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Abstract

Time series forecasting models are becoming in-
creasingly prevalent due to their critical role in
decision-making across various domains. How-
ever, most existing approaches represent the cou-
pled temporal patterns, often neglecting the distinc-
tion between their specific components. In partic-
ular, fluctuating patterns and smooth trends within
time series exhibit distinct characteristics. In this
work, to model complicated temporal patterns, we
propose a Conditional Denoising Polynomial Mod-
eling (CDPM) framework, where probabilistic dif-
fusion models and deterministic linear models are
trained end-to-end. Instead of modeling the cou-
pled time series, CDPM decomposes it into trend
and seasonal components for modeling them sep-
arately. To capture the fluctuating seasonal com-
ponent, we employ a probabilistic diffusion model
based on statistical properties from the historical
window. For the smooth trend component, a mod-
ule is proposed to enhance linear models by in-
corporating historical dependencies, thereby pre-
serving underlying trends and mitigating noise dis-
tortion. Extensive experiments conducted on six
benchmarks demonstrate the effectiveness of our
framework, highlighting the potential of combining
probabilistic and deterministic models. Our code is
available at https://github.com/zjt-gpu/CDPM.

1 Introduction

Time series forecasting is a fundamental task across various
domains, playing a crucial role in driving informed decision-
making in industries such as finance, healthcare, and manu-
facturing [Kashpruk e al., 2023]. It involves analyzing his-
torical patterns to model the dynamic evolution of underlying
processes and predict future trends [Cheng ez al., 2025a]. Ac-
curate time series forecasting is essential for tasks such as de-
mand prediction, resource allocation, enabling organizations
to anticipate future needs and optimize operations [Kilcioglu
etal.,2017; Liu et al., 2024].
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Figure 1: The forward diffusion process iteratively adds noise to
the original time series, which causes the trend components to be
overshadowed as the noise increasingly dominates.

Over the years, various approaches have been proposed to
address this challenge [Cheng er al., 2025b], ranging from
classical statistical models, such as Autoregressive Integrated
Moving Average (ARIMA) [Asteriou and Hall, 2011], to
machine learning techniques [Masini et al., 2023], and ad-
vanced deep learning models, including recurrent neural net-
works (RNNs) [Lin et al., 2023; Lai et al., 2018], convolu-
tional neural networks (CNNs) [Bai et al., 2018; Koprinska et
al., 2018], and transformer-based models [Zhou et al., 2021;
Wu et al., 2021]. Large language models (LLMs) such as
TimeLLM and LLMTIME [Jin et al., 2023; Gruver et al.,
2024] have demonstrated the potential in time series fore-
casting. In addition to their success, probabilistic models
have emerged as promising alternatives, offering a principled
framework for quantifying uncertainty and modeling com-
plex distributions. Diffusion models [Rasul ef al., 2021;
Shen and Kwok, 2023], becoming the leading paradigm
for probabilistic models originally developed for generation,
have proven effective in time series forecasting due to their
ability to capture intricate stochastic processes.

Diffusion-based methods [Lee et al., 2024] have shown
great promise in time series forecasting. However, we argue
that their naive application of noise addition and denoising
overlooks the heterogeneous nature of temporal dynamics. In
particular, these methods uniformly add noise across the en-
tire sequence and apply denoising without distinguishing be-
tween different temporal components. However, time series
inherently exhibits diverse dynamics, including trends and
seasonal patterns, which require different treatment. Trends
patterns, reflecting gradual shifts over extended periods, and


https://github.com/zjt-gpu/CDPM

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

seasonal patterns, characterized by periodic fluctuations, pos-
sess different structural properties. These distinct patterns re-
quire differentiated treatment. Such indiscriminate process-
ing can distort essential features, especially intrinsic trends
and fluctuations, thereby degrading forecasting performance.
As shown in Fig.1, this indiscriminate approach disrupts crit-
ical trend information during denoising, hindering trend re-
covery and reducing accuracy.

Typically, a single model often struggles to capture the
subtle and dynamic interplay between trends and variations,
which can significantly affect the model’s overall forecasting
ability. Diffusion models, which excel at modeling complex
dynamic processes, are more suitable for handling compo-
nents characterized by large fluctuations and high-frequency
variations in time series. In contrast, deterministic models,
such as models based on linear layers, learn features from
historical patterns and are particularly effective at identify-
ing regular patterns, making them better suited for model-
ing components with stable trends. Therefore, by strategi-
cally leveraging the strengths of both model types and tailor-
ing them to the distinct characteristics of time series, we can
more fully capture the dynamic variations and enhance the
final forecasting results.

To overcome these challenges, we propose a novel Condi-
tional Denoising Polynomial Modeling (CDPM) framework
that leverages the inductive bias of time series decomposi-
tion. By separating the time series into trend and seasonal
components, we enable decoupled modeling tailored to the
characteristics of each component. Specifically, we employ
a carefully designed Conditional Denoising Seasonal Mod-
ule (CDSM) to capture the high-frequency seasonal com-
ponent, introducing an innovative denoising strategy condi-
tioned on statistical properties derived from historical win-
dow. Currently, we model the intrinsic trend component us-
ing the polynomial trend module (PTM), which is adept at
capturing gradual changes. Additionally, we reformulate the
Improved Evidence Lower Bound (ELBO) to facilitate joint
training of the CDSM and PTM. This decoupling method of
our framework improves the ability to capture temporal de-
pendencies and complex patterns. The key contributions of
this work are:

* We introduce a novel framework that enables the decou-
pled modeling of trend and seasonal components, pro-
viding new insights into time series forecasting.

* We design tailored methods and reformulate ELBO for
each component-using CDSM for the seasonal compo-
nent and PTM for the trend component—to effectively
capture their distinct behaviors.

* We conduct comprehensive experiments on benchmark
datasets to validate effectiveness of our framework, we
also present the rationale for modeling different compo-
nents with several case studies.

2 Related Work

2.1 Deterministic Forecasting

Deterministic models map deterministic inputs to determin-
istic outputs by learning consistent patterns within time se-

ries, making them crucial for capturing predictable tempo-
ral relationships. Recurrent neural networks (RNNs), such as
LSTNet [Lai et al., 2018] and SegRNN [Lin et al., 2023],
became popular for sequential dependencies, while convo-
lutional neural networks (CNNs) [Cheng et al., 2024] like
TCN [Bai et al., 2018] and SCINet [Liu et al., 2022] ex-
celled at capturing both local and global temporal features.
Graph-based models, such as MTGNN [Wu et al., 2020] and
FourierGNN [Yi et al., 2024], improved forecasting by mod-
eling interdependencies between time series. More recently,
Transformer-based models like Informer [Zhou et al., 2021]
and Autoformer [Wu et al., 2021] have utilized self-attention
mechanisms to efficiently capture long-range dependencies,
excelling in high-dimensional and long-horizon tasks. Sur-
prisingly, well-tuned linear models such as DLinear [Zeng
et al., 2023] and TSMixer [Ekambaram et al., 2023] have
demonstrated strong performance by effectively capturing
long-term trends, often outperforming more complex archi-
tectures and showcasing their efficiency. Despite advances,
deterministic models often struggle with volatile fluctuations,
limiting their ability to model complex time series dynamics.

2.2 Diffusion-Based Time Series Forecasting

Probabilistic models offer uncertainty estimation and the abil-
ity to model temporal distributions. These models, includ-
ing Variational Autoencoders (VAEs)[Kingma and Welling,
2022], Generative Adversarial Networks (GANs)[Goodfel-
low et al., 2014], and flow-based models [Rezende and Mo-
hamed, 2016], are designed to capture high-dimensional dis-
tribution. Recently, Denoising Diffusion Probabilistic Mod-
els (DDPMs) have emerged as a promising paradigm for
generative modeling, demonstrating their potential in various
time series applications. DDPMs have advanced time series
forecasting by capturing complex temporal patterns. Early
models like TimeGrad [Rasul et al., 2021] introduced autore-
gressive denoising with Langevin sampling for multivariate
predictions. TSDiff [Kollovieh er al., 2024] improved short-
term accuracy through self-guiding mechanisms, while score-
based models such as ScoreGrad [Yan et al., 2021] applied
stochastic differential equations (SDEs) for continuous-time
forecasting, expanding diffusion to fluctuatingly sampled
data. Conditional models like TimeDiff [Shen and Kwok,
2023] incorporated external information to guide the diffu-
sion process, outperforming traditional methods. Latent Dif-
fusion Models (LDMs)[Rombach et al., 2022] enhanced effi-
ciency by performing diffusion in lower-dimensional spaces.
This approach was further demonstrated by LDCast and La-
tent Diffusion Transformers (LDT)[Feng et al., 2024], which
improved precipitation and time series forecasting. Models
like DSPD and CSPD [Bilos et al., 2023] applied diffusion to
anomaly detection and interpolation.

Despite the advancements in both deterministic and prob-
abilistic forecasting approaches, existing research typically
applies each paradigm separately to represent time series,
with limited efforts to integrate them into a unified model-
ing framework. However, effectively capturing the diverse
characteristics of time series, such as the smooth trend and
fluctuating seasonal components, requires leveraging both de-
terministic and probabilistic models.
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Figure 2: Illustration of the proposed Conditional Denoising Polynomial Modeling (CDPM) framework. The Conditional Denoising Seasonal
Module (CDSM) refines the seasonal component through a diffusion process conditioned on historical patterns, while the Polynomial Trend
Module (PTM) models the trend component to capture different patterns.

3 Problem Statement

Time series represent numerical sequence ordered chrono-
logically, typically recorded at regular temporal intervals.
Formally, consider a multivariate time series Xy 7 €
R(EAT)*d where I and T denotes the length of the histori-
cal and the length of the predicted window respectively, with
d channels recorded for each time step. The objective of time
series forecasting is to train a model G that learns to map the
historical series X, to the predicted series Xp. The model
leverages the information embedded in the historical series to
predict future series, aiming to capture both temporal depen-
dencies for accurate forecasting.

4 Methodology

In this section, we formalize the time series forecasting prob-
lem and present the proposed Conditional Denoising Poly-
nomial Modeling (CDPM) framework, comprising two core
components: the Conditional Denoising Seasonal Module
(CDSM) and the Polynomial Trend Module (PTM).

4.1 Overall Framework

The CDPM addresses time series forecasting by indepen-
dently modeling trend and seasonal patterns, thereby captur-
ing distinct temporal behaviors more effectively. As depicted
in Fig. 2, CDPM consists of two main modules: CDSM and
PTM. The CDSM employs a denoising diffusion process con-
ditioned on statistical properties from the historical window
to accurately capture and refine seasonal variation patterns.
In parallel, the PTM models trends using polynomial linear

layers, providing flexibility in handling both linear and non-
linear trends. By decoupling and specifically modeling these
components, CDPM enhances forecasting accuracy, offering
an effective solution for capturing the complex temporal dy-
namics inherent in time series. We also reformulate the Evi-
dence Lower Bound (ELBO) to better jointly train the PTM
and CDSM. By handling trend and seasonal components in-
dependently, CDPM allows each module to focus on its re-
spective dynamics, leading to enhanced overall performance.

4.2 Temporal Feature Structuring

Instance Normalization. Instance normalization across
both historical and predicted windows is essential for main-
taining the stability of the CDPM. We normalize the historical
window by subtracting the mean and dividing by the standard
deviation [Kim ez al., 2021], and transfer the same statistics to
normalize the predicted window during training. Specifically,
x 1, is normalized to 29 , and 7 is normalized to 9. using the
statistics derived from xz. This ensures alignment between
the windows and preserves both the temporal structure and
stability in the forecasting process. The subsequent denor-
malization step restores the predicted values to their original
scale, ensuring consistency with the input data distribution.

Decomposition Operation. Decomposition is an important
approach to achieving decoupling in time series analysis, as
it allows for the separation of trend components and seasonal
components [Cleveland er al., 19901, enabling each charac-
teristic to be handled independently. We decompose both his-
torical X? and predicted X2 windows into trend and seasonal
components. The trend component X gt of historical window
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is estimated using a moving average:

X7, = Avg(X?), 4))

where Avg denotes the moving average.

Xpo =X, - X0 @)

where the seasonal component X! 1.5 18 the residual after sub-
tracting the trend. Thus, we obtain the trend component X9 ‘
and seasonal component X} 0

Similarly, we compute X9 7. and X9 .. Decomposition op-
eration isolates the distinct characterlsncs of time series.

o of historical window.

4.3 Conditional Denoising Seasonal Module

Modeling fluctuating seasonal components in time series
is challenging due to their intricate patterns. We propose
CDSM, based on a denoising diffusion model. By incor-
porating historical statistical properties as conditional inputs,
CDSM captures seasonal patterns more effectively.

Forward Diffusion Process. In the forward diffusion pro-
cess, noise is progressively added to the seasonal component.
At each diffusion step k, the noisy seasonal series is:

k ~— 0 =
XT,S =Varrp s+ V1—age, 3)
where X% _ is the seasonal component at step , ', is the
original seasonal component, € ~ N (0, I) is Gaussian noise,
and @ € [0,1] is the noise schedule. As k increases, the
seasonal component becomes more noise-dominated.

Reverse Conditional Denoising Process.
process starts by embedding X%s:

The denoising

h = Emb(X7} ), 4)

where Emb(-) is a convolutional MLP that maps the noisy se-
quence to a hidden dimension while capturing local temporal
features. Sinusoidal positional encodings for diffusion step ¢
are integrated via Adaptive Layer Normalization (AdaLN):

AdaLN(h) = oy - LayerNorm(h) + 5, )

where a; and (3, are learnable parameters projected from the
diffusion step encoding.

The decoder composed of convolutional layers and MLPs,
captures global dependencies and feature interactions. Con-
volutional layers extract fine-grained local temporal varia-
tions, while MLPs model cross-dimensional relationships.
Layer normalization and a projection layer map the output
back to the original feature space.

To enhance denoising process, we incorporate conditional
information from the historical seasonal component X 2, s

1 H
=2 D TLaih (6)
h=1

H

1
U/%,i =7 Z (TL,s,6,n — lffL,i)za @)
h=1
Where for each patch P, ;, pu, ; represents the local mean
and o2 ; denotes the variance. The historical data is divided
into patches P of length H.
These statistics capture seasonal variability. The predicted
mean [i7; and variance 62 , for the target window Pr; are
computed using two MLPs:’

fir; = MLP,(pir,:), ®)

UTZ = MLP,, (O’L l) 9)

where MLP,,(-) and MLP, (-) capture the mean and variance
of the historical window features, respectively. These pre-
dicted statistics are subsequently used in the denoising pro-
cess via Gaussian sampling:

Vﬁ;i = fir; + 01, - 2, (10)

where z ~ N(0,I). This enables the model to incorporate
stochastic variability while aligning with historical patterns.

Finally, the denoised output xT < 1s combined with the con-
ditional information through a weighted summation:

Xo (X5t | Vi1 ) = pidh, + 2Vt (D)

where p; and p, are learnable parameters that balance the de-
noised series and conditional information, ensuring effective
seasonal modeling while maintaining statistical properties.

4.4 Polynomial Trend Module

Different trends follow distinct trajectories, including phases
of growth and decline, highlighting the need to capture di-
verse trend behaviors. By leveraging Cover’s theorem [Cover,
19651, we project smooth time series patterns into a polyno-
mial space, facilitating the extraction of both linear and non-
linear trends. Based on this, polynomial modeling [Liu ef al.,
2021] is employed to better capture these diverse trend varia-
tions. To fully harness polynomial modeling, we introduce a
square root transformation to smooth series and enhance the
framework’s flexibility in capturing diverse trend patterns.

As a deterministic model, PTM consists of two comple-
mentary pathways. The first models stable trends with a lin-
ear layer applied directly to the historical trend series:

Torigin(l‘%t) = Linearorigin(m%t% (12)

where Linear,igin () captures the general trend.

The second pathway enhances trend modeling by applying
square root transformation, thereby mitigating the impact of
extreme values and stabilizing trend predictions:

qun(m%’t) = Linear;oo( 4 /x%t), (13)

where Lineargqy(-) captures the transformed trend.
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The outputs from both pathways are combined via
weighted summation to capture a wider range of trends:

Jo (x(:JF,t) = AlTorigin(xg“,t) + A2qurt(xgr,t)7 (14)

where \; and A5 are learnable parameters that balance the
contributions of the linear and root-based components. This
mechanism allows the model to adapt to both linear and sub-
linear growth patterns, enhancing its ability to forecast com-
plex time series with diverse dynamics.

4.5 Optimization

Integrating trend and seasonal components improves fore-
casting accuracy by combining their strengths for more com-
prehensive predictions. Finally, the derived loss function
enables joint optimization, allowing both components to be
learned concurrently and effectively.

Component Reconstruction. The final prediction 29 is

calculated by integrating the trend i“%r, and seasonal com-
ponents . , as follows:

i = Xo (Val, + VI=ae,t | Vi, ) + folat),
(15)

where Xy(:) represents the CDSM and fy(+) corresponds to
the PTM, respectively.

Improved ELBO Optimization. The final prediction 2%

is subsequently denormalized to 27 using the mean and vari-
ance derived from the historical window, ensuring that the
forecast is consistent with the original distribution of the time
series. The loss function in CDPM is derived from the Ev-
idence Lower Bound (ELBO). Furthermore, we extend the
traditional ELBO to accommodate the separate modeling of
the trend and seasonal components. This decoupled modeling
of the trend and seasonal components ensures that both con-
tribute independently to the final forecast. Through deriva-
tion, we find that by modeling the seasonal component with
CDSM and the trend component with PTM, the results can
be jointly optimized and trained to improve the overall per-
formance of our framework, leading to more accurate predic-
tions. The improved ELBO is given by:

LIELBO =E,o

w0 |29 = 237, (16)

where 9. and 29 represent the true and predicted values of
the time series, respectively. This formulation combines the
strengths of both probabilistic diffusion models and determin-
istic linear models, leading to more accurate forecasts.

Dataset ETThl ETTml Wind  Exchange Weather Electricity
Dimension 7 7 7 8 21 321
Frequency 1hour 15mins 15 mins 1 day 10 mins 1 hour

T (Steps) 168 192 192 14 672 168

S Experiments

5.1 Experimental Settings

Datasets. We evaluate the effectiveness of our proposed
framework on multiple real-world time series datasets
from various domains. The datasets include ETTh and
ETTm [Zhou et al., 20211, which represent electricity trans-
former temperature data; Exchange, which contains exchange
rates from eight countries; and Weather!, consisting of 21 me-
teorological indicators sampled at 10-minute intervals. Addi-
tionally, we use the Electricity dataset?, which records elec-
tricity consumption from 321 clients, and Wind [Li et al.,
2022], comprising wind power measurements sampled every
15 minutes from 2020 to 2021.

To ensure consistency in chronological data splitting, we
adopt a 6:2:2 split for the ETTh and ETTm datasets, and
a 7:1:2 split for the Wind, Weather, Electricity, and Ex-
change datasets. This setup enables comprehensive testing
of the framework’s generalization across different temporal
segments. Consistent with TimeDiff [Shen and Kwok, 2023],
we evaluate performance using historical window lengths of
96, 192, 720, 1440 to cover varying forecasting horizons.

Baselines. We compare our proposed Conditional Denois-
ing Polynomial Modeling (CDPM) framework against a di-
verse set of baseline models.

 Diffusion models: CSDI [Tashiro et al.,
Diffusion-TS [Yuan and Qiao, 2024].

20211,

e Transformer-based models: iTransformer [Liu et al.,
2023], PatchTST [Nie et al., 2023].

* Linear-based models: DLinear [Zeng et al., 2023],
TSMixer [Ekambaram et al., 2023].

* Hybrid model: PatchMixer [Gong et al, 2023],
D3VAE [Li et al., 2022].

Implementation Details. Our proposed CDPM is imple-
mented using PyTorch and trained with Exponential Learn-
ing Rate Scheduler [Paszke et al., 2019], starting with an ini-
tial learning rate of 1 x 10~2 and a batch size of 16. Early
stopping with a patience of 10 epochs is employed to pre-
vent overfitting. The diffusion process utilizes K = 50 steps
with a cosine variance schedule [Rasul et al., 2021] from
B1 = 10"*to Bx = 0.5. We adopt the DDIM sampler [Song
et al., 2021]. All experiments are conducted on a workstation
equipped with an NVIDIA GeForce RTX 4090 GPU.

5.2 Experiment Results

Main Results. The experimental results in Table 2 vali-
date the effectiveness of the CDPM for time series forecast-
ing. CDPM’s decoupling strategy, which separates trend and
seasonal components, allows for more accurate modeling of
temporal patterns. It performs well on challenging datasets
like ETTh1 and ETTh2, where traditional models such as

Table 1: Overview of the dataset characteristics.

"https://www.bgc-jena.mpg.de/wetter/
Zhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
20112014
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Dataset CDPM iTransformer Patchmixer TSMixer PatchTST DLinear Diffusion-TS D3VAE CSDI
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 168 | 0.4364 0.4363 | 0.4433 0.4429 04610 04560 0.4418 04401 04401 04463 04372 0.4420 1.6559 1.0400 0.9523 0.8618 1.1090 0.8009
ETTh2 168 | 0.3393 0.3826 | 0.4009 0.4156 0.3731 04055 0.3654 0.3981 0.3805 0.4036 0.3976 0.4233 3.2225 14736 5.3165 19796 2.0700 1.0748
ETTml 192 | 0.3532 0.3781 | 0.3685 0.3916 0.3731 0.3983 03673 0.3924 0.3626 0.3890 0.3706 0.3968 1.6769 1.0326 0.6341 0.6833 1.0770 0.7788
ETTm2 192 | 0.2303 0.3009 | 0.2535 0.3184 0.2643 03226 0.2495 0.3108 0.2472 0.3129 0.2498 0.3224 29380 1.3732 4.1001 1.5884 1.6051 0.9397
Electricity 168 | 0.1606  0.2526 | 0.1531 0.2461 0.1559 0.2505 0.1563 0.2497 0.1537 0.2494 0.1628 0.2581 1.4888 0.9935 1.7061 0.9273 —— e
Exchange 14 | 0.0204 0.0979 | 0.0719 0.1896 0.0430 0.1150 0.0209 0.0955 0.0293 0.1178 0.0412 0.1320 2.7192 13573 4.8311 19942 1.3023 0.8719
Weather 672 | 0.3292  0.3373 | 0.3676 0.3709 0.3295 0.3411 03316 0.3430 0.3299 0.3400 0.3398 0.3801 —_— —_— — —— 04842 0.4498
Wind 192 | 1.1262  0.7534 | 1.0653 0.7227 1.1497 0.7582 1.2407 0.7845 1.1411 0.7607 1.0826 0.7378 2.0706 1.1185 3.6837 1.4195 1.4913 0.8942

Table 2: The forecasting results on eight datasets, with the best results highlighted in bold and the second-best underlined. CSDI encounters
out-of-memory issues on the Electricity and Diffusion-TS datasets, while D3VAE runs out of memory on the Weather dataset.

Diffusion-TS and D3VAE struggle with varying time reso-
lutions and high noise. CDPM’s strength lies in its Polyno-
mial Trend Module (PTM) and Conditional Denoising Sea-
sonal Module (CDSM), which capture complex trends and
seasonal dynamics. Unlike CSDI and Diffusion-TS, which
struggle with long forecast horizons, CDPM handles long-
term dependencies effectively. On volatile datasets like Wind,
CDPM captures sharp fluctuations and achieves competitive
results, though further refinement could improve performance
on highly noisy data. Overall, CDPM shows strong general-
ization across various datasets.

ETTh2 ETTm2
Method  \/op™ 'MAE  MSE  MAE
CDPM  0.3393 0.3826 0.2303 0.3009
CDPM! 03404 03781 0.2320 0.3023
CDPM? 03433 03826 0.2450 0.3121
CDPM® 03853 04215 02459 03272
CDPM* 03442 03807 0.2335 0.3015

Table 3: Ablation study results on ETTh2 and ETTm?2.

Ablation Study. The ablation experiments highlight the
importance of each component in the CDPM framework, es-
pecially for handling complex temporal dynamics in datasets
with varying granularities like ETTh2 and ETTm2. We
present the results of ablation experiments in Table 3 to eval-
uate the contributions of individual components within the
CDPM framework.

« CDPM!: Removes the conditional information.
« CDPM?: Replaces the PTM with a simple linear layer.
+ CDPM?3: Removes instance normalization alignment.

o CDPM*: Removes the conditional information and re-
places PTM with a linear layer.

Removing the condition information injection module re-
duces performance, with a larger impact on ETTm2, where
external factors influence intricate temporal patterns. Replac-
ing the PTM with a linear layer causes a significant perfor-
mance drop, which is crucial for capturing long-term trends
and periodic behaviors. Eliminating instance normalization
leads to the largest performance decline, highlighting its role
in stabilizing training for high-resolution datasets. Remov-
ing both the condition information injection module and PTM

further degrades performance, emphasizing the necessity of
both components.

ETTh2 ETTm2
Method  \iop™  'MAE  MSE  MAE
CDPM 03393 03826 02303 0.3009
CDPM® 03839 04106 02518 03157
CDPM® 03541 03832 02452 03122

Table 4: Decoupling validation study results on ETTh2 and ETTm2.

Evaluation of the Decoupling Strategy. The Decoupling
Validation Study emphasizes the importance of using appro-
priate models to represent the distinct components of the time
series, while also providing evidence for the effectiveness and
validity of the decoupling strategy. We present the results of
ablation experiments in Table 4 to evaluate the validation of
our decoupling framework.

« CDPM?: This variant directly applies the CDSM to the
original time series.

o CDPM?¢: In this variant, PTM and CDSM are re-
versed, with PTM predicting the seasonal component
and CDSM predicting the trend component.

The decoupling strategy that separates trend and seasonal
patterns markedly improves performance. Applying our
framework directly underperforms due to its inability to sep-
arate trend and seasonal components, while reversing PTM
and CDSM shows slight improvements but still falls short of
our framework, highlighting the importance of proper mod-
ule assignment. These results emphasize the need to tailor
modules for distinct patterns, with decoupling especially ben-
eficial for datasets with clear temporal structure.

PTM and CDSM Modeling Analysis. To evaluate the ef-
fectiveness of PTM and CDSM in modeling different compo-
nents of the ETTh1 dataset, we conducted experiments with
an input length of 192 and a prediction horizon of 168. The
results highlight the effectiveness of tailored modeling strate-
gies for each component. As shown in Figure 4 (a), PTM
excels in capturing intrinsic and gradual trends due to its lin-
ear structure, accurately modeling patterns and tracking the
overall direction of the time series. In contrast, applying
CDSM to the trend component introduces unnecessary noise
and overfitting to minor variations, diminishing trend quality.
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Figure 3: Parameter sensitivity analysis of CDPM: hidden dimension (left), patch length (middle), and predicted length (right).
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Figure 4: (a) Visual comparison of CDSM (left) and PTM (right) in modeling seasonal components. (b) Visual comparison of CDSM (left)
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Figure 5: Visualization of trend (left) and seasonall (right) compo-
nents of joint modeling for the electricity dataset.

For the seasonal component, which exhibits complex fluc-
tuations, the seasonal module demonstrates superior perfor-
mance, as shown in Figure 4 (b). These results validate each
module’s modeling capabilities for its designated component.

Hyper-Parameter Sensitivity Analysis. To investigate the
impact of key design choices in CDPM, such as hidden di-
mension size (dmodel), patch length (H), and prediction hori-
zon on model performance, we conducted a hyperparame-
ter sensitivity analysis using the ETTh1 dataset. The re-
sults show that increasing dyodel initially improves perfor-
mance, peaking at dpnoger = 256, while larger values (e.g.,
dmodel = 512) offer diminishing returns and risk overfitting,
highlighting the trade-off between model capacity and effi-
ciency. Similarly, H significantly affects performance, with
H = 8 capturing both local dependencies and global patterns,
whereas larger values introduce redundancy and reduce effi-
ciency. Finally, our framework performs consistently across
prediction horizons.

Combined Modeling Capability Analysis. To assess the
interpretability and predictive performance of the framework,
we conducted a joint analysis of the PTM and CDSM mod-
ules on the Electricity dataset, as shown in Figure 5. The
framework decouples multidimensional time series, captur-
ing diverse trends and cyclic patterns, demonstrating its ca-
pacity to model complex temporal dynamics. In Figure 5
(left), applied to the Electricity dataset with clear periodic
and trend structures, the trend module captures the underly-
ing patterns, with predictions closely matching actual values.
Figure 5 (right) illustrates the seasonal module’s ability to
model periodic variations, where predicted components align
well with the observed sequences, compensating for devia-
tions in trend estimation and improving accuracy. The inte-
gration of deterministic and diffusion-based modules within
the framework enhances both interpretability and predictive
accuracy across datasets with combined components.

6 Conclusion

In this paper, we proposed the Conditional Denoising Poly-
nomial Modeling (CDPM), a novel time series forecasting
framework that separately models trend and seasonal com-
ponents using specialized modules, trained in an end-to-end
manner. The Polynomial Trend Module (PTM) captured
intrinsic trends, while the Conditional Denoising Seasonal
Module (CDSM) addressed complex seasonal fluctuations.
By reformulating the Evidence Lower Bound, we were able to
better integrate the training of both modules. This decoupling
paradigm enhanced the modeling of temporal dynamics, re-
sulting in improved forecasting accuracy. Extensive exper-
iments on real-world datasets validated the effectiveness of
the proposed CDPM.
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