
analyzing the data distribution (e.g., percentiles) or by opti-
mizing split metrics like Gini impurity or entropy, as com-
monly done in tree-based models such as decision trees, ran-
dom forests, and boosted trees.

Let £ be a propositional language built from a finite set of
propositional variables P, standard logical connectives, and
the Boolean constants L (false) and T (true). A world on P
is a mapping from P to {0,1}, and Q2 denotes the set of all
such worlds. A world w satisfies a formula ¢ if w makes ¢
true; the set of such worlds is denoted by [¢]. A formula is
consistent if [p] # (), and it is complete if [¢] = {w} for
some w € 2. The symbol |= denotes logical entailment, and
= logical equivalence: ¢ |= 9 iff [¢] C [¢], and ¢ = o iff
0] = [¥].

Iterated Belief Change provides a principled framework for
modeling how a rational agent’s beliefs evolve with succes-
sive pieces of evidence. An agent’s belief state, called an epis-
temic state, includes both the agent’s current beliefs and con-
ditional information that guides how beliefs should change
in response to new inputs. Formally, an epistemic state can
be any object ¥, from which the agent’s current beliefs are
extracted via a mapping Bel, such that Bel(¥) € L [Dar-
wiche and Pearl, 1997]. An epistemic space is then a tuple
€ = (E, Bel), where E is the set of all epistemic states in the
space [Schwind et al., 2022].

A standard example of epistemic space is built with Or-
dinal Conditional Functions (OCFs) [Spohn, 1988; Williams,
1995]. An OCF & is a mapping associating each world with a
non-negative integer ! such that % (w) = 0 for some world w.

Definition 1 (OCF epistemic space). The OCF epistemic space
is the epistemic space Eocy = (Eocf, Belocy) where:

* Eocy is the set of all OCFs over §);
* Belycy is the mapping associating each OCF k from E,y
with a formula 1y € L such that [{p] = {w € Q | k(w) = 0}.

Given an epistemic space £ = (F, Bel), an iterated be-
lief change operator o on £ is a mapping associating each

'In the original definition OCFs are defined on ordinals [Spohn,
1988], but here, as in most cases, integers suffice.

epistemic state ¥ € E and each formula p € £ with a new
epistemic state Vo pu € F,ie.,0: Ex L — E.

Improvement operators [Konieczny and Pino Pérez, 2008;
Konieczny et al., 2010; Medina Grespan and Pino Pérez,
2013] generalize iterated revision operators [Darwiche and
Pearl, 1997] by dropping the success postulate (R*1), which
requires the revised beliefs to entail the input formula.
They are defined by nine rationality principles (I1)—(I9) (see
[Konieczny and Pino Pérez, 2008; Konieczny et al., 2010] for
details). We recall only the weak primacy of update:

(1) 3k € N, s.t. Bel(¥ ok ) = a,

where Wola = Woa,andifk > 1, Uoka = (Wok~la)oa.
This property states that after receiving « repeatedly, it
eventually becomes believed.
We now introduce a simple example of an improvement
operator defined over the OCF epistemic space:

Definition 2 (Basic shifting operator o ;). The basic shifting
operator o on &5 is defined for any OCF k and formula o
by k' = Kk o1 «, where for each world w € )

K’(w) = { Zgzg ; T —x lof;;ldefw[lig,

where x = 0 if Bel(k) A« = L, and © = 1 otherwise.

Upon receiving new input «, the improvement operator
o41 adjusts k by increasing the value of worlds w € [—q]
by 1 (i.e., &’ (w) = k(w) + 1), while leaving x(w) unchanged
for worlds w € [a]. A normalization step (—x) then ensures
min{x'(w) | w € 2} = 0, as required by the definition of an
OCF. This operator resembles Spohn’s n-conditionalization
[Spohn, 1988], except n here depends on the prior plausibility
of « (shifted by —1). It also relates to the one-improvement
operator in [Konieczny and Pino Pérez, 2008].

2.1 Morphological Dilation and Erosion

An essential component for defining our learning operators
is the notion of formula dilation and, dually, formula erosion
[Bloch and Lang, 2002]. Both rely on a neighborhood B,
which is a mapping associating each world w € ) with a set
of worlds B, C Q such that (i) w € B,,, and (ii) W’ € B,
implies that w € B, for all worlds w,w’ € .

A neighborhood B induces a dilation dp and an erosion
€p, both mappings from formulas to formulas, defined for
each ¢ € L as follows:

* [0B(p)] = {w e Q| B,Nlg] # 0}

* leB(p)]l ={we Q| B, C[#}

For k > 0, the k-dilation 6% (¢) and k-erosion € () are
defined inductively as follows: §%(¢) = ¢, and 0%(p) =
5B (6% (p)) for k > 0. Similarly, €% (¢) = ¢, and €% () =
en(e 1 (p)) for k > 0.

Neighborhoods can be derived from various similarity or
distance measures on Boolean vectors (see [Choi et al., 2009]
for an overview of such measures). In the present setting,
the neighborhood B, of each world w depends solely on
w and need not be defined uniformly over {). Leveraging
such instance-specific neighborhoods is known to be bene-
ficial from a learning perspective [Ye ef al., 2016].
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3 From Epistemic Spaces to Classifier Spaces

In this section, we formalize the change operation underly-
ing the learning process of a binary classifier, drawing on the
framework of iterated belief change introduced earlier.

The binary classification task consists in predicting
whether a given instance is a member of some target class
or concept. We assume that each instance is described by a
vector of values associating each feature x; from a given finite
and fixed set X with a value. We focus on binarized instance
descriptions, so that the feature set X consists of a set of bi-
nary features. An instance can be associated with an output
(1 or 0), characterizing whether the instance is predicted as
positive or negative.

We represent each binary feature as a propositional vari-
able, so that the feature set X corresponds to the set Px =
{1, ..., zp}. A world over Px is called an instance de-
scription. Let Q2x be the set of all such instance descriptions,
i.e., all worlds over Px, and let Lx denote the propositional
language generated from Px using the standard connectives.
Each formula ¢ € Lx can represent a concept predicted by
a binary classifier: an instance description wx € {)x satis-
fies  if and only if it is classified as positive. This modeling
approach follows that of [Schwind et al., 2023].

To represent labeled data, as in training examples, we ex-
tend Px with an additional output (class) variable y indicat-
ing whether an instance is positive (1) or negative (0). For-
mally, we define P = Px U {y}, withy ¢ Px. A world w
over P is called a labeled instance, and €2 denotes the set of
all such labeled instances. A labeled instance w is positive if
w(y) = 1 and negative if w(y) = 0.

For any labeled instance w € (2, its feature description
(i.e., the corresponding world over Px) is denoted wx. The
complete formula ¢,, € £ such that [¢,] = {w} is called a
training instance, with w its associated labeled instance. Let
L¢ denote the set of all such training instances. A dataset
D is defined as a finite sequence of training instances: D =
(¢ )1<s<m» and D denotes the set of all possible datasets.

To model binary classifiers, we move beyond treating a
classifier as a static propositional formula (as in [Schwind
et al., 2023]) and instead adopt a dynamic perspective that
captures the learning process itself. This shift mirrors the
move from one-step belief change — where an agent’s epis-
temic state is represented by a single propositional formula
[Katsuno and Mendelzon, 1991] — to iterated belief change,
where epistemic states have a richer structure and yield for-
mulas via the mapping Bel [Darwiche and Pearl, 1997].

Similarly, modeling the evolution of a classifier during
learning requires a more expressive framework. To address
this, the notion of an epistemic state is lifted to that of a bi-
nary classifier state. Likewise, the mapping Bel, which as-
signs each epistemic state with a propositional formula repre-
senting the agent’s beliefs, is lifted to a mapping Pos, which
assigns each classifier state with a formula characterizing the
concept it predicts. The pair consisting of a classifier state
and the mapping Pos thus forms a classifier space, in direct
analogy with an epistemic space. The distinct notation Pos
highlights the shift in perspective: from beliefs held by an
agent to predictions made by a classifier. Formally:

Definition 3 (Classifier space). A classifier space is a tuple
E = (E, Pos), where E is a set of binary classifiers and Pos
is a mapping from E to Lx.

Thus, the formula Pos(¥) represents the concept predicted
by W: the set [Pos(¥)] contains the instance descriptions that
U classifies as positive, while [-Pos(¥)] contains those clas-
sified as negative. Note that Pos(¥) is not required to be a
consistent formula, i.e., [Pos(¥)] may be empty.

Standard epistemic spaces used for defining improvement
operators can be directly adapted to build classifier spaces.
Given an epistemic space & = (F, Bel), one can construct a
classifier space £’ = (E, Pos) by simply setting Pos = Bel.
However, more meaningful examples of classifier spaces will
be introduced in the next section.

Based on classifier spaces, we define an (online) learning
operator:

Definition 4 (Learning operator). Let £ = (E, Pos) be a
classifier space. A learning operator ® on & is a mapping
O:ExL°—E.

Thus, © specifies how a classifier ¥ € E changes upon
receiving a training instance ¢,, € L, yielding a new clas-
sifier ¥ ® ¢,,. The framework is general enough to capture
any binary classifier and online learning process, assuming
binarized training data.

We now have the tools to define what we call a learning
framework, representing a full learning process:

Definition 5 (Learning framework). A learning framework is
a pair (U, ®), where U, € E is a binary classifier called
the anchor, and ® is a learning operator on € = (E, Pos).

The anchor W, serves as the initial classifier state, provid-
ing the starting point for learning. Thus, a learning frame-
work is fully determined by two components: the learning
operator ®, which governs how classifiers evolve, and the an-
chor U, which sets the initial state. Given a learning frame-
work (¥,,®) and a training dataset D € D, the resulting
learned classifier, denoted ¥, ® D, is defined inductively by:”

“ 0. (DU () = (¥, ©D) @ g,

The choice of anchor depends on the context: it may be
a classifier pre-trained on prior data, an untrained classifier
(e.g., initialized as trivially positive, Pos(¥,) = T, or nega-
tive, Pos(¥,) = 1), or a random element from E.

This formalization captures the iterative nature of online
binary classifier learning and leads into the next section,
where we introduce a specific class of learning frameworks.

4 Improvement-Based Learning

In this section, we introduce a concrete class of improvement-
based learning operators. These operators are defined on a
classifier space that extends the OCF epistemic space. In
this space, each binary classifier is represented as a tuple
(D, K, T), consisting of a training dataset D, an OCF k, and
a threshold 7 € R. Such classifiers are called TOCFS:

2L denotes vector concatenation.
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Definition 6 (TOCF classifier space). The TOCF classifier
space is the tuple Eioc = (Etocy, POSiocs), Where:

* Eioey =D X Eyep x Ris the set of all TOCFS

* Posiocy is the mapping associating each TOCF
(D,k,T) € Eioey with a formula i € Lx such that
W] ={we Qx [ r(w) <7}

In this setting, a binary classifier is thus a TOCF ¥ =
(D, k, 7).

The dataset D represents the training data used to construct
W. The OCF k assigns a value to each instance description
wx € Qx, with lower values indicating greater plausibility
that the instance is classified as positive by W. The thresh-
old 7 specifies the classification boundary: an instance wx is
classified as positive (i.e., wx € [Pos(¥)]) if k(wx) < 7,
and as negative otherwise.

Our concrete class of learning operators is defined on the
TOCF classifier space. Every operator in this class is specified
by the following components:

¢ an improvement operator o on the OCF epistemic space,

¢ a neighborhood B on Q2x (see Sec. 2.1), used to charac-
terize formula dilation and erosion, and

* a performance metric m : N* — R,

In a nutshell, the improvement operator o and the neighbor-
hood B are used together to adjust the plausibility of worlds
in the underlying OCF « of a TOCF ¥ = (D, , 7), while the
performance metric m sets the threshold 7 that best separates
predicted positive and negative instances.

Given an improvement operator o, a neighborhood B, and
a performance metric m, we denote the corresponding learn-
ing operator by ® (o, ,m)- Then, for any TOCF ¥ = (D, &, 7)
and any training instance ¢,,, the resulting TOCF ¥/ = (D’,
K, 7') = ¥ O, B,m) Pu is defined as follows.

First, we set D’ = DU(¢,, ), that is, we augment the current
training dataset by including the new instance ¢,,.

Second, we build the new OCF «’ using the improvement
operator o and the neighborhood B. This construction pro-
ceeds differently depending on whether the training instance
(. 1s labeled as positive or negative.

Learning from a positive instance. If the training instance
., satisfies ¢, | y, the process unfolds as follows. Let
Yuwx € L be the formula describing the instance (recall that
wx denotes its feature description). We begin by applying the
improvement operator o to ¢, in k, yielding x o ¢, . We
then continue this process iteratively on successive dilations
of Py : first on 65 (Puwy ), then on 0% (pwy ), and so on, until
reaching a fixed point.

Semantically, this process increases the plausibility of w in
K, followed by an increase in the plausibility of its neigh-
borhood, and then of neighborhoods of neighborhoods, so
that the increase in plausibility assigned to a world becomes
smaller as its distance from w grows. Worlds that are not
reachable from w (that is, those not included in any dilation
5% (¢uwy ) for any k) remain unaffected; their plausibility in x
stays the same.

Formally, when ¢,, = y, we define the resulting OCF as
K =Koy Quy = Ko @y, Where K o' ¢, is inductively
defined as follows:

0 _
* KoY Yoy = K,

ko gy = (roh puy) 0 65 (pux) for k > 0,

« n=min({k € N | 05" (9ux)] € {05 (ux )], Ox}})

Learning from a negative instance. Conversely, when the
training instance is negative (p,, = —y), the process targets
.5 and its successive erosions: €5(—Quy ) €5(Pux)s
and so on. At each step, plausibility is increased for the
worlds satisfying the current erosion, continuing until reach-
ing a fixed point (or stopping just before if the fixed point
is an inconsistent formula). Semantically, this increases the
plausibility of worlds that are farther from wx under B,
with the increase being greater the farther the world is. The
world wx itself remains unaffected. Formally, we define
K = Ke_ @u = ko™ ©,, where k " ¢, is defined
inductively as follows:

ko P, =5,

K8 g = (kof puy) 0 € (mpuy) for k > 0,

* n=min({k € N| [e5" (~puwx)] € {[eh(mpux)], 0}})

An alternative would be to handle negative instances using
a decrement operator applied to ¢, and its successive dila-
tions, mirroring the treatment of positive instances. While
such decrement operators have been proposed [Sauerwald
and Beierle, 2019], we do not adopt them here because, un-
like the well-established duality between erosion and dilation,
no formal duality exists between improvement and decrement
operators. By relying on erosion and dilation — dual opera-
tions defined over a single neighborhood B — we maintain a
unified learning mechanism using the same improvement op-
erator for both positive and negative instances.

Given the distinction outlined above between learning from
positive and negative instances, the new OCF is defined as:

' _ | rervuy ifpy Yy,
" _m%_{ Ko pux ifpu =y

Third, we define the threshold 7/, which acts as the “opti-
mal separator.” Recall that 7" partitions the space of instance
descriptions such that instances with plausibility less than or
equal to 7 are classified as positive, and those with plausi-
bility greater than 7’ are classified as negative. According to
Def. 6, this corresponds to [Pos(¥’)] = {wx | #'(wx) <
7'}. We aim to select 7/ so as to optimize performance over
the dataset D’, using the performance metric m.

For any candidate threshold 7 € N, we compute a confu-
sion matrix cm(7) = (tp, fp, tn, fn) as follows:

* tp = {lwx € Ox | v €D, 0y, # (wx) < 7[}

« fp={lwx € x| ¢ € D' ¢, | 7y, & (wx) < 7[}
o tn={|lwx € x| pw € D', 0, E -y, k' (wx) > 7|}
e fn={lwx €W | v, €D, 0, Fy,r(wx) > 7|}
The final threshold 7’ is selected as the median among all

integer thresholds 7 € [0, up] having the maximum score
m(cm(7)), where up = arg max({x'(wx) | wx € Qx}):?

7" = median(arg max({m(cm(7)) | 7 € N}))

*1t suffices to search in [0, up]: thresholds 7 < 0 yield the same
confusion matrix as 7 = 0, and 7 > up as T = up.
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Having characterized both the new OCF x’ and the thresh-
old 7/, we now summarize the complete definition of the
improvement-based learning operator © (., B, m):

Definition 7 (Improvement-based learning operator
®(o,B,m))- Let o be an improvement operator, B be a
neighborhood, and m be a performance metric.  The
improvement-based learning operator induced by o, B,
and m, and denoted by © (5 B.m), is defined on the TOCF
classifier space Eiocy as follows. For each binary classifier
(D,k,T) € Eiocp and each training instance @, € L€, we
define (D, k,T) ©(c,B,m) Pw = (D', &', 7"), where:

{ D'=DuU (‘Pw)
K =kKe Pw
7' = argmax({m(cm(7)) | 7 € N})

To define the “full” learning framework (cf. Def. 5), we
must specify an anchor serving as an initial state. We choose
\I/*T = (0, xT,0), where s is the constant OCF assigning 0
to every world wx € x. Hence, the full improvement-based
learning framework is given by the pair (¥, ®(o0,B,m))-

S An Instantiated Learning Operator

We now present a concrete instantiation of an improvement-
based learning operator, ©(, BH m,,)- Lhis operator is
fully defined by the following choices:

* o1, the basic shifting improvement operator (cf. Sec. 2)

+ BH | that defines pairs of worlds as direct neighbors when
they differ on at most one variable, i.e., for each wx € Qx:

B = {wk | Hwi € Px | wx (@) # wx(z:)}| < 1}

* my,, the balanced accuracy metric, defined for each con-
fusion matrix (tp, fp, tn, fn) as:

my, (tp, fp, tn, fn) = 1/2(tp/(tp + fn) + tn/(tn + fp))

The choice of balanced accuracy is illustrative rather than
principled. Nonetheless, it is particularly appropriate for im-
balanced datasets, where one class outweighs the other. By
giving equal importance to the true positive rate and the true
negative rate, balanced accuracy ensures a more equitable
evaluation of classifier performance across both classes.

Representation of (U, ®(,, p# m,,)). We now show
that, in this specific learning framework, both a training algo-
rithm and an inference algorithm (predicting the label of any
instance wx € {2x from a trained classifier) can be designed.
Both algorithms run in polynomial time with respect to the
number of training instances and the number of features.

Given an instance description wx € x, let wx € x be
defined as wx(x;) = 1 — wx(x;), for each z; € Px. Let
dig : Qx x Qx — N be the Hamming distance between
instance descriptions, i.e., for all wx, w;( € Ox,

dp (wx,wx) = [{z; € Px | wx(z;) # wi (z:)}.
We extend the Hamming distance to define a distance

between any instance description w’ and dataset D as
dp (W, 0) =0, and if D # 0:

di (W, D) =Y {du(wk,¢u) | pu € D}, with

if o, Fy

dy (W, w
dH(wég,%){ (e, %) if o, = -y

di (W, w0x)

On the other hand, given any dataset D, let w)D( € Qx be
any instance description such that for each z; € Px:

wx (@) = { 0 otherwise,

where D!(z;) = {¢, € D | ¢, F y iff w(z;) = 1}| and
DO(x;) = m—D*(z;) (recall that m is the number of training
instances from D.)

We can show that such an instance description w% is one
of the “closest” instance description to the dataset D in terms
of Hamming distance:*

Lemma 1. For each dataset D € D and each instance de-
scription wx € Qx, we have dy (W9, D) < dy(wx, D).

Then, we can show that for each instance description wx €
Qx the value x(wx) can always be characterized via compu-
tations of Hamming distances to the currently trained dataset:

Proposition 1. For each TOCF ¥ = (D, k,7) and each in-
stance description wx € Qx, we have that:

Iﬁ;((,ux) = dH(wX, D) b | dH(w)D(, D)

This has several important implications for our learning
framework (U, ® ., 5# m,,)) in terms of computational
complexity. Recalling that n is the size of the feature set and
m is the number of training instances from D, we have:

Proposition 2. Let D € D, and let V] ©(,,, pi m,,) D =
v = (D, k,T).

1. 7 can be computed in time O(n - m?)

2. given (D,7), for each wx € Qx, deciding whether
wx € [Pos(V)] can be done in time O(n - m)

As a consequence of Proposition 2, in the learning frame-
work (U], ©O(o41,BH ,my,))» We obtain both a learning algo-
rithm (the computation of 7) and an inference algorithm (the
prediction for any instance wx € x given (D, 7)) that run
in polynomial time with respect to the number of training in-
stances and the number of features (Proposition 2.1 and 2.2,
respectively). Since inference can be performed in polyno-
mial time from (D, 7) alone, the learned classifier (D, x, 7) is
fully characterized by (D, 7), i.e., the OCF & is not needed.

Another noteworthy property of this learning framework
is its robustness to dataset permutations. Given any dataset

D = (¢)1<s<m. let D™ = (05*))1 <4<y denote the dataset
obtained by applying a permutation 7 : {1,...,m} —

{1,...,m}:

Proposition 3. For any permutation @ : {1,...
{1,...,m} and any dataset D € D,

,m} —

U] O,y B my) D=V O@,, B# m,,) D"

* All proofs are available online [Schwind ef al., 2025].
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Figure 2: A comparison of performance between all learning models across all datasets.

In other words, the learned classifier is invariant under
reordering of the training instances. This is significant, as
many standard learning models, such as decision trees, ran-
dom forests, and k-nearest neighbors (k-NN), may produce
different outputs depending on the order in which the data is
processed. This corresponds to the commutativity postulate
for improvement operators [Schwind and Konieczny, 20201,
which states that no piece of information should be treated as
more important than another when the order of input carries
no meaningful priority.

6 Experiments

Empirical protocol. We implemented in Python the
improvement-based learning model ©(,_, p# m,,) (simply
denoted by ©® onward). Its predictive performance was com-
pared against the following standard ML models (learned
using the scikit-learn library [Pedregosa et al., 2011] and
considering default parameters): Logistic Regression, Naive
Bayes, Decision Tree, Gradient Boosting, KNN, Neural Net-
work, Random Forest, and SVM. In addition, a trivial learn-
ing model (named Maj) always predicting the majority class
(positive or negative) in the training dataset was considered
as a baseline.

The evaluation considered a large set of performance met-
rics that are standard in ML: balanced accuracy, accuracy,
F1 score, Jaccard index, Matthews correlation coefficient
(MCC), precision, recall, and ROC-AUC (receiver operating
characteristic area under the curve).

The experimental protocol involved selecting 58 binary
classification datasets from the UCI repository,” with each
dataset containing up to 12,684 instances and up to 1,203 nu-
merical or categorical features. A 10-fold cross-validation
has been conducted: each dataset was split into ten random
samplings, with a 90%/10% division for training and test sets.
Missing values in the data were imputed by filling each nu-
merical feature with the mean value from the dataset and each

>https://archive.ics.uci.edu/datasets/

categorical feature with the most frequent value. The datasets
were then standardized using a standard scaler.

For our learning framework ®, numerical attributes were
further re-scaled linearly to the interval [0, 10] with integer
values, while categorical attributes were left unchanged. For
these experiments, binarizing the features was not manda-
tory: instead, we used a modified weighted Hamming dis-
tance between instance descriptions d’; (wx,w ). This was
made only for convenience as this is equivalent in terms of
performance and computational complexity to binarizing all
datasets in such a way to ensure that dg = d’;.

Empirical results. We did an extensive comparative anal-
ysis which is visualized through various plots (the full set is
available in [Schwind er al., 2025]). Box plots were gener-
ated for each metric, showing model performance across the
58 datasets, scatter plots compared the proposed model with
each baseline, and spider plots have been used to compare
the performance of all models for individual datasets and in
an aggregate view. We present some of them hereafter.

The spider plots in Figure 2 show in a synthetic way the
average predictive performances (over the 58 datasets) of the
ten ML models learned for each of the ten families of models
considered in our experiments and assessed for each of the
eight metrics (our learning framework is simply named OCF
in the figures). One can see that ® outperforms the baseline
Maj model (which is mandatory to be considered as a signifi-
cant learning operator). It turns out that in practice ® achieves
performances that are similar to the ones of Naive Bayes. Fi-
nally, ® performs slightly better than the other models when
recall is used to measure the predictive performance. This is
an important point since high recall is expected in applica-
tions where missing a positive case can be costly, such as in
healthcare or when dealing with attack detection.

Focusing on the balanced accuracy metric, Figure 3 (left)
presents a scatter plot for contrasting in a more precise way
the predictive performances of ® and Naive Bayes; and Fig-
ure 3 (right) presents boxplots representing the distributions
of predictive performance achieved over all datasets by each
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Figure 3: A comparison between our learning model and the Naive
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performance between all learning models across all datasets (right), both focusing on the balanced accuracy performance metric.
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Figure 4: Examples of TOCFS (OCF and threshold) showing how positive and negative test instances are separated, on samplings randomly
chosen from four datasets (from left to right: 73-Mushroom, 327-Phishing Websites, 545-Rice, 603-In-Vehicle Coupon Recommendation).

of the ten ML models at hand. The results presented are co-
herent with those shown in Figure 2 (especially, the averaged
balanced accuracy of © is slightly greater than the one of
Naive Bayes and much better than the one of Maj).

Additionally, Figure 4 showcases some learned classifers
(D, k, T) for some test sets in some randomly chosen dataset
samplings. Each figure depicts the value distribution of all
k(wx) for each test instance wx from the sampling, rep-
resented as a blue (resp. red) dot when ¢, E y (resp.
©Ywx = Ty), and the green horizontal line corresponds to the
threshold 7. It can be observed that the learned model sepa-
rates quite accurately the positive instances from the negative
ones for the first three samples, but clearly not for the last one
(603-In-Vehicle Coupon Recommendation).

7 Conclusion

In this paper, we showed how improvement operators,
grounded in Belief Change Theory, can give rise to a fam-
ily of online learning models, and we have presented learning
and inference algorithms designed for this family. We empiri-

cally evaluated the predictive performance of a specific model
within this family using a range of datasets. While the results
indicate that this simple model does not match the accuracy
of more advanced models (e.g., neural nets), it performs com-
parably to all other methods in terms of recall. This makes it
particularly suitable for applications where failing to detect
positives is critical. Additionally, the model outperforms the
trivial Majority class model and shows performance on par
with Naive Bayes, suggesting a significant potential.

This work opens up several avenues for future research.
Theoretically, the next step is to analyze the properties of
learning operators derived from improvement operators. Em-
pirically, we plan to explore and evaluate additional models
within the proposed family. For instance, while the learn-
ing algorithm used in the experiments is based on Hamming
distance, other distances, such as the Mahalanobis distance,
could be explored [Mahalanobis, 1936]. Because it accounts
for feature correlations which could be measured on the train-
ing set, the Mahalanobis distance appears as a valuable can-
didate for improving model performance at inference.
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