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Abstract
Current spatio-temporal modeling techniques
largely rely on the abundant data and the design
of task-specific models. However, many cities
lack well-established digital infrastructures, mak-
ing data scarcity and the high cost of model devel-
opment significant barriers to application deploy-
ment. Therefore, this work aims to enable spatio-
temporal learning to cope with the problems of few-
shot data modeling and model generalizability. To
this end, we propose a Universal Spatio-Temporal
Correlationship pre-training framework (USTC),
for spatio-temporal modeling across different cities
and tasks. To enhance the spatio-temporal repre-
sentations during pre-training, we propose to de-
couple the time-frequency patterns within data, and
leverage contrastive learning to maintain the time-
frequency consistency. To further improve the adapt-
ability to downstream tasks, we design a prompt
generation module to mine personalized spatio-
temporal patterns on the target city, which can be
integrated with the learned common spatio-temporal
representations to collaboratively serve downstream
tasks. Extensive experiments conducted on real-
world datasets demonstrate that USTC significantly
outperforms the advanced baselines in forecasting,
imputation, and extrapolation across cities.

1 Introduction
Spatio-temporal graph learning is not only a powerful tool for
understanding complex urban systems but also an intelligent
measure for modeling the evolution of human behavior and nat-
ural environment [Shi et al., 2023; Zhang et al., 2024]. Despite
the advances in spatio-temporal graph learning, most existing
methods are typically designed for specific tasks and assume
access to large volumes of high-quality data [Wang et al., 2020;
Liu et al., 2025a; Miao et al., 2024a; Liao et al., 2024;
Miao et al., 2025]. However, this assumption often breaks
down in numerous real-world urban environments, particu-
larly in newly developed areas [Wang et al., 2019; Deng et al.,

∗Prof. Yang Wang and Dr. Xu Wang are the corresponding
authors. Primary Contact: Dr. Xu Wang.

2024]. These areas frequently possess few or no pre-deployed
sensors, making it difficult to collect sufficient data for training
robust models. This dilemma makes us think about how to
carry out effective spatio-temporal graph few-shot learning
in such data-scarce areas. Furthermore, as smart applications
become more ubiquitous, the demand for deploying diverse
services continues to grow. Developing, training, and main-
taining separate spatio-temporal models for each service or
task is not only resource-intensive but also significantly slows
down the deployment of intelligent urban solutions [Zhang et
al., 2023]. Therefore, there is a pressing need for the general-
ization of spatio-temporal models enabling a universal model
to adapt to different tasks with minimal retraining.

As a promising cross-domain and cross-task knowledge
transfer approach, transfer learning, dominated by pre-training
techniques, aims to utilize the knowledge learned from
data-rich sources domain to perform various downstream
tasks in a data-scarce target domain [Zhuang et al., 2020;
Liu et al., 2025b]. In recent years, researchers have realized
the significant potential of pre-trained spatio-temporal models
for cross-city few-shot learning and cross-task generalization,
and have proposed a variety of solutions [Shao et al., 2022;
Jin et al., 2023a]. For example, TPB [Liu et al., 2023] utilizes
a pre-trained traffic patch encoder to project raw traffic data
from data-rich cities into a high-dimensional space. STGP [Hu
et al., 2024] proposes a prompt-enhanced transfer learning
framework capable of adapting to diverse tasks in data-scarce
domains. Existing pre-trained spatio-temporal models basi-
cally inherited the idea of Masked Autoencoder in STEP [Shao
et al., 2022] and achieved superior performance, but we deeply
find that there are still two critical challenges that have not
yet been adequately addressed, constraining the development
of more universal spatio-temporal models.

Challenge 1. Inadequate ability to represent spatio-
temporal information in source domains. The existing mod-
els are based on self-supervised learning methods in the time
domain [Shao et al., 2022], which neglects the complex and in-
dispensable topological relationships in the spatial dimension
in spatio-temporal data on the one hand, making the models
lack the ability to model spatial information. On the other
hand, just as important as the time domain are the temporal
patterns in the frequency domain, whereas such potential but
inherent trend information in spatio-temporal data has seldom
been considered in spatio-temporal pre-training. Therefore,
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these two shortcomings severely limit the effective extraction
of spatio-temporal information from the source domains.

Challenge 2. Deficient adaptability to target domains
and tasks. Most of the approaches add specific modules
for different downstream tasks for training in the fine-tuning
stage [Liu et al., 2023]. This seemingly simple approach
fails to pay attention to the individualized information of the
graph structure in the target city on the one hand, leading
to poor results even after fine-tuning the model, and on the
other hand, it greatly reduces the model’s generalizability and
complicates the process of adapting the model to different
tasks. Undoubtedly, improving the model’s ability to adapt to
target domains and downstream tasks will unleash the greater
potential of pre-trained spatio-temporal models.

To effectively address the above challenges, we propose
a Universal Spatio-Temporal Correlationship pre-training
framework (termed USTC), for spatio-temporal modeling
across different cities and tasks. In particular, for Challenge 1,
we decouple the time- and frequency-domain patterns of trend
and seasonality in the data respectively during pre-training.
After patched masking, we introduce a stacked structure of
Transformer and Graph Neural Network (GNN) in encoding
the spatio-temporal information and apply contrastive learning
to the encoded time- and frequency-domain information to
maintain the consistency of the original signals. For Challenge
2, we propose a prompt generation module in the fine-tuning
stage to mine the personalized information in each node on the
target city, which is combined with the shared spatio-temporal
representations learned by the pre-trained encoder to serve the
downstream tasks, and we introduce a common decoder for
the three mainstream spatio-temporal tasks (i.e., forecasting,
imputation, and extrapolation) to extract the common seman-
tics among the tasks and achieve cross-task generalization.
The main contributions of our work lie in three aspects:

❶ Novel insight and framework: We innovatively construct
a cross-city and cross-task spatio-temporal learning paradigm,
and propose a time-frequency disentanglement boosted pre-
training architecture called USTC, which enables the effective
solution of spatio-temporal forecasting, imputation, and ex-
trapolation with a universal model.

❷ Advisable methodologies: To enhance the spatio-
temporal representations in pre-training, we decouple the
time- and frequency-domain patterns of trend and season-
ality in the data respectively, introduce the stacked structure
of Transformer and GNN for spatio-temporal relationship
extraction, and use contrastive learning for the encoded in-
formation to maintain the time-frequency consistency. To
improve the adaptability of downstream tasks in fine-tuning,
we propose a prompt generation module to mine personalized
spatio-temporal patterns on the target city, which are inte-
grated with the common spatio-temporal representations to
collaboratively serve the downstream tasks.

❸ Compelling empirical results: We conduct extensive
experiments on four real-world datasets, evaluating USTC
on spatio-temporal forecasting, imputation, and extrapolation
tasks. The results consistently demonstrate the superior per-
formance of USTC across various scenarios.

2 Preliminaries
Definition 1. Spatio-Temporal Graph. A spatio-temporal
graph can be denoted as G = (V, E ,A) [Fang et al., 2023;
Zhang et al., 2025a; Zhang et al., 2025b]. V is the set of nodes,
N = |V| is the number of nodes, and E is the set of edges.
A ∈ RN×N is the adjacency matrix of G, which describes the
weights between nodes.
Definition 2. Spatio-Temporal Data. Spatio-temporal data
contained in the spatio-temporal graph can be denoted as
X ∈ RN×T×C , where N represents the number of nodes,
T represents a time window, and C indicates the channel of
inputs. And we donoted the spatio-temporal data of node i at
time step t as Xi

t ∈ RC [Fang et al., 2024].
Problem 1. Spatio-Temporal Graph Transfer Learn-
ing. Given P data-rich source domains Gsource =
{Gsource

1 , · · · ,Gsource
P } and a data-scarce target domain

Gtarget. The goal of spatio-temporal graph transfer learn-
ing is to pre-train a model on the data of Gsource to assimilate
the relevant knowledge of the source domains, and fine-tune
the model to adapt to the target domain Gtarget by utilizing
the knowledge acquired. The fine-tuned model is required to
accomplish various spatio-temporal graph learning tasks.
Problem 2. Forecasting. Given the historical spatio-temporal
data of Th time steps from a target domain, the goal of the
forecasting problem is to transfer the pre-trained function f(·)
to forecast the future data of Tf time steps [Liu et al., 2024a;
Miao et al., 2024b]. This task can be formulated as follows:

[X1, · · · ,XTh
]
f(·)−→ [XTh+1, · · · ,XTh+Tf

], (1)

where X[Th+1:Th+Tf ] ∈ RN×Tf×C is the future data.
Problem 3. Imputation. Given incomplete historical data
of Th time steps from a target domain with missing values at
certain time steps, the goal of imputation is to use the pre-
trained function f(·) to estimate and fill in the missing data.
To characterize the missing situation of time step t, we create
a 0-1 matrix as Rt ∈ {rij}N,C

i,j=1, where mij is defined as:

rij =

{
0, if data is missing
1, otherwise . (2)

Therefore, the data with missing values of time step t can
be defined as X̃t = Xt ⊙ Rt, where Xt indicates the com-
plete historical data of time step t. The problem of missing
imputation can be formulated as follows:

[X̃1, · · · , X̃Th
]
f(·)−→ [X̂1, · · · , X̂Th

], (3)

where X̂1:Th
∈ RN×Th×C represents the imputed data.

Problem 4. Extrapolation. Given the known historical spatio-
temporal data of Th time steps from N observed nodes within
a target domain, the goal of the extrapolation task is to utilize
this information to predict the future data of Tf time steps of
M unobserved nodes [Zhang et al., 2025c]. This task can be
formulated as follows:

X1:N
1:Th

f(·)−→ XN+1:N+M
Th+1:Th+Tf

, (4)

where XN+1:N+M
Th+1:Th+Tf

∈ RM×Tf×C represents the future data
of unobserved nodes.
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Figure 1: Overview of the pre-training stage in USTC, which consists of decomposition, reconstruction, and contrastive modules.

3 Methodology
In this section, we present an overview of the proposed USTC
framework, which contains two stages:
Stage 1. Pre-training. In this stage, we aim to learn ro-
bust knowledge from source domains. We introduce three
novel modules as shown in Fig. 1. The first module is the
Decomposition Module, which aims to process the source city
data into four unique time-frequency information by lever-
aging average pooling and Fast Fourier Transform (FFT)
techniques. The transformed information is then channeled
as input into the subsequent Reconstruction Module. Within
the Reconstruction module, inspired by [Shao et al., 2022;
Liu et al., 2024c], we employ random masking and recon-
struction strategies to learn the underlying temporal dynam-
ics and spatial relationships. Furthermore, we introduce the
Contrastive Module to encourage the encoder’s capability to
capture consistency across temporal and frequency domains.
Stage 2. Fine-tuning. The function of this stage is to ad-
just the model utilizing data from the target domain and task.
Within this stage, the encoder, which was developed during the
pre-training phase, is set to a fixed state. We have integrated a
novel Prompt Generation Module, based on the consideration
of node-specific knowledge that is ignored by the pre-trained
encoder. To address this, we compute the difference between
the encoder’s input and output, and subsequently feed it into
the prompt layer to generate node embeddings. These node
embeddings are then concatenated with the hidden states ex-
tracted by the frozen encoder and introduced to the decoder.
This approach enables the model to adapt to the distinct down-
stream tasks associated with the target city.

3.1 Pre-Training Stage
Decomposition Module
Inspired by AutoFormer [Wu et al., 2021a] and CoST [Woo et
al., 2022], we utilize the decomposition strategy to learn the in-
tricate temporal patterns, which separate spatio-temporal data

into the trend and seasonal parts, which respectively reflect the
long-term tendencies and the periodic seasonal variations in-
herent in the data. Specifically, we utilize the moving average
to smooth out periodic fluctuations to yield the long-term trend
component. Subsequently, by subtracting this trend compo-
nent from the original data, we obtain the seasonal component.
For the data Xi ∈ RT×C of node i, the aforementioned de-
composition operation can be represented as follows:

Xi
tr = AvgPool(Padding(Xi)),

Xi
se = Xi −Xi

tr,
(5)

where Xi
tr,X

i
se ∈ RT×C denote the trend component and the

seasonal component of Xi.
In addition, spatio-temporal data contains significant infor-

mation in the frequency domain that is not evident in the time
domain. To unearth this latent information, we employ the
Fast Fourier Transform (FFT) to convert both trend and sea-
sonal components into frequency domain, thereby capturing
their spectral characteristics, which are delineated as follows:

Fi
tr = FFT(Xi

tr), Fi
se = FFT(Xi

se), (6)

where Fi
tr and Fi

se denote the frequency domain representa-
tions converted from Xi

tr and Xi
se, respectively.

Through the decomposition module, we have decomposed
and transformed the spatio-temporal data into four sets of time-
frequency components, which are represented as Xi

tr and Xi
se

in the time domain, and Fi
tr and Fi

se in the frequency domain.

Reconstruction Module
The reconstruction module is designed to leverage masking
and reconstruction strategies for the pre-training of the en-
coder [Shao et al., 2022]. Firstly, we perform random masking
operations on the four sets of time-frequency data obtained
from the decomposition module of the source cities. Formally,
by taking the time domain as an example, we separate the
input data of node i into P patches as Xi = {Si

1, . . . ,S
i
P }.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

And we use a vector M to indicate whether a patch is masked
or not, for example, M i

j = 1 indicates Si
j is masked. Then, the

unmasked part of the input is fed into four distinct encoders,
and a learnable masked token Smt fills the place where the
data is masked. Formally, the input can be denoted as:

X̃i = Concatenate{Si
j ,Smt | M i

j = 0}, (7)

where X̃i indicates the input sequence that has undergone
the masking operation. Given that the structure of the four
encoders is analogous, we will focus on trend data in the time
domain as a representative example to explain. The encoder
consists of three steps, each designed to process the input
data and extract specific types of information. The initial
step involves using a Transformer block, which is adept at
capturing temporal dynamics within the input.

Hi = Transformere(X̃
i). (8)

In the second step, a GNN block processes the relationships
and interactions between different nodes, enabling the model
to understand the spatial dependencies within the data.

Hi = GNNe(H
j | j ∈ Ni), (9)

where Ni is the set of neighboring nodes of node i. Similar
to the first step, the third step utilizes a Transformer block to
refine the temporal features that have been extracted, which
helps to consolidate the temporal patterns identified earlier and
integrate any spatial insights gained from the GNN module.

Ĥi = Transformer’e(H
i), X̂i = W · Ĥi + b. (10)

Here Ĥi denotes the output hidden embeddings of encoders,
X̂i indicates the reconstructed sequence of node i. W and b
represent the weight matrix and bias vector associated with
the linear transformation applied after the Transformer block’s
processing. Therefore, we have the following formula:

Ĥi
tr = EncT

(
X̃i

tr

)
, X̂i

tr = Linear
(
Ĥi

tr

)
,

Ĥi
se = EncS

(
X̃i

se

)
, X̂i

se = Linear
(
Ĥi

se

)
,

Ĥi
ftr = EncTF

(
F̃i

tr

)
, X̂i

ftr = Linear
(
Ĥi

ftr

)
,

Ĥi
fse = EncSF

(
F̃i

se

)
, X̂i

fse = Linear
(
Ĥi

fse

)
.

(11)

Then, the reconstruction loss can be formulated as follows:

LR =

N∑
i=1

P∑
j=1

M i
tr,j

(
Si

tr,j − Ŝi
tr,j

)2

+

N∑
i=1

P∑
j=1

M i
se,j

(
Si

se,j − Ŝi
se,j

)2

+

N∑
i=1

P∑
j=1

M i
ftr,j

(
Si

ftr,j − Ŝi
ftr,j

)2

+

N∑
i=1

P∑
j=1

M i
fse,j

(
Si

fse,j − Ŝi
fse,j

)2

.

(12)

We encourage the encoders to harness the intrinsic information
within the time-frequency data by optimizing their parameters
to minimize the reconstruction loss, enhancing the encoders’
capacity to accurately reconstruct the partially masked input.

Contrastive Module
We introduce a contrastive module to reinforce time-frequency
consistency within the data, which refers to the notion that
the characteristics of a signal in the time domain should cor-
respond to those in the frequency domain [Liu et al., 2024b;
Zhang et al., 2022]. Here, we focus on the time-frequency
consistency rather than the differences between trend and sea-
sonal data. Therefore, we omit the subscripts tr and se and
use Ĥ to denote the time-domain hidden embeddings output
by the encoders, and Ĥf to represent the frequency-domain
hidden embeddings. To ensure the measurability of the dis-
tance between time- and frequency-domain embeddings, we
project the time- and frequency-domain embeddings through
two distinct projection operators, ProjectorT and ProjectorF,
respectively. The formulation can be articulated as follows:

Z = ProjectorT(Ĥ), Zf = ProjectorF(Ĥf). (13)
To maintain a set of time-domain data more similar to its
corresponding frequency-domain data obtained through FFT,
we use the NT-Xent Loss [Chen et al., 2020] to optimize the
encoders, which can be formulated as:

LC = −
N∑
i

log
esim(Z

i,Zi
f )∑

j e
sim(Zi,Zj

f )
, (14)

where sim indicates the cosine similarity, and the negative
samples Zj

f are chosen from N nodes randomly. This approach
encourages the model to preserve the consistency between
time- and frequency-domain embeddings. The total loss LP

of pre-training stage is the weighted sum of LR and LC.
LP = LR + αLC, (15)

where α is a regularization weight for balancing this combined
loss. Thus, the model is optimized to achieve time-frequency
consistency while learning diverse representations.

3.2 Fine-Tuning Stage
Prompt Generate Module
The prompt generation module is designed to obtain node
embeddings that capture the personalized information ignored
by the encoders. We calculate the difference between the target
city’s data and the output derived from processing this data
through the encoders, thereby identifying the information that
the encoders have potentially missed. This information is then
passed into the Prompt Layer to obtain the node embedding
Pi. Formally, this process can be articulated as follows:

Ĥi
total = Ĥi

tr + Ĥi
se + IFFT

(
Ĥi

ftr

)
+ IFFT

(
Ĥi

fse

)
,

Pi = PromptLayer
(
Xi −WP · Ĥi

total

)
,

(16)

where IFFT is the Inverse Fast Fourier Transform. We hypoth-
esize that the Euclidean distance between the node embeddings
should correlate with the distances reflected by Dynamic Time
Warping (DTW) [Berndt and Clifford, 1994]. To represent
this similarity, we employ a Mean Squared Error (MSE) Loss,
with the specific formula provided as follows:

Lpro =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

(DDTW(Xi,Xj)

−DEuc(P
i,Pj))2,

(17)
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Figure 2: Overview of the fine-tuning stage in USTC.

where DDTW is DTW distance between two time sequences,
DEuc ies Euclidean distance between encoded embeddings,
and n is the number of nodes in the target city. The fine-
tuning of the prompt layer is guided by minimizing this loss,
thereby ensuring that the node embeddings closely reflect the
fine-grained personalized features of the target domain.

Fine-Tuning Module
In fine-tuning, our goal is to align the pre-trained encoders
with the distinctive attributes of the target city. As illustrated
in Fig. 2, we keep the encoders fixed while fine-tuning the
prompt layer and decoder. The node embeddings P generated
in the prompt generation module are concatenated with the
hidden states Ĥtotal and then passed into the decoder. Echoing
the encoders, the decoder also adopts a stacked structure to de-
couple the learned spatio-temporal representations. Formally:

Ĥi = Decoder
(
Concatenate{Ĥi

total,P
i}
)
,

Ŷi = Linear
(
Ĥi

)
.

(18)

MSE loss is utilized to optimize the decoder and prompt layer,

Ltask =
1

nTfC

n∑
i=1

Tf∑
j=1

C∑
k=1

(
Yijk − Ŷijk

)2

. (19)

Finally, the total loss LF in fine-tuning is formalized as,

LF = Ltask + βLpro. (20)

This fine-tuning procedure guarantees that the model can
adeptly perform diverse downstream tasks within the target
city, encompassing forecasting, imputation, and extrapolation.

Datasets PEMS-BAY METR-LA Chengdu Shenzhen
# of Nodes 325 207 524 627
# of Edges 2,694 1,722 1,120 4,845

Interval 5 min 5 min 10 min 10 min
# of Time Step 52,116 34,272 17,280 17,280

Mean 61.7768 58.2749 29.0235 31.0092
Std 9.2852 13.1280 9.6620 10.9694

Table 1: Statistical details of traffic datasets.

4 Experiments
4.1 Experimental Setup
Datasets. Four real-world widely used datasets are employed
to evaluate our proposed framework, including PEMS-BAY,
METR-LA [Li et al., 2018], Chengdu, and Shenzhen. These
datasets comprise several months of traffic flow information,
with the statistics listed in Table 1.
Few-Shot Transfer Learning Setting. Our framework is
evaluated using a few-shot fine-tuning setting that aligns with
[Lu et al., 2022; Liu et al., 2023]. The dataset is divided
into three parts: pre-training data from three cities, few-shot
fine-tuning data, and testing data from the other city. We use
the comprehensive data from three cities for pre-training and
select one city’s data for both few-shot fine-tuning and testing.
For instance, if Shenzhen is the city chosen for fine-tuning, the
complete datasets from PEMS-BAY, METR-LA, and Chengdu
are used for pre-training. A three-day dataset from Shenzhen
is allocated for few-shot fine-tuning, while the rest of the
data in Shenzhen is reserved for testing. We consider three
classic tasks, including: 1) forecasting, predicting the future
1-hour data based on 1-day historical data. 2) imputation,
forecasting the missing values within a given time window.
3) extrapolation, forecasting the future data of unobserved
nodes, whose historical data is unknown. We use two widely
used regression metrics: Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE).
Baselines. We compare our model with 18 baseline models
across three categories, which are listed as follows,
❶ Statistical Methods: HA and ARIMA calculate the statisti-
cal properties of input data to predict future signals. MEAN
calculates the average value of the input and uses it to com-
plete missing data. KNN completes missing data with the
average value of its neighbors.
❷ Typical Deep-learning Methods: DCRNN [Li et al.,
2018], ICREASE [Zheng et al., 2023], GWN [Wu et al., 2019],
DSTAGNN [Lan et al., 2022], and FOGS [Rao et al., 2022]
are classical models for spatiotemporal prediction. To apply
them in the transfer learning scenario, we optimize them using
the Reptile [Nichol et al., 2018] meta-learning framework.
❸ Transfer-learning Models: AdaRNN [Du et al., 2021],
ST-GFSL [Lu et al., 2022], DASTNet [Tang et al., 2022],
TPB [Liu et al., 2023], IGNNK [Wu et al., 2021b],
SATCN [Wu et al., 2021c], TransGTR [Jin et al., 2023b],
GPD [Yuan et al., 2024], and STGP [Hu et al., 2024] represent
the cutting-edge in time series or spatio-temporal forecasting
within the domain of transfer learning.

Notably, the conventional deep-learning methods are im-
plemented with Reptile framework, which is a meta-learning
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Model

Target City METR-LA PEMS-BAY
Metrics MAE(↓) RMSE(↓) MAE(↓) RMSE(↓)
Horizon 10 min 30 min 60 min avg. 10 min 30 min 60 min avg. 10 min 30 min 60 min avg. 10 min 30 min 60 min avg.

HA
Target Only

3.62 4.23 5.13 4.33 7.33 8.56 10.17 8.69 2.42 2.89 3.70 3.00 5.46 6.52 8.25 6.74
ARIMA 3.22 3.70 5.00 3.97 6.28 7.80 9.80 7.96 2.28 2.49 3.66 2.81 4.52 5.35 7.45 5.77

DCRNN

Reptile

3.01 3.65 4.67 3.78 5.62 7.16 8.96 7.25 1.83 2.43 3.36 2.54 3.36 4.71 6.59 4.89
GWN 3.11 3.75 4.73 3.86 5.87 7.31 9.10 7.43 1.99 2.45 3.14 2.53 3.55 4.64 6.23 4.81

DSTAGNN 3.30 4.10 4.95 4.12 5.90 7.73 9.56 7.73 1.85 2.51 3.59 2.65 3.41 4.79 6.66 4.95
FOGS 3.26 4.11 4.88 4.08 5.95 7.50 9.47 7.64 1.89 2.38 3.37 2.55 3.49 4.54 6.01 4.68

AdaRNN

Transfer

3.05 3.68 4.51 3.75 5.66 7.15 8.60 7.14 1.79 2.33 3.04 2.39 3.38 4.60 5.98 4.65
ST-GFSL 3.00 3.79 4.58 3.79 5.72 7.21 8.67 7.20 1.77 2.20 2.95 2.31 3.27 4.50 5.92 4.56
DSATNet 3.03 3.66 4.51 3.73 5.70 7.15 8.78 7.21 1.64 2.16 2.88 2.23 3.26 4.36 5.89 4.50

TPB 3.07 3.80 4.66 3.84 5.69 7.03 8.52 7.08 1.62 2.12 2.83 2.19 3.24 4.33 5.76 4.44
TransGTR 3.01 3.64 4.44 3.70 5.60 7.12 8.49 7.07 1.60 2.13 2.79 2.17 3.04 4.35 5.68 4.36

GPD 2.96 3.58 4.29 3.61 5.58 6.90 8.21 6.90 1.72 2.18 2.69 2.20 3.19 4.26 5.60 4.35
STGP 2.97 3.54 4.23 3.58 5.48 6.77 8.19 6.81 1.74 2.13 2.70 2.19 3.21 4.18 5.46 4.28

USTC Transfer 2.85 3.41 4.10 3.45 5.37 6.58 8.10 6.68 1.69 2.05 2.63 2.12 3.09 4.22 5.48 4.26

Model

Target City Chengdu Dataset Shenzhen Dataset
Metrics MAE(↓) RMSE(↓) MAE(↓) RMSE(↓)
Horizon 10 min 30 min 60 min avg. 10 min 30 min 60 min avg. 10 min 30 min 60 min avg. 10 min 30 min 60 min avg.

HA
Target Only

2.69 3.13 3.65 3.16 3.69 4.57 5.27 4.51 2.17 2.66 3.04 2.62 3.33 4.05 4.63 4.00
ARIMA 2.97 3.28 4.32 3.52 3.78 4.64 5.51 4.64 2.35 2.99 3.60 2.98 4.32 4.73 5.58 4.88

DCRNN

Reptile

2.31 3.16 3.96 3.14 3.33 4.55 5.42 4.43 1.94 2.57 3.07 2.53 2.84 3.81 4.52 3.72
GWN 2.19 2.81 3.21 2.74 3.12 4.08 4.65 3.95 1.88 2.46 2.82 2.39 2.77 3.68 4.26 3.57

DSTAGNN 2.36 3.01 3.40 2.92 3.21 4.20 4.97 4.13 1.98 2.43 2.95 2.45 2.90 3.69 4.27 3.62
FOGS 2.23 2.80 3.31 2.78 3.18 4.30 4.77 4.08 1.96 2.36 2.80 2.37 2.88 3.61 4.35 3.61

AdaRNN

Transfer

2.18 2.91 3.40 2.83 3.09 3.97 4.82 3.96 1.92 2.48 2.88 2.43 2.85 3.63 4.26 3.58
ST-GFSL 2.10 2.80 3.35 2.75 3.02 3.88 4.60 3.83 1.90 2.36 2.71 2.32 2.70 3.53 4.19 3.47
DSATNet 2.06 2.70 3.03 2.60 3.02 4.01 4.53 3.85 1.86 2.34 2.64 2.28 2.73 3.51 4.00 3.41

TPB 2.08 2.63 3.02 2.58 2.98 3.84 4.34 3.72 1.85 2.32 2.61 2.26 2.70 3.45 3.91 3.35
TransGTR 2.05 2.65 2.80 2.50 2.95 3.82 4.26 3.68 1.89 2.30 2.47 2.22 2.69 3.49 3.79 3.32

GPD 2.02 2.58 2.79 2.46 2.90 3.81 4.19 3.63 1.86 2.31 2.52 2.23 2.71 3.34 3.82 3.29
STGP 1.98 2.54 2.74 2.42 2.85 3.72 4.02 3.53 1.82 2.27 2.42 2.17 2.66 3.39 3.69 3.25

USTC Transfer 1.90 2.41 2.64 2.31 2.81 3.68 3.99 3.49 1.80 2.34 2.48 2.21 2.55 3.33 3.61 3.16

Table 2: Forecasting performance comparison of few-shot learning on four spatio-temporal datasets. The best result is indicated in bold with
light blue and the second-best result is with light gray , hereinafter the same.

approach as described by [Nichol et al., 2018]. Since these
baselines are not compatible with all three downstream tasks,
we compare different baseline models for different tasks.

4.2 Performance Evaluation
❶ Forecasting. When the downstream task is forecasting, we
use 1-day historical data to predict future 1-hour data, and the
results are shown in Table 2. We can find that transfer learning
methods achieve the best performance among all three cate-
gories of methods, underscoring the substantial potential of
transfer learning in addressing few-shot challenges. Taking ad-
vantage of transfer learning, our proposed USTC surpasses
existing baselines across nearly all metrics and datasets.
Given that we compare USTC with seven transfer learning
baselines, the performance gains are attributed to our distinc-
tive designs, which are further assessed in the following.
❷ Imputation. In the imputation task, we predict the missing
values in data among a time window of 25 hours. The missing
values are generated by randomly masking observed data with
a ratio of 30%. We examine two scenarios: transductive and
inductive. In the transductive scenario, the model is trained
with the full dataset available. In contrast, the inductive sce-
nario poses a greater challenge as the model is pre-trained on
incomplete data and does not have access to the masked values
during training. The results are detailed in Table 3. Since the
previous baselines are not suitable for imputation, we have

chosen different baselines for comparison. The proposed
USTC surpasses all baselines across all metrics, indicat-
ing a more significant advantage than in the forecasting
task. This superiority is attributed to that the imputation task
is closer aligned with our pre-training, thus reducing the gap
between pre-training and fine-tuning. Additionally, the impu-
tation task is inherently more difficult due to the large missing
data ratio we set, which explains the higher absolute MAE and
RMSE values compared to those in the forecasting task.

❸ Extrapolation. In the extrapolation task, we mask 30% of
the nodes from the complete data, designating them as unob-
served nodes. Our objective is to predict the future 1-hour data
for these unobserved nodes using a 1-day historical dataset
of the observed nodes. Similarly, we evaluate this task under
two scenarios: transductive and inductive. In the transductive
scenario, the model is trained on the full dataset with all nodes
available. In the inductive scenario, the model is trained on
incomplete data and does not have access to the masked nodes
during training. The results are reported in Table 3. Also,
we compare our method with exclusive baselines for the ex-
trapolation task. The proposed USTC method surpasses all
baselines across all metrics. This consistent outperformance
across the three downstream tasks substantially validates
the effectiveness of our framework.
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Model

Target City METR-LA PEMS-BAY Chengdu Shenzhen
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Setting Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu.

MEAN
Target Only

10.28 14.86 5.49 9.28 7.42 9.78 8.81 11.08
KNN 9.11 12.88 4.2 7.55 7.01 9.4 8.89 11.17

KCN

Reptile

5.64 7.75 8.70 11.75 3.89 4.72 6.86 8.19 6.60 7.00 8.95 9.28 5.68 8.25 8.04 10.94
IGNNK 5.66 7.56 9.32 11.65 3.89 4.28 7.14 7.17 6.68 7.52 8.88 9.89 5.39 8.16 7.55 10.89
SATCN 4.80 7.49 7.83 11.57 3.45 3.84 6.49 6.79 6.57 7.09 9.00 9.39 5.50 8.11 7.86 10.82

DualSTN 5.59 7.09 9.57 11.45 3.53 3.71 6.80 6.74 5.94 6.37 8.05 8.66 5.34 8.17 7.61 10.89
INCREASE 4.99 7.34 8.22 11.49 3.41 3.68 6.38 6.77 6.13 6.62 8.49 8.78 5.33 8.14 7.60 10.82

STGP Transfer 4.50 6.94 7.72 11.37 3.36 3.64 6.27 6.64 5.43 6.29 7.65 8.63 5.23 8.07 7.45 10.75

USTC Transfer 4.29 6.46 7.26 11.21 3.27 3.55 6.20 6.58 4.99 6.17 7.49 8.48 5.15 7.82 7.35 10.47

Table 3: Imputation performance of transfer learning on the datasets. Trdu./Indu. denote transductive/inductive settings.

Model

Target City METR-LA PEMS-BAY Chengdu Shenzhen
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Setting Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu. Trdu. Indu.

MEAN Target Only 10.64 15.27 5.56 9.31 7.53 9.74 8.91 11.63

GWN

Reptile

5.41 9.26 9.69 15.10 4.32 5.01 8.09 9.86 5.83 7.21 8.25 9.61 4.02 8.47 5.74 11.40
DCRNN 5.10 9.41 9.19 15.57 3.64 5.12 6.97 10.14 6.23 7.10 8.62 9.58 3.85 8.64 5.31 11.54
IGNNK 6.67 9.14 10.33 14.63 3.90 5.05 7.13 9.90 6.52 7.43 8.81 9.71 4.41 8.52 6.47 11.38
SATCN 7.29 9.13 12.41 14.88 4.65 5.13 9.04 10.13 7.09 7.20 9.51 9.66 4.87 8.70 7.15 11.58

ST-GFSL

Transfer

7.73 9.31 12.31 14.99 4.27 4.59 7.61 7.92 6.51 6.79 8.74 9.41 4.75 8.55 6.99 11.45
TPB 7.97 9.01 12.50 14.42 4.40 4.53 7.79 7.83 6.12 6.67 8.37 9.27 4.66 8.38 6.96 11.23

TransGTR 7.33 8.87 11.22 14.12 4.55 4.66 7.95 8.10 6.42 6.62 8.65 9.10 4.58 8.45 6.81 11.36
STGP 5.04 8.51 9.03 13.49 3.41 4.13 6.47 7.52 5.46 6.51 7.67 8.91 3.61 8.22 5.04 11.07

USTC Transfer 4.82 8.19 8.94 13.21 3.18 3.99 6.17 7.28 5.26 6.33 7.48 8.74 3.44 8.09 4.96 10.82

Table 4: Extrapolation performance of transfer learning on the datasets. The results are averaged over all 12 future horizons.

4.3 Ablation Study
To deeply analyze the effect of different components in USTC,
we design six variants of our model: 1) w/o trend, removing
trend components from the framework; 2) w/o sea, removing
seasonal components; 3) w/o time, removing time-domain
signals; 4) w/o spec, removing frequency-domain signals; 5)
w/o cons, removing the contrastive learning module from pre-
training; 6) w/o prompt, removing the prompt module from
fine-tuning. We report the MAE on the four datasets regarding
all tasks of all variants and USTC in Fig. 4. As shown, the
prompt module in fine-tuning state contributes a lot to our
framework. The contrastive module in the pre-training stage
has a contribution similar to but slightly less than the prompt
module. Additionally, the involvement of both time- and
frequency-domain signals results in ignorable performance
improvement. Overall, all the proposed novel components
have a positive impact on the improvement of our framework.

4.4 Impact of Pre-training Datasets
We further investigate the impact of varying pre-training
datasets and assess the robustness of different methods. STGP
is compared due to its significant performance. As shown
in Fig. 3, when the number of source cities is reduced, the
volume of training data correspondingly decreases, leading to
a performance decline in both models. However, our USTC,
which leverages several designed components in pre-training,
experiences less degradation. This outcome underscores the
robustness of USTC with limited data for pre-training.
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Figure 3: Impact of different pre-training datasets.

5 Conclusion
In this paper, we propose a novel universal spatio-temporal
modeling framework (USTC) generalized to various cities
and tasks. To enhance the spatio-temporal representations
during pre-training, we decouple the time-frequency patterns
within the data and employ contrastive learning to preserve
time-frequency consistency. Furthermore, we design a prompt
generation module to extract personalized spatio-temporal
patterns from the target city, which can be integrated with
the learned common representations to collaboratively sup-
port downstream tasks. Extensive experiments validate the
effectiveness of USTC in three downstream tasks across cities.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0

1

2

3

4

METR-lA PEMS-BAY Chengdu Shenzhen

w/o trend w/o sea w/o time w/o spec w/o cons w/o promt USTC

(a) MAE on Forecasting task.

0

5

10

METR-lA PEMS-BAY Chengdu Shenzhen

(b) MAE on Imputation task.

0

5

10

METR-lA PEMS-BAY Chengdu Shenzhen

(c) MAE on Extrapulation task.

Figure 4: Impact of different components in USTC.
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