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Abstract
Causal feature selection leverages causal discov-
ery techniques to identify critical features asso-
ciated with a target variable using observational
data. Traditional methodologies primarily rely on
constraint-based or score-based techniques, which
are fraught with limitations. For example, condi-
tional independence tests often yield unreliable re-
sults in the presence of noise and complex data gen-
eration processes, while the computational com-
plexity of learning directed acyclic graphs in-
creases exponentially with the number of vari-
ables involved. In light of recent advancements in
deep learning, gradient-based methods have shown
promise for global causal discovery. However, sig-
nificant challenges arise when focusing on the iden-
tification of local causal features, particularly in
defining the local causal constraint space to achieve
both minimality and completeness. To address
these issues, we introduce a novel gradient-based
causal feature selection method (GCFS) that lever-
ages an AutoEncoder to simultaneously model the
target variable alongside other variables, thereby
capturing of causal associations within a divide-
and-conquer framework. Additionally, our ap-
proach incorporates a mask pruning strategy that
transforms the search process into the minimiza-
tion of a non-cyclic local reconstruction loss objec-
tive function. This function is then effectively opti-
mized using a gradient-based method to accurately
identify the causal features related to the target vari-
able. Experimental results substantiate that GCFS
surpasses existing methodologies across both syn-
thetic and real datasets.

1 Introduction
Causal feature selection1, which uncovers causal relation-
ships between variables, has been widely applied in various

∗Corresponding author
1https://github.com/MxGuoz/Appendix

big data applications, including bioinformatics [Saeys et al.,
2007], neuroscience [Bielza and Larrañaga, 2014], and in-
telligent systems [Khan and Kuru, 2017]. By utilizing the
Markov Blanket (MB), it identifies the direct causes, direct
effects, and common causes of the target variable, leading to
the construction of more accurate predictive models. This ap-
proach not only effectively reduces dimensionality and sig-
nificantly decreases computational load but also improves
the model’s generalization ability. Under the faithfulness
assumption, the MB ensures that the selected feature sub-
set minimizes information redundancy while preserving suf-
ficient information for the target variable [Ling et al., 2024],
thereby improving the robustness and interpretability of pre-
dictive models, as well as providing a reliable foundation for
decision support [Ling et al., 2025]. Existing causal feature
selection methods can be roughly divided into two categories:
constraint-based methods and score-based methods.

Constraint-based methods follow the Markov and faithful-
ness assumptions, relying on conditional independence (CI)
tests. These methods employ strategies such as simultane-
ous, divide-and-conquer, or alternating approaches to learn
MB [Yu et al., 2020]. These methods improve learning effi-
ciency by selecting relevant features and filtering out irrel-
evant ones. However, they are prone to generating incor-
rect MBs in the presence of noise or complex data gener-
ation mechanisms, where CI tests may yield inaccurate re-
sults [Huang et al., 2023]. Score-based methods combine
greedy search and scoring functions (e.g., K2 [Cooper and
Herskovits, 1992] and BDeu [Buntine, 1991]) with Bayesian
network (BN) structure [Kitson et al., 2023] learning to de-
termine the MB. The core idea of these methods is to learn
directed acyclic graphs (DAGs) on the selected and newly
added features, extracting MBs at each iteration. However,
when the constrained search space is large, the time complex-
ity of DAG learning can become excessively high, limiting its
applicability to large-scale datasets [Wu et al., 2020].

With the rapid development of deep learning, the field
of causal discovery, which is closely related to causal fea-
ture selection, has stepped into the era of deep neural net-
works [Zeng et al., 2021]. However, causal feature selec-
tion remains confined to early constraint-based and score-
based methods, failing to effectively integrate modern deep
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learning techniques. This lag is largely due to the need for
causal feature selection to impose strict discrete constraints
on the minimal and complete interpretable causal neighbor-
hood (i.e., MB) of the target variable. Existing gradient-based
techniques typically focus solely on minimizing prediction
errors or loss functions, fundamentally relying on statisti-
cal correlations in the data rather than uncovering underlying
causal mechanisms [Jiao et al., 2024]. Consequently, they of-
fer limited interpretability. For gradient-based techniques to
truly identify causal features, constraints must be properly de-
fined, and exact causalization objectives must be formulated
during the optimization process. However, existing differen-
tiable causal discovery methods struggle to accurately elimi-
nate redundancy in the global structure, leading to insufficient
guarantees of the minimal and complete properties of causal
features. Consequently, achieving the differentiable identifi-
cation of causal features during the gradient optimization pro-
cess of neural networks, while ensuring both the minimal and
complete properties of causal features within a local causal
constraint space, has become a pressing technical challenge.

Thus, we propose a gradient-based causal feature selec-
tion method to solve the above problems and to recognize
MBs. Under the divide-and-conquer framework, GCFS em-
ploys AutoEncoder to simultaneously fit the target and other
variables, extracting a weighted adjacency matrix during the
message-passing process. To ensure the accurate capture of
causality, we introduce DAG constraints to normalize the
weighted adjacency matrix. In addition, GCFS integrates a
mask pruning strategy to define a local reconstruction loss
objective function with acyclic constraints, further facilitating
the exploration of local causal relationships. By transforming
the discretized search process into the minimization of this
objective function, GCFS can leverage a gradient-based op-
timizer for efficient optimization, ultimately identifying the
causal features of the target variable.

To accelerate the feature selection process and reduce the
influence of redundant information from variable relation-
ships, GCFS is divided into two phases: a search phase and
a retraining phase. This structure allows GCFS to automati-
cally select the optimal MB from all variables while maintain-
ing the completeness of gradient-based training. In the search
phase, we apply the Gumbel-Max Trick strategy [Gumbel,
1954] to simulate hard selection during initial pre-training,
thereby eliminating suboptimal variables that are not related
to the MB of the target variable. The remaining candidate
variables then proceed to the retraining phase for relationship
reconstruction and further training. To further improve model
efficiency, we introduce an ℓ1 regularization term to promote
sparsity in the weighted adjacency matrix and facilitate fea-
ture selection. Main contributions are summarized as follows:

• To our knowledge, the proposed GCFS is the first
gradient-based algorithm for causal feature selection.
GCFS addresses the challenge of identifying differen-
tiable causal features in the optimization process of deep
models. It establishes a local mechanism for causal
constraint space to facilitate the application of gradient-
based paradigms within local causal structures, ensuring
both minimality and completeness of causal features.

• Different from existing methods, the proposed GCFS of-
fers at least three practical benefits: 1) GCFS demon-
strates excellent robustness in high-dimensional and
complex data. 2) As the sample size increases, GCFS
exhibits excellent scalability. 3) GCFS features a unified
training framework, avoiding the fragmentation of infor-
mation and inconsistencies from model partitioning.

• Extensive experiments on multiple synthetic and real
datasets demonstrate that GCFS outperforms existing
causal feature selection methods in accuracy, validating
its effectiveness in causal feature selection tasks.

2 Related Works
In traditional causal structure learning, researchers narrow
the search space by utilizing CI tests followed by scoring
searches to identify the optimal network structure. A rep-
resentative method is MMHC [Tsamardinos et al., 2006],
which, in its constraint phase, employs MMPC [Yasin and
Leray, 2011] to add candidate variables to the parent-child
set of target variable while eliminating redundancy. The max-
imization phase then derives the optimal DAG by combining
TABU search with K2 scoring. Despite reducing the search
space complexity, the number of DAGs still grows expo-
nentially, and combinatorial optimization remains challeng-
ing. To address this, NOTEARS [Zheng et al., 2018] intro-
duces a continuous differentiable acyclicity constraint based
on matrix trace properties, integrating it into the optimiza-
tion process. This transformation shifts discrete combinato-
rial optimization into a differentiable problem, enabling DAG
learning through gradient-based methods. While gradient-
based methods improve DAG solution efficiency by using
neural networks with acyclicity constraints, they encounter
challenges when directly applied to causal feature selection.
Causal feature selection demands strict constraints on the MB
of target variables. However, existing methods struggle to
globally eliminate redundant features, failing to fully guaran-
tee the minimality and completeness of the MB’s properties.

Current causal feature selection methods typically uti-
lize CI tests and score-based search strategies, which are
categorized into simultaneous and divide-and-conquer ap-
proaches. For example, IAMB [Tsamardinos et al., 2003b]
enhances the GS [Margaritis and Thrun, 1999] method by
iteratively adding features most correlated with the target
to the candidate MB set, thus improving accuracy. Vari-
ants such as FBED [Borboudakis and Tsamardinos, 2019]
and EAMB [Guo et al., 2022] have since been proposed.
Although simultaneous methods are efficient, their data re-
quirements increase exponentially with MB size. To mitigate
the sample size requirement, MMMB [Tsamardinos et al.,
2003a] adopts a divide-and-conquer strategy, splitting the MB
identification process into identifying PCs and spouses [Wu
et al., 2022]. Additionally, existing score-based MB learn-
ing methods are mainly variants of constraint-based meth-
ods that use BN structure learning to identify MBs. For in-
stance, SLL [Niinimaki and Parviainen, 2012] employs BN
structure learning to separately identify PCs and spouses, en-
hancing correctness through computationally intensive sym-
metric constraint checks. cIn contrast, S2TMB [Gao and Ji,
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2016] removes symmetric constraints to improve efficiency.
However, regardless of whether simultaneous or divide-and-
conquer strategies are used, these methods still depend on CI
tests [Yu et al., 2021]. Although score-based methods can
avoid CI tests, the time cost of DAG learning becomes pro-
hibitively high when faced with large search spaces, limiting
their application to large-scale datasets [Wu et al., 2023]. We
provide more details in Appendix 1.

3 Notations
The structural causal model (SCM) is a mathematical frame-
work for describing and analyzing causal relationships among
variables in a set V = (X1, X2, . . . , Xd), comprising a causal
graph G = (V, E) and structural equations. The causal graph
is a DAG, where each edge in E represents a direct causal
relationship between variables. For example, Xi → Xj in-
dicates that Xi has a direct effect on Xj , where Xi is the
parent variable of Xj . In this case, Xj → Xk implies that
Xi indirectly influences Xk. Given a set of random variables
X = [X1, X2, . . . , Xd]

T , let Xpa(i) denote the parent set of
Xi in G. According to the Markov condition of Bayesian
networks, the joint distribution P (X) can be expressed as a
product of conditional probabilities:

P (X) =

d∏
i=1

P (Xi|Xpa(i)) (1)

The Additive Noise Model (ANM) [Hoyer et al., 2008] as-
sumes that each variableXi can be represented as a nonlinear
function of its Xpa(i) plus an independent noise term as:

Xi = fi
(
Xpa(i)

)
+Ni, i = 1, 2, . . . , d (2)

where fi is a nonlinear function, and Ni represents external
noise. Due to the structural properties of ANM, Ni is inde-
pendent of other variables outside Xpa(i). Thus, P (X) can
be defined by the functions fi and noise terms Ni in ANM.

The objective of causal feature selection methods is to
identify the MB of a target variable XT from the observed
data x. This involves determining the direct causes (parents
P), direct effects (children C), and common causes (spouses
SP) associated with XT . In this study, a divide-and-conquer
strategy is adopted to decompose the MB learning problem
into two subproblems. First, the P and C of XT (PCT ) are
learned. Second, the SP of XT (SPT ) are identified. The
detailed process is illustrated in Figure 1.

4 Gradient-based Causal Feature Selection
In this section, we provide a detailed description of the pro-
posed method GCFS. We formalize the gradient-based mod-
eling paradigm for MB and its optimization formulation in
Section 4.1. Based on this, we detail the entire framework
of GCFS, including a optimization module to accelerate the
MB learning process in Section 4.2. Finally, we analyze the
algorithm’s computational flow in Section 4.3.

4.1 Formalization of Local MB Learning
NOTEARS proposes a smooth acyclicity constraint, namely
tr
(
eA◦A) − d = 0, where tr(·) is the trace of a matrix, eA

Figure 1: Illustration of the MB Learning Process.

represents the matrix exponential of A, and ◦ denotes the
Hadamard product. This formulation transforms the combi-
natorial optimization problem in traditional causal discovery
into a differentiable continuous optimization problem. The
specific optimization form is as follows:

min
A,ψ

1

2n

n∑
j=1

∥∥∥X(j) − f(X(j), A)
∥∥∥2
F
+ λ∥A∥1

subject to tr
(
eA◦A)− d = 0

(3)

where n denotes the number of samples, X(j) represents the
j-th observed sample, and f(X(j), A) denotes the data gener-
ation model, with ψ being the parameters associated with f .
Since NOTEARS utilizes a linear Structural Equation Model
(SEM), f(X(j), A) is defined as ATX(j) in Eq. (3). When
adopting a linear model for f(X(j), A), the optimization in
Eq. (3) is insufficient to capture the complex nonlinear re-
lationships involving causal features. Moreover, the global
structure obtained has limitations in effectively eliminating
redundant features, failing to ensure the minimal complete-
ness of the causal features. Hence, f(X(j), A) can be ex-
tended by using a graph autoencoder, as shown in Eq. (4).

f(X(j), A) = g2

(
AT g1(X

(j))
)
,

H(j) = g1(X
(j)), H(j)′ = ATH(j),

f(X(j), A) = g2(H
(j)′)

(4)

where g1: Rl → Rl′ and g2: Rl
′ → Rl are respectively the en-

coder and decoder (i.e., the AutoEncoder in Figure 2), both of
which are implemented using multilayer perceptrons (MLPs).
The dimensions l and l′ represent the input feature dimension
and the latent representation dimension, respectively. The en-
coder first transforms the input sample X(j) into a latent rep-
resentation H(j). Then, H(j) undergoes a linear transforma-
tion by the matrix AT to perform the message-passing pro-
cess, yielding H(j)′. Finally, the decoder reconstructs H(j)′

into X̂ . Throughout the process, the message-passing mech-
anism is similar to a graph convolutional layer [Ng et al.,
2019]. The adjacency matrix aggregates information from
neighboring variables into the latent representation of the tar-
get variable, enabling information propagation and represen-
tation learning on the graph. To identify the MBs associated
with XT more efficiently, it is necessary to define a suitable
local search region and recover the local structure precisely
by minimizing the local reconstruction error. To achieve this,
we adopt a local graph construction method. This method
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Figure 2: GCFS: Flowchart of the MB Model Framework.

identifies the potential relational neighborhood of the XT

(i.e., Xpl(T ) in Figure 2) by gradually expanding its neigh-
borhood based on the connectivity relationships among vari-
ables. Inspired by [Liang et al., 2023], in this process, Q is
used as the metric for Xpl(T ). As Q increases, Xpl(T ) gradu-
ally expands to include variables that are more broadly related
to XT , making the set of variables in Xpl(T ) conditionally
independent of other variables under the given conditions.
The final optimization problem is formulated by minimizing
the local reconstruction error, while adding an ℓ1 regulariza-
tion [Wang et al., 2018] term to encourage the sparsity of
matrix A. This problem can be formalized as:

min
A,Φ1,Φ2

1

2n

n∑
j=1

∥∥∥X(j)
pl(T ) − X̂

(j)
pl(T )

∥∥∥2
F
+ λ∥A∥1 (5)

where X̂
(j)
pl(T ) denotes the reconstructed output of X(j)

pl(T ).
Additionally, Φ1 and Φ2 represent the weights of the encoder
g1 and the decoder g2, respectively. The optimization Eq. (5)
can identify the PC of each variable. However, this method
only captures the correlation between the variables and fails
to distinguish between P and C in the causal relationship.
Although distinguishing between P and C is not necessary
when searching for MB, it significantly narrows down the
search space of SP when employing a divide-and-conquer
strategy. By learning the parent set (i.e., SP) via the common
subvariable, the efficiency of MB learning can be improved.
Therefore, when optimizing the process of minimizing the
local reconstruction error, it is still necessary to introduce the
directed acyclic constraint in NOTEARS. By restricting the
search space, it ensures that the generated graph structure re-
mains acyclic, helping to determine the causal direction be-
tween variables. Since our focus is on learning the MB of
XT , we concentrate on the local graph of XT rather than the
entire graph. Thus, it is necessary to introduce a mask ma-
trix [Ng et al., 2022] to prune A, filtering out parts unrelated
to XT and focusing on optimizing the relevant parts to pro-
gressively uncover the structure of Xpl(T ). The mask matrix
M can be formalized as:

Mjk =

{
0, if Xj /∈ Xpl(T) and Xk /∈ Xpl(T)

1, otherwise
(6)

Each element Mjk of M indicates whether the edge between
variables Xj and Xk is retained. If both Xj and Xk are not

in Xpl(T), then Mjk = 0, indicating that the edge is removed;
otherwise, Mjk = 1, meaning the edge is retained. After
adjusting the constraint conditions, the final optimization ob-
jective is given by Eq. (7), where Lrel denotes the function
combining the prediction error and a sparsity constraint. The
MB model framework is illustrated in Figure 2.

min
A,Φ1,Φ2

1

2n

n∑
j=1

∥∥∥X(j)
pl(T ) − X̂

(j)
pl(T )

∥∥∥2
F
+ λ∥M ◦A∥1

subject to h(M ◦A) = 0

(7)

The augmented Lagrangian method transforms the con-
strained optimization problem in Eq. (7) into an uncon-
strained optimization problem by introducing Lagrange mul-
tipliers and penalty terms [Bertsekas, 1997], as follows:

Lρ(A,Φ1,2, µ) =
1

2n

n∑
j=1

∥∥∥X(j)
pl(T ) − X̂

(j)
pl(T )

∥∥∥2
F
+ λ∥M ◦A∥1

+ µh(M ◦A) + ρ

2
|h(M ◦A)|2

(8)
where µ is the Lagrange multiplier that adjusts the influence
of the constraint, and ρ > 0 is the penalty parameter that con-
trols the strength of the penalty for the constraint term. By
iteratively adjusting these parameters, the error is minimized
while gradually satisfying the constraint conditions. The up-
date rules for the iterative optimization are as follows:

Ak+1,Φk+1
1,2 ← arg min

A,Φ1,Φ2

Lρk(A,Φ1,2, µ
k), (9)

µk+1 ← µk + ρkh(M ◦Ak+1), (10)

ρk+1 ←
{
βρk, if |h(M ◦Ak+1)| ≥ γ|h(M ◦Ak)|
ρk, otherwise

(11)

where β > 1 and γ < 1 are tuning hyperparameters used
to control the growth rate of the penalty parameter and the
threshold for error changes, respectively. Since Eq. (9) is
a first-order differentiable optimization problem, it can be
solved using the gradient descent method. In practice, the
parameters can be updated efficiently by using the Autograd
feature of deep learning frameworks such as TensorFlow with
the Adam optimizer [Kinga et al., 2015].

4.2 Framework of GCFS
In the model proposed in the previous section, we design
the structure based on a local scope by treating all variables
within the scope as inputs. By defining a local reconstruc-
tion loss function with acyclicity constraints and employing
gradient descent, we obtain the MB of XT . This approach is
capable of fully capturing information within the local scope.
Nevertheless, there may still be some redundant information,
which increases the complexity of model training. To fur-
ther optimize the model, we introduce an improved scheme
that can automatically select the optimal MB from all vari-
ables, thereby reducing the influence of redundant informa-
tion within the local scope. The overall improved framework
is illustrated in Figure 3.

The method is divided into two phases: the search phase
and the retraining phase. In the search phase, the framework’s
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Figure 3: Overall Framework of GCFS.

parameters are initialized at first. Then, all variables X are
input into the causal extractor module. This module applies
weighted processing to the input variables using the controller
module’s parameters (α1

n, α
0
n) and progressively optimizes

these parameters through gradient descent to minimize the
loss function. Ultimately, the importance of each variable to
XT can be incrementally determined in this way. This pro-
cedure can be framed as an expectation sampling problem, as
follows:

X′
n = (α1

n · 1 + α0
n · 0) ·Xn = α1

nXn (12)
X′ = [X′

1,X
′
2, · · · ,X′

n] (13)
where (α1

n and α0
n) represent the probabilities of the n-th

variable being selected or discarded, respectively. Through
this soft selection mechanism, the causal extractor module
can dynamically adjust the weights of each variable during
the search phase based on the current parameters of the con-
troller. However, soft selection cannot completely eliminate
the influence of suboptimal variables on the final MB, lead-
ing to discrepancies between the search and retraining phases.
Hence, Gumbel-Max Trick [Gumbel, 1954] is utilized to
simulate the hard selection process based on controller pa-
rameters. Specifically, the hard selection process can be im-
plemented as follows in Eq. (14).

zn = one hot
(
argmax

[
logα0

n + g0, logα
1
n + g1

])
where gj = − log (− log (uj))

uj ∼ Uniform(0, 1) ∀j ∈ [0, 1]

(14)

where g0 and g1 are independently and identically distributed
Gumbel noises, and uj is sampled from the uniform distribu-
tion Uniform(0, 1). Since zn in Eq. (14) is obtained through
the non-differentiable argmax and onehot operations [Kel-
ley et al., 2016], it is approximated by the Softmax opera-
tion to apply the gradient optimization strategy, as follow:

pjn =
exp

((
logαjn + gj

)
/τ

)
exp ((logα1

n + g1) /τ) + exp ((logα0
n + g0) /τ)

(15)
where pjn denotes the probability of the n-th variable being
selected (j = 1) or discarded (j = 0) and τ is the temperature
parameter used to control the smoothness of the Softmax.
By using pjn to simulate hard selection, the aim is to bridge
the gap between the search phase and the retraining phase.
Finally, this selection process can be written as:

X′
n = (p1n · 1 + p0n · 0) ·Xn = p1nXn (16)

Algorithm 1 GCFS
Require: x: data, XT : target variable, θ1, θ2: hyperparameters

Φ1,Φ2,Q, λ, µ, ρ: initial parameters
Ensure: [P,C, SP]: MB of XT

1: CMBT ← SearchPhase(x, XT , Φ1, Φ2,Q, λ, µ, ρ)
2: Initialize Φ1,Φ2 of AutoEncoder for each Xk ∈ CMBT
3: for t = 1, 2, . . . do
4: Xpl(T ),M← getMBGraph(A,Q)
5: Optimize Eq. (9) using Adam algorithm
6: Update parameters µ and ρ by Eq. (10) and Eq. (11);
7: if h(M ◦A) ≤ θ1 or ρ ≥ θ2 then
8: break
9: end if

10: end for
11: [P,C]← adjacency matrix A
12: for each c ∈ C do
13: SP← Update adjacency matrix A′

14: SP = SP \ {XT }
15: end for
16: return [P,C, SP]

After causal extractor module, X′ replaces the original vari-
able set X as the input to enter the retraining phase. In the
search phase, the model selects the top K features with the
highest predictive ability (i.e., X′). In the retraining phase,
the model adjusts the input feature dimensions in the MB
model of Section 4.1 by reducing the original dimension
(containing all variables) to K dimensions, and then retrains
based on these K features. During the training, the model
once again minimizes the loss function via the back propa-
gation algorithm and updates the parameters of each layer,
ultimately identifying the MB of XT .

4.3 Algorithm Analysis
Algorithm 1 summarizes the process of learning the MB of
XT using the GCFS algorithm. In line 1, the initial selec-
tion in the search phase aims to obtain the most predictive
causal feature set CMBT related to XT . In line 2, each vari-
able Xk from CMBT is input and the parameters Φ1 and Φ2

of the AutoEncoder are re-initialized to reconstruct the re-
lationships among the variables. Lines 3-10 perform multi-
ple iterations to optimize the objective function. Specifically,
in line 4, the algorithm calls the function getMBGraph to
identify the Xpl(T ) and M of XT based on the current A and
Q. In line 5, the minimization of the objective function in
Eq. (9) is performed by employing automatic differentiation
in conjunction with the Adam optimizer. In line 6, µ and ρ
are updated according to Eq. (10) and Eq. (11) to control
the regularization strength and the DAG constraint. Lines 7-9
are used to check whether the iterative optimization process
should be stopped early. If the stopping conditions are met,
indicating convergence or numerical instability, the optimiza-
tion process is terminated and the final A is output. In line
11, P and C of XT are extracted based on the optimized A.
Lines 12-15 are used to obtain SP of XT . Specifically, in line
13, each sub-variable c in C is taken as the target, and lines
2-10 are executed again to get A′. Subsequently, SP of XT is
obtained by removing XT from the parent set of c in line 14.
Finally, P, C and SP together form MB of XT .

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Size=1000 Size=5000
Nodes Algorithm F1 Precision Recall CITs Runtime F1 Precision Recall CITs Runtime

50

EEMB 0.44±0.04 0.75 0.37 215 0.03 0.54±0.03 0.71 0.53 411 0.03
EAMB 0.44±0.04 0.71 0.38 104 0.01 0.54±0.03 0.68 0.54 117 0.01
CFS-MI 0.28±0.03 0.68 0.21 98 0.01 0.22±0.02 0.54 0.17 84 0.01
S2TMB 0.12±0.01 0.14 0.10 0 41.33 0.13±0.00 0.19 0.12 0 42.89
GCFS 0.46±0.02 0.70 0.54 0 85.34 0.60±0.01 0.73 0.61 0 143.92

100

EEMB 0.36±0.02 0.68 0.30 400 0.02 0.48±0.01 0.67 0.47 747 0.09
EAMB 0.36±0.03 0.63 0.31 200 0.01 0.47±0.01 0.61 0.50 218 0.02
CFS-MI 0.18±0.02 0.51 0.14 169 0.01 0.18±0.02 0.45 0.14 151 0.02
S2TMB 0.08±0.01 0.11 0.07 0 108.98 0.09±0.01 0.15 0.8 0 544.72
GCFS 0.41±0.03 0.65 0.39 0 114.67 0.53±0.00 0.77 0.47 0 187.53

200

EEMB 0.35±0.01 0.62 0.30 907 0.04 0.45±0.01 0.62 0.42 1433 0.55
EAMB 0.33±0.01 0.52 0.31 409 0.02 0.43±0.01 0.54 0.43 440 0.07
CFS-MI 0.20±0.01 0.56 0.15 358 0.01 0.14±0.02 0.43 0.10 308 0.06
S2TMB 0.05±0.01 0.10 0.04 0 403.88 0.06±0.00 0.12 0.05 0 1968.34
GCFS 0.40±0.02 0.59 0.39 0 141.82 0.57±0.01 0.73 0.57 0 265.17

500

EEMB 0.30±0.01 0.45 0.29 2888 0.10 0.40±0.01 0.49 0.43 4137 1.74
EAMB 0.27±0.01 0.32 0.30 1041 0.25 0.36±0.01 0.37 0.44 1135 0.08
CFS-MI 0.20±0.01 0.56 0.15 916 0.04 0.15±0.01 0.45 0.11 797 0.14
S2TMB - - - - - - - - - -
GCFS 0.44±0.04 0.68 0.49 0 219.33 0.55±0.01 0.68 0.58 0 375.65

800

EEMB 0.29±0.01 0.38 0.31 5449 0.18 0.38±0.01 0.42 0.45 7553 0.63
EAMB 0.24±0.00 0.24 0.32 1732 0.28 0.31±0.00 0.29 0.46 1871 0.16
CFS-MI 0.23±0.01 0.59 0.17 1460 0.05 0.18±0.01 0.48 0.13 1287 0.22
S2TMB - - - - - - - - - -
GCFS 0.40±0.02 0.61 0.38 0 265.49 0.59±0.00 0.74 0.58 0 453.71

1500

EEMB 0.25±0.01 0.29 0.31 13349 0.53 0.33±0.00 0.32 0.45 19848 1.46
EAMB 0.18±0.00 0.15 0.32 4239 0.23 0.24±0.00 0.19 0.46 4303 1.12
CFS-MI 0.24±0.01 0.60 0.18 2803 0.13 0.18±0.01 0.48 0.13 2411 0.44
S2TMB - - - - - - - - - -
GCFS 0.42±0.05 0.68 0.40 0 351.27 0.59±0.00 0.75 0.59 0 595.86

Table 1: Performance of Different Algorithms on 1000 and 5000 Samples Generated by Nonlinear ANM with GPs (Appendix 2.1 for details).

Figure 4: Comparison of F1 Scores for Various Algorithms under ANM with GPs. (Left: Size = 1000; Right: Size = 5000)

5 Experiments

To validate the effectiveness and accuracy of GCFS, we
conducted experiments on various synthetic datasets gener-
ated by two distinct mechanisms as well as on real datasets.
GCFS was compared against nine causal feature selection al-
gorithms, including divide-and-conquer methods (MMMB,
STMB [Gao and Ji, 2017]), simultaneous methods (FBED,
EAMB), alternating PC-Spouse methods (BAMB [Ling et
al., 2019], EEMB [Wang et al., 2020]), score-based methods
(SLL, S2TMB), and mutual information-based method (CFS-
MI [Ling et al., 2022a]). We used standard evaluation met-
rics: Precision measures the proportion of true positives (TP)

among all outputs. Recall is the ratio of TP to the total num-
ber of actual positives. The F1 Score is the harmonic mean of
Precision and Recall, where F1 = 1 is the best case and F1 =
0 is the worst case. [Xie et al., 2024] CITs denote the number
of conditional independence tests performed. Runtime refers
to the algorithm’s execution time. If an algorithm requires
≥ 1 hour for one run, its runtime is denoted as “−”. The best
results are highlighted in bold.

5.1 Synthetic Datasets
The DAGs of the synthetic datasets are generated using
the ER model, with the number of nodes set as d ∈
{50, 100, 200, 500, 800, 1500} and the number of edges set
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to 2d. For each DAG, data samples were generated with sizes
n ∈ {1000, 5000}. Each sample group was subjected to 10
independent experiments, and the mean and standard devia-
tion were recorded. To ensure reliability, each sample group
underwent 10 independent experiments, recording the mean
and standard deviation. [Ling et al., 2022b] Data was gener-
ated using two mechanisms: ANM with GPs, which models
causal relationships with Gaussian processes and adds noise,
and Additive Model with GPs, which sums multiple indepen-
dent Gaussian processes for each input. The noise term Ni
was sampled from the N(0, 1), introducing randomness into
the data generation process [Xie et al., 2022].

In the ANM with GPs data generation experiments, Ta-
ble 1 and 2 present the performance of GCFS compared to
other algorithms, while Figures 4 illustrates F1 score vari-
ations across different node scales and sample sizes. GCFS
consistently outperforms existing methods in F1 scores across
all node sizes and sample scales. For example, with 50 or
100 nodes, EEMB and EAMB achieve high precision but
suffer from low recall, limiting their F1 scores. Conversely,
GCFS maintains high precision and significantly boosts re-
call, demonstrating superior F1 performance. This advantage
is even more evident with larger node scales (500 or 1500).
Traditional CI test-based approaches falter due to diminished
CI test reliability in high-dimensional and complex data, lead-
ing to lower F1 scores. In contrast, GCFS maintains high F1
scores in these challenging scenarios by leveraging gradient-
based techniques and defining the local constraint spaces.

As the sample size increases, GCFS’s F1 score improves
markedly. For instance, with 800 nodes, increasing the sam-
ple size from 1000 to 5000 raises the F1 score by 47.5% (from
0.40 to 0.59), whereas other methods show minimal gains
or even declines, such as CFS-MI. This suggests that larger
sample sizes may amplify noise, adversely affecting mu-
tual information metrics. While CFS-MI may occasionally
achieve higher precision, it generally incurs more false posi-
tives or negatives, resulting in lower overall F1 scores. Tra-
ditional score-based methods, like S2TMB, exhibit lower F1
scores and struggle with large node scales. In contrast, GCFS
demonstrates excellent scalability on large-scale datasets and
can effectively utilize more sample information to enhance
the accuracy of causal feature identification.

Regarding CITs and runtime, GCFS performs zero CITs,
indicating its differentiable causal feature selection avoids re-
dundant conditional independence tests and mitigates MB er-
rors in high-dimensional nonlinear settings, ensuring stable
and precise causal identification. While GCFS demonstrates
superior performance on high-dimensional nodes compared
to score-based methods, its runtime is relatively longer. For
example, with 50 nodes and 1000 samples, it takes 85.34 sec-
onds compared to 0.01–0.1 seconds for CFS-MI and EAMB.
This is due to GCFS’s reliance on neural networks and multi-
ple optimization steps to satisfy causal constraints. In the Ad-
ditive Model with GPs experiments, GCFS also demonstrates
better accuracy. More details are provided in Appendix 2.1.

5.2 Real-world Datasets
We conducted experiments on real biological datasets, specif-
ically using the Sachs [Sachs et al., 2005] dataset. The dataset

Figure 5: Real Results of GCFS for Learning MB Among Different
Molecules on the Sachs Dataset.

Algorithm F1 Precision Recall CITs Runtime
EEMB 0.64 0.91 0.54 24 0.07
EAMB 0.64 0.91 0.54 20 0.01
CFS-MI 0.41 0.70 0.33 22 0.18

SLL 0.14 0.18 0.12 0 47.29
GCFS 0.67 0.95 0.56 0 25.72

Table 2: Results on the Sachs’ Protein Signaling Network
(Appendix 2.2 for details).

records the expression levels of proteins and phospholipids
in human cells using multi-parameter single-cell technology,
and its ground truth network consists of 11 nodes and 17
edges. As a commonly used benchmark in graphical mod-
els, the Sachs dataset has a known consensus network (based
on experimentally annotated gold standard networks), mak-
ing it widely accepted in the biological community. Figure
5 and Table 3 visualize the learning results of GCFS on the
Sachs dataset. The regions highlighted in red represent the
correctly identified outcomes. The experimental results show
that GCFS outperforms the comparison algorithms in preci-
sion (0.95), recall (0.56), and F1 score (0.67), demonstrating
its advantage in accurately identifying causal features. More-
over, despite GCFS having a higher runtime (25.72 seconds)
than constraint-based methods, it still demonstrates faster
processing speed compared to the SLL algorithm.

6 Conclusion
In this paper, we propose a novel causal feature selec-
tion method, GCFS, which utilizes gradient descent meth-
ods and neural networks to explore the MB of the target
variable. To effectively delineate the local causal constraint
space for achieving minimality and completeness, we incor-
porate acyclicity constraints and mask matrices. Addition-
ally, to accelerate the MB learning process, we apply the
Gumbel-Max Trick strategy to simulate hard selection dur-
ing the search phase. Through experiments conducted on
both synthetic and real datasets, GCFS has demonstrated
strong competitiveness in causal feature selection tasks, par-
ticularly achieving significant improvements in precision. Fu-
ture work includes extending GCFS to support real-time in-
cremental causal feature selection and enhancing its robust-
ness to missing data via causal inference-based imputation.
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