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Abstract

Arrhythmia diagnosis using electrocardiogram
(ECG) is critical for preventing cardiovascular
risks. However, existing deep learning-based meth-
ods struggle with label scarcity and contrastive
learning-based methods suffer from false-negative
samples, which lead to poor model generaliza-
tion. Besides, due to inter-subject variability, pre-
trained models cannot achieve even performance
across individuals. Conducting model fine-tuning
for each individual is computationally expensive
and does not guarantee improvement. We propose
DiffECG, a diffusion-based self-supervised learn-
ing framework for label-efficient and personalized
arrhythmia detection. Our method utilizes a dif-
fusion model to extract robust ECG representa-
tions, coupled with a novel feature extractor and
a multi-modal feature fusion strategy to obtain a
well-generalized model. Moreover, we propose an
efficient model personalization mechanism based
on zeroth-order optimization. It personalizes the
model by tuning the noise-adding step ¢ in the diffu-
sion process, significantly reducing computational
costs compared to model fine-tuning. Experimen-
tal results show that our proposed method outper-
forms the SOTA method by 37.9% and 23.9% in
terms of generalization and personalization perfor-
mance, respectively. The source code is available
at: https://github.com/Auguuust/DiffEC.

1 Introduction

Arrhythmia, characterized by irregular heart rhythms, can
lead to cardiovascular diseases such as stroke, heart fail-
ure, and sudden cardiac arrest [Association, 2022]. Accu-
rate arrthythmia detection is challenging due to its sporadic
occurrence and asymptomatic nature. In recent years, deep
learning has been widely adopted in arrhythmia detection.
Existing approaches leverage either the temporal [Krasteva
et al., 2020; Xu and Liu, 2020; Jia ef al., 2021] or spec-
tral [Wasimuddin et al., 2021; Jun et al., 2018; Huang et al.,

*Corresponding author.

<
2
[=}

0.6 Chapman
: PTB
5] d.)
=05 Georgia = 05
o )
S 04 9
N 0.0
03 MOl
= 02 K5 ECGNet | EfficientECG
01 < ZolotyhNet  CLOCS
0 -1 MoCo SimCLR
CLOCS SimCLR MoCo 33 45 53 64 71
Methods Patient ID

(a) Generalization evaluation. (b) Personalization evaluation.

Figure 1: Evaluation results of existing methods. (a) F1 scores
on public datasets of models pre-trained with three different self-
supervised learning methods. (b) The changes in F1 scores on in-
dividuals of different pre-trained models after being fine-tuned on
subject-specific data.

2019] forms of ECG time-series data to train the deep neural
network and achieve promising detection performance.

These supervised learning methods generally require ex-
tensive data with precise annotations. However, annotating
ECG data is labor-intensive and costly. To reduce the de-
pendency on annotations, contrastive learning methods such
as CLOCS [Kiyasseh et al., 2021], SimCLR [Mehari and
Strodthoff, 2022] and MoCo [Nakamoto et al., 2022] are ap-
plied for arrhythmia detection. These methods perform self-
supervised learning by pulling similar sample pairs closer in
the feature space while pushing dissimilar pairs apart.

Nevertheless, there are still two main challenges: 1) Ex-
isting contrastive learning methods cannot guarantee the sat-
isfactory generalization (ability to perform well on unseen
data) of the deep model. The performance of these methods
could be impacted by false-negative samples. In contrastive
learning, false-negative samples refer to instances of the same
category that are incorrectly treated as dissimilar pairs, which
are particularly common in arrhythmia detection due to the
similarity of ECG patterns across different rhythm types. As
shown in Fig. 1(a), the models pre-trained on the large public
ECG dataset all achieve F1 scores below 50% when applied
to different downstream tasks; 2) The pre-trained models per-
form unevenly across different individuals due to the inter-
subject variability in ECG morphological characteristics. A
general solution is fine-tuning the pre-trained model using a
small portion of an individual’s labeled data. However, as
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shown in Fig. 1(b), existing methods could not achieve im-
provements across all individuals after fine-tuning.

To address the above challenges, we propose DiffECG, a
diffusion-based self-supervised learning framework for label-
efficient and personalized arrhythmia detection. While the
diffusion model focuses on multi-scale noise prediction rather
than classification, we decompose its structure and design a
new feature extraction network for downstream arrhythmia
detection tasks. Additionally, we design a multi-modal fu-
sion strategy that incorporates temporal, spectral, and domain
knowledge to further enhance the model’s generalization. To
achieve efficient model personalization, we analyze the im-
pact of noise-adding steps t of the diffusion model on indi-
vidual performance and propose a zeroth-order optimization-
based personalization mechanism. It enhances model person-
alization by tuning ¢, greatly reducing computational over-
head compared to full model fine-tuning. We evaluate our
proposed method on five public ECG datasets and get sat-
isfactory results. In terms of model generalization, the pro-
posed method outperforms existing self-supervised learning
approaches by up to 37.9% in F1 score. For model person-
alization, our method surpasses the SOTA method by 23.9%
and 13.9% in F1 score and Accuracy, respectively. The main
contributions of the work are summarized as follows:

* We propose DiffECG, a diffusion model-based self-
supervised learning framework for arrhythmia detec-
tion, achieving high label efficiency and detection per-
formance.

We design a new feature extractor structure and a multi-
modal feature fusion strategy to enhance the model’s
generalization.

We investigate the correlation between the noise-adding
step ¢t and individual performance, proposing an effi-
cient personalization mechanism that tunes ¢ without ex-
tra computation costs.

Experimental results show that DiffECG surpasses the
SOTA method by 37.9% and 23.9% in generalization
and personalization performance, respectively.

2 Background

2.1 Arrhythmia and Diagnosis

Arrhythmia is a condition characterized by irregularities in
the heart’s rhythm, which can show as a heartbeat that is too
fast (tachycardia), too slow (bradycardia), or erratic [Kanna
and Eliyas, 2023]. Clinicians primarily analyze electrocar-
diograms (ECGs) or corresponding Lorenz plots to conduct
the diagnosis. Lorenz plots could visualize the nature of the
variability, which is particularly useful in the study of heart
rate dynamics and variability. As shown in Fig. 2(a), the ECG
segment contains two heartbeats, each of which consists of a
P-wave, a QRS-Complex (consisting of Q-wave, R-peak, and
S-wave), and a T-wave. It could also reveal information about
the association between heartbeats, such as the RR interval,
TP interval, and ST segment.

Cardiologists also use the Lorenz plots, a two-dimensional
scatter plot that shows the relationship between successive R-
R intervals in an ECG, for arrhythmia diagnosis. Each point’s
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(a) ECG. (b) Lorenz plots.

Figure 2: Different representations of cardiac signals. (a) ECG
shows two consecutive cardiac cycles. (b) Lorenz plots correspond
to four cardiac rhythm patterns.

coordinate in Lorenz plots is calculated using Equation (1),

{ €Tr; = dRRl = RRI — RRi_l

(D
Yi =dRR; 1 = RR; 1 — RR; 1,

where RR; is defined as a series of RR intervals by locating
all R-peaks in the ECG segment. Fig. 2(b) shows the Lorenz
plots of four different cardiac rhythms with significant differ-
ences in scatter distribution, which could aid cardiologists in
diagnosing arrhythmias.

There are automatic arrhythmia diagnostic algorithms
based on the above characteristics, such as diagnosing atrial
fibrillation based on the pattern of change of RR intervals
in the ECG segments [Lian et al., 2011], or furthermore,
combining the analysis of P waves [Hindricks et al., 2010;
Piirerfellner et al., 2014]. However, these methods heavily
depend on expert and clinical experience, which makes it dif-
ficult to obtain the best parameter setting by manual tuning.

2.2 Deep Learning-Based Arrhythmia Detection

Deep learning has been widely adopted to conduct arrhythmia
detection due to its ability to train models using only labeled
data [Haleem et al., 2019; Holmes et al., 2004], thereby mini-
mizing the dependency on domain-specific expertise. Convo-
lutional neural networks [Rajpurkar et al., 2017; Tan and Le,
2019] and variational autoencoder [Kuznetsov et al., 2020]
are used for arrhythmia detection based on features extracted
over the temporal form of ECG data.

There are also studies that leverage spectral features from
time-frequency analysis for arrhythmia detection [Huang et
al., 2019]. Time-frequency analysis refers to examining a
non-stationary signal in the frequency domain, enabling a
clear description of how the signal’s frequency components
evolve. The Short-Time Fourier Transform (STFT) is a
widely utilized time-frequency analysis method, the process
of which can be described by Equation (2),

oo

STFT(x) = X(i,g) = Y a(m)g(i—m)e 7™, (2)

m=—0oo

where X () is a two-dimensional function defined on the time
and frequency, z(m) denotes the ECG segment. g() denotes
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Figure 3: The architecture of the diffusion-based arrhythmia detection model. (a) The forward and reverse processes of diffusion models. The
original diffusion model training process is utilized during the pre-training phase. (b) The inference process of the proposed self-supervised
learning framework. During fine-tuning for the downstream arrhythmia detection task, only the classifier parameters are updated, while the

remaining parameters are frozen.

the window function, which is used to reduce spectral energy
leakage. The Hanning window is commonly selected as the
window function, as shown in Equation (3), where M is the
number of sampling points and n is the window length.

0.5[1 — cos(£%)], 0<n<M-—1
g(n) = 3

0, otherwise.

In addition, some works adopt self-supervised learning
frameworks to reduce the dependency on annotations. Classic
contrastive learning methods, such as SimCLR and MoCo,
have been applied to ECG signal classification [Mehari and
Strodthoff, 2022; Nakamoto et al., 2022]. Other studies de-
sign methods based on the unique characteristics of ECG
signals. CLOCS [Kiyasseh et al., 2021] introduces a con-
trastive learning method across space, time, and patients.
CLECG [Chen et al., 2021] creates different views of an ECG
segment using wavelet transforms and segmented random
cropping. Positive samples are obtained from these views,
while other segments are used as negative samples for con-
trastive learning.

3 Methodology
3.1 Diffusion-Based Arrhythmia Detection Model

We propose a diffusion-based self-supervised learning frame-
work for accurate arrhythmia detection. As shown in Fig. 3,
we first perform self-supervised pre-training on the diffu-
sion model. The denoising network of the diffusion model
then serves as a feature extractor for downstream arrhyth-
mia detection tasks, which processes the input data to gen-
erate features for a classifier. Our proposed diffusion-based
arrhythmia detection model achieves high detection perfor-
mance with only a few fine-tuning steps while keeping the
feature extractor frozen.

The main process of the diffusion model is illustrated in
part (a) of Fig. 3. It primarily involves two stages: diffusion

and reverse. In the diffusion process, Gaussian noise is grad-
ually added to the input sample zy by time step ¢ and finally
gets z; ~ N(0,1), which could be defined by Equation (4),

q(@e|zi—1) = N(x; /1 — Beai—1, Be]), €]

where 1, ..., 8; are some fixed variance schedules. It is worth
noting that every noisy sample x; under step ¢ can be directly
obtained from the original sample x( in the diffusion process:

Ty = \/E.’l?()-‘r Vl_at€7 6'\"~/\/’(071)7 (5)

where oy :=1— S, @ := Htszlas.

The reverse process of diffusion models transforms noise
xr ~ N(0,1) to the z( through gradually denoising xr to
less noisy samples x; by step ¢t. The reverse process could be
defined as follows :

po(zi—1|re) = N (x1—1; po(@e, ), Bg (24, 1)),  (6)

The noise prediction network e(x¢,t) in the reverse pro-
cess predicts the noise added at step ¢ from x;_ to x¢, which
typically employs the UNet structure.

In our framework, the input data undergoes a ¢-step noise
addition, where ¢ is a pre-specified hyperparameter. All the
noise-added input samples are processed through the UNet
for feature extraction.

3.2 Network Structure Search and Multi-Modal
Feature Fusion

The structure of UNet is illustrated in part (a) of Fig. 4, it
comprises a contracting path (encoder), an expanding path
(decoder), bottleneck layers, and skip connection structures.
This structure efficiently captures features at different granu-
larities. However, it may lead to performance degradation in
classification tasks due to the introduction of high-frequency
noise and mismatches in semantic abstraction.

To fully utilize the robust feature extraction capabilities of
the diffusion model without sacrificing performance, we ap-
ply neural architecture search (NAS) to identify the optimal
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Figure 4: Network structures. (a) Architecture of the denoising U-
Net used in the diffusion model, comprising an encoder for feature
extraction, a bottleneck for intermediate representation, and a de-
coder for image reconstruction. (b) The optimized feature extractor
discovered through NAS, which preserves the encoder and bottle-
neck components of the original U-Net while omitting the decoder,
focusing solely on efficient feature representation.

structural configurations. The search space includes multi-
scale feature extraction modules, hierarchical abstraction lay-
ers, and information propagation pathways derived from the
original UNet architecture in the diffusion model. Through
several optimization cycles, the search algorithm removes re-
dundant components while preserving essential information
pathways. This process converges on the optimized structure
shown in Fig. 4 (b). The final structure includes the contract-
ing path of the UNet and two bottleneck layers with attention
modules, which capture the most abstract and high-level fea-
tures from the input data while consolidating rich hierarchical
features. Since the optimal feature extractor structure identi-
fied through NAS can be integrated into a full UNet, we use a
UNet with this searched structure as a subnetwork for denois-
ing during the diffusion model training phase. Afterward, we
extract the feature extractor’s partial parameters and structure
for the downstream arrhythmia detection task, eliminating the
need for additional model training.

To further enhance the detection performance of the model,
we design an attention-based multi-modal feature fusion
strategy. As shown in part (b) of Fig. 3, each raw ECG sig-
nal segment is transformed into two formats: the spectrogram
and the Lorenz plots. The model uses these two formats,
along with the original ECG signal segment, as inputs for the
proposed diffusion-based arrhythmia detection model. The
feature maps from each modality are stacked along the chan-
nel dimensions and then weighted and fused by a cross-modal
attention module. This approach enables the model to adap-
tively adjust the weight of each modality for different subjects
during the fine-tuning stage.

3.3 t-Based Efficient Personalization Mechanism

To ensure robust arrhythmia detection across subjects, we an-
alyze the factors influencing the model’s detection efficacy.
The analysis reveals that the noising-adding step ¢, which in-
troduces noise to the raw input data, significantly affects de-
tection performance. This effect is particularly pronounced

when the sample distribution across different categories is
highly imbalanced.

Guided by prior knowledge, performing a grid search for
the step ¢ can undoubtedly find the optimal set of ¢ val-
ues. However, this approach incurs significant time and
computational costs. Therefore, we propose a zero-order
optimization-based personalization mechanism, along with
an original optimization objective, to determine the optimal
set of ¢ values.

Bayesian optimization estimates the probability distribu-
tion of the objective function by constructing a surrogate
model. It then determines the location of the next evalua-
tion point using an acquisition function. This point is evalu-
ated on the true objective function, and the surrogate model is
updated accordingly. The process iteratively continues, grad-
ually converging to the optimal solution.

We employ Gaussian processes as the surrogate function
for Bayesian optimization, which is shown as Equation (7):

f(x) ~ GP(m(z), k(z,z)), (7)

where m(z) denotes the mean function and k(x, 2") denotes
the covariance function. In this paper, we choose the Ra-
dial Basis Function (RBF) as the covariance function, which
could be described as Equation (8):

Mz =2
212

where ||z —2’|| denotes the Euclidean distance between x and
2’ and [ denotes the length scale for the smoothness control
of the function.

For the acquisition function, we choose the Expected Im-
provement (EI) method, which is described as Equation (9):

EI(z) = E[maz(f(z) — f(=7),0)], 9

where x+ denotes the optimal solution position selected by
the acquisition function.

Accuracy or Fl-score is commonly used as the optimiza-
tion objective in Bayesian optimization. However, these met-
rics are not meaningful until the model approaches conver-
gence, which is time-consuming and computationally expen-
sive. Therefore, we propose a new metric, =, to assess the
model’s convergence ability based solely on the initial train-
ing epochs. This metric is defined as follows:

AL L(wy) — L(wrt1)
’y = — =
Aw [wrs1 = wy|

where the w denotes the weight parameters of the neural net-
work model (or model itself) and £(w) denotes the loss func-
tion. +y represents the sensitivity of the model’s loss value to
parameter updates, which intuitively could reflect the model’s
convergence ability.

Starting from the objective function of neural networks, the
feasibility of using -y as the optimization objective is analyzed
as follows. Equation (11) shows the optimization object of
the neural network,

k(z,z") = exp( ), (8)

; (10)

minl(w), (11)

where w, denotes the neural network model and £(w) de-
notes the loss function. Given that neural networks have a
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large number of parameters and complex nonlinear transfor-
mations, finding their analytical solutions is very difficult.
Therefore, it is impossible to directly obtain a set of parame-
ters w that minimizes the Loss value. Instead, iterative meth-
ods could be used. Equation (12) shows the first-order Taylor
series approximation to calculate £(w) at wy41:

ﬁ(w,«+1) ~ E(Wr) + V»C(WT)T(WT+1 - Wr)v (12)

where w, represents the model’s parameters after rth update.
According to the optimization object shown in Equation (11),
the loss value should decrease with each iteration, meaning
the following inequality holds constant:

AL = L(wry1) — L(w,) = VL(w) T (wpg1 — wyp) < 0.
(13)
Obviously, for Inequality (13) to always hold, V£(w,) and
(wy41—w,-) must have opposite signs, thus define (w;41 —w;-)
as follows:
—wy) = —nVL(wr)
= Wrtl = Wy — UVE(Wr)a

Aw = (Wr41 (14)

where the second line of Equation 14 is the definition of the
parameter update process in gradient descent, validating the
previous derivation. Further, with the combination of Equa-
tions (14), (10), and Inequality (13), the v would be trans-
formed into the following form:

L(wr) = L(wr41)
llowrs1 — wel
_ =VL(w) (=nVL(w,))
- lwrs1 — we| (15)
~ 1| VL(w:)|?
nIVL(w:)l
~ [|[VL(wr)]],

which shows that the proposed ~ approximates the paradigm
of the gradient, and could reflect the change ratio of the loss
function £(w) in the parameter space. Using 7, we aim to
find a set of ¢ values that maximize -, thereby achieving the
largest gradient within Oth to rth training epochs. At this
point, the model could approximate the optimal solution in
the early phases of training. Compared to using the changes
in accuracy, F1-score, loss value, or mixed definitions of these
metrics, 7y neither requires extensive training epochs for the
model to converge nor produce excessively large or small val-
ues, making it more reliable for evaluating the model’s per-
formance.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate all the methods based on five public
ECG datasets. CPSC [Goldberger et al., 2000; Liu et al.,
2018] consists of ECG records with 9 different types of ar-
rhythmias ranging from 6 to 60 seconds.Chapman [Zheng
et al., 2020] consists of ECG records with 11 different
types of arrhythmias with a 10-second duration for each

record. We group these labels into 4 major types suggested
by the dataset. PTB [Bousseljot et al., 1995; PhysioBank,
2000] dataset contains 549 records ranging from 1 to 5 sec-
onds. We conduct a binary classification for atrial fibrilla-
tion (AF). Georgia [Alday er al., 2020] consists of ECG
records with 56 different types of arrhythmias, with a 10-
second duration for each record. We eliminate the types
with the number of data samples under 500 and group the
rest into 4 major types suggested by the dataset. The above
4 datasets have rich types of arrhythmia that are suitable
for generalization evaluation. LTAF [Petrutiu et al., 2007,
Goldberger et al., 2000] includes 84 ECG records of subjects
with paroxysmal or sustained AF. Each record has a duration
of 24 or 48 hours, which is suitable for long-term detection.

Implementation Details. We conduct experiments to eval-
uate the generalization and personalization performance of
our method. We report the generalization performances in
terms of the detection performances achieved by models on
the unseen subjects’ data. Specifically, we first split each
dataset (i.e., CPSC, Chapman, PTB, and Georgia) into fine-
tuning and testing sets subject-wisely (with a splitting ratio of
2:8) to ensure the subject’s data is not mixed between the fine-
tuning and testing sets. Next, we pre-train the model using the
entire dataset from one source (e.g., CPSC or Chapman) and
fine-tune this pre-trained model with the fine-tuning sets of
the remaining datasets. During the fine-tuning phase, feature
extractors of all self-supervised methods are frozen. Finally,
we demonstrate the generalizability of different approaches
by evaluating the detection performance of the model on the
testing set of each dataset.

We report personalization performance based on the indi-
vidual detection accuracy achieved by the model when per-
sonalized with subject-specific data. Specifically, we first
split each subject’s data in the LTAF dataset with a 1:9 ra-
tio, using 10% for fine-tuning and 90% for testing. Next, we
pre-train all methods on the CPSC dataset and then personal-
ize the detection model using the 10% subject-specific data.
The personalized model is then tested on the remaining 90%
of each subject’s data. The personalization performance is
reported in terms of macro accuracy and F1 score.

We use PyTorch for all methods to build networks, train
models, and report detection performance. The training is
conducted on a server equipped with four NVIDIA RTX 4090
GPUs, an Intel Xeon Platinum 8480+ CPU, and 1 TB of
memory.

Baselines. We evaluate the proposed diffusion-based detec-
tion method, DiffECG, against 11 different baseline meth-
ods. For generalization evaluation, we implement 3 super-
vised learning methods: ECGNet [Jun er al., 2018], Ef-
ficientECG [Akkuzu et al., 2023], ZolotyhNet [Kuznetsov
et al., 2020]; and 3 self-supervised learning methods:
CLOCS [Kiyasseh et al., 2021], SimCLR [Mehari and
Strodthoff, 2022], MoCo [Nakamoto et al., 2022]. To en-
sure consistency, we integrate the multi-modal feature fusion
strategy into other self-supervised learning baseline methods
except CLOSC, since it is specifically designed for time-
domain data and can only utilize raw ECG as inputs. All
self-supervised learning methods adopt the same feature ex-
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Methods CPSC Chapman
Chapman PTB Georgia CPSC PTB Georgia

ECGNet [Jun et al., 2018] .888 .546 710 280  .530 .618
EfficientECG [Akkuzu et al., 2023] 283 468 161 .064  .648 182
ZolotyhNet [Kuznetsov et al., 2020] .656 579 484 304 587 517
CLOCS [Kiyasseh et al., 2021] 541 289 .369 179 546 .396
SimCLR [Mehari and Strodthoff, 2022] 761 492 S12 158 475 503
MoCo [Nakamoto et al., 2022] .556 468 392 264 468 472
DiffECG (uni-temporal) .906 522 .627 426 573 .594
DiffECG (uni-spectral) .890 .544 726 441 521 724
DiffECG (uni-domain knowledge) 788 .550 .595 273 558 .606
DiffECG 913 .598 735 S37 599 727

Table 1: The macro F1 score of generalization evaluation. All methods are pre-trained using the CPSC and Chapman datasets, respectively,
fine-tuned on the other datasets with 20 epochs. The noise-adding step ¢ of our method is fixed to 20.

tractor structure as our proposed method. We also evalu-
ate our proposed method using three uni-modal features re-
spectively as the ablation experiments. For personalization
evaluation, we implement all the abovementioned methods
and 2 additional medical knowledge-based algorithms: VCL-
Evidence [Piirerfellner et al., 2014], Pwave-Evidence [Sarkar
etal., 2017].

4.2 Experimental Results

Genelization Performance. Table 1 shows the generaliza-
tion performance of all methods. When methods are pre-
trained on CPSC and fine-tuned on the Chapman dataset,
where the distribution of arrhythmia types is relatively bal-
anced, almost all methods demonstrate high detection perfor-
mance. Our proposed DiffECG under the multi-modal fea-
ture fusion strategy achieves the best performance with the F1
score of 91.3%. It outperforms other self-supervised learning
methods, CLOCS, SimCLR, and MoCo, by 37.2%, 15.2%,
and 35.7%, respectively. In contrast, when methods are pre-
trained on Chapman and fine-tuned on CPSC, all baseline
methods show poor performance with F1 scores falling below
50%. This is because the CPSC dataset contains more heart
rhythm types than Chapman, which imposes higher general-
ization demands on the model. In this scenario, our proposed
method achieves an F1 score of 53.7% using the multi-modal
feature fusion strategy, outperforming other self-supervised
learning methods by up to 37.9%.

When fine-tuning on downstream datasets with imbalanced
arrhythmia types distributions, some supervised methods ex-
hibited a significant decline in performance. The Efficien-
tECG gets very low F1 scores on the Georgia dataset, specifi-
cally 16.1% and 18.2% when pre-trained on CPSC and Chap-
man. This suggests that in cases of highly unbalanced data,
labeling an uneven number of samples can shift from being
beneficial for network convergence to a contributing factor in
network overfitting towards a specific class of samples. On
the other hand, some self-supervised learning-based methods
also show significant performance degradation. This is pri-

Method F1 ACC
VCL-Evidence [Piirerfellner et al., 2014] .649  .818
Pwave-Evidence [Sarkar et al., 2017] 384 485
ECGNet [Jun et al., 2018] 769 964
EfficientECG [Akkuzu et al., 2023] 476 915
ZolotyhNet [Kuznetsov et al., 2020] 500 .649
CLOCS [Kiyasseh et al., 2021] 566 915
SimCLR [Mehari and Strodthoff, 2022] .607 798
MoCo [Nakamoto et al., 2022] 579 911
DiffECG (uni-temporal) 806  .992
DiffECG (uni-spectral) 827 987
DiffECG (domain knowledge) 642 948
DiffECG 846 991

Table 2: Personalization performances on dataset LTAF. For our
method using the uni-modal feature, the noising-adding step ¢ is
fixed at 20, whereas our method using the multi-modal feature fu-
sion strategy employs the proposed method to automatically deter-
mine ts’ value.

marily caused by the presence of false-negative samples dur-
ing the pre-training phase, which limits its feature extraction
capability. In contrast, our DiffECG achieves the highest per-
formance among all self-supervised learning methods, sur-
passing the best-performing self-supervised learning method,
SimCLR, by 10.6%, 22.3%, 12.1%, and 22.4% on the PTB
and Georgia datasets when pre-trained on CPSC and Chap-
man, respectively. It is worth noting that our proposed Dif-
fECG outperforms all self-supervised learning baseline meth-
ods, even when relying solely on uni-modal features.

Personalization Performance. As shown in Table 2, the
proposed DiffECG achieves the highest F1 score and demon-
strates excellent personalization performance. It surpasses
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Figure 5: Box plots of performance on individual testing subject’s
fine-tuned model of all methods.

=20 =30 =40 (=50 t=60 =70 ~-opt

F1 J31 730 719 718 714 691  .846
ACC 950 .962 959 955 953 947 .991

Table 3: Personalization performances on dataset LTAF through dif-
ferent ¢ settings.

the medical knowledge-based method VCL-evidence by
19.7% in terms of F1 score and 17.3% in terms of accu-
racy. Notably, both medical knowledge-based methods per-
form poorly. This is because their parameters require ad-
justment when employed on different subjects, which heav-
ily rely on domain knowledge and clinical experience. On
the other hand, our method also outperforms the other self-
supervised learning methods CLOCS, SimCLR, and MoCo
by 28.0%, 23.9%, and 26.7% in terms of the F1 score, re-
spectively.

Fig. 5 illustrates the distribution of the F1 scores on all
individual subjects of each method. The F1 scores for test-
ing subjects fluctuate between 0% to 100% with both medical
knowledge-based methods. While the self-supervised learn-
ing baseline methods exhibit higher F1 scores compared to
most supervised methods, there remains a large performance
gap across subjects. For example, SimCLR achieves the high-
est lower quartile and median values among them, which are
only about 20% and 76%, respectively. In contrast, the pro-
posed DiffECG achieves the best performance, with F1 scores
ranging from approximately 91% to 100%, and exhibits the
shortest interquartile range, indicating evenly high detection
performance across all subjects.

Zeroth-Order Optimization Performance. To validate
the original optimization objective-based zero-order opti-
mization strategy, we evaluate the AF detection performance
of the proposed DiffECG on the LTAF dataset under different
settings of ¢ values. The first six columns of Table 3 show the
average Fl-scores when the ¢ values of three modalities of
all testing subjects are set to the same fixed values of 20, 30,
40, 50, 60, and 70, respectively. The last column shows the
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Figure 6: Box plots of performance on individual subjects of Dif-
fECG under different settings of ¢.

AACC AF1 AlLoss AMix ~
Fl1 .809 .807 .810 .809 846
ACC .965 962 969 .949 991

Table 4: Personalization performances on dataset LTAF under dif-
ferent optimization objective settings.

average F1-score achieved by using ~y as the optimization ob-
jective to personalize the ¢’s value for each modality of each
testing subject. It is evident that as ¢ (i.e., the noise level)
increases, the model’s performance shows a downward trend.
Compared to the best-performing fixed value of ¢ = 20, our
zero-order optimization strategy improves the Fl-score by
11.5%. On the other hand, Fig. 6 illustrates the distribution of
F1 scores for all testing subjects under different settings of ¢.
The interquartile range shows significant variation across the
different settings. Our gamma-based zero-order optimiza-
tion setup exhibits a notably shorter interquartile range, with
even the minimum value being significantly higher than the
lower quartile value when ¢ is fixed at 20.

In addition, as shown in Table 4, we also evaluate the ef-
fect of using different optimization objectives to search for ¢
values. The optimization objectives include the differences in
accuracy, F1 score, loss value, and Mix between two epochs,
as well as the proposed . The Mz is defined as a weighted
mixture of the cross-entropy loss function and the F1 score.
It is evident that using our proposed 7 as the optimization
objective achieves the best search results, with the F1 scores
higher than the second highest A Loss by 3.6%.

5 Conclusion

In this paper, we propose a diffusion-based self-supervised
learning framework with an original optimization object-
based zeroth-order optimization strategy to achieve both
high label efficiency and personalization performance in ar-
rhythmia detection. The incorporation of the novel fea-
ture extractor structure and the multi-modal feature fusion
strategy further enhances the detection performance of our
proposed method. The proposed diffusion-based model
demonstrates strong generalization and personalization per-
formances through evaluation.
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