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Outstanding Orthodontist: No More Artifactual Teeth in Talking Face

Zibo Su , Ziqi Zhang , Kun Wei∗ , Xu Yang and Cheng Deng
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Abstract

Audio-driven talking face synthesis (TFS) enables
the creation of realistic speaking videos by com-
bining a single facial image with a speech audio
clip. Unlike other facial features that naturally de-
form during speech, teeth represent unique rigid
structures whose shape and size should remain con-
stant throughout the video sequence. However, cur-
rent methods often produce temporal inconsisten-
cies and artifacts in the teeth region, resulting in
a less realistic appearance of the generated videos.
To address this, we propose OrthoNet, a plug-and-
play framework designed to eliminate unrealistic
teeth effects in audio-driven TFS. Our method in-
troduces a Detail-oriented Teeth Aligner module,
designed to preserve teeth details and adapt to their
shape. It works with a Memory-guided Teeth Sta-
bilizer that integrates a long-term memory bank
for global teeth structure and a short-term mem-
ory module for local temporal dynamics. Through
this framework, OrthoNet acts like an orthodontist
for existing Audio2Video methods, ensuring that
teeth maintain natural rigidity and temporal consis-
tency even under varying degrees of teeth occlu-
sion. Extensive experiments demonstrate that our
method makes the teeth in generated videos appear
more natural during speech, significantly enhanc-
ing the temporal consistency and structural stability
of audio-driven video generation.

1 Introduction
Audio-driven TFS [Prajwal et al., 2020; Xu et al., 2024c;
Tian et al., 2025] aims to generate realistic videos of a target
person given a single portrait image and an audio speech clip
as input. This technology enables automatic generation of
synchronized facial animations from audio input, with broad
applications in virtual communication, digital entertainment
[Xu et al., 2024a], and multimedia content creation. Recent
methods such as TalkLip [Wang et al., 2023], SyncTalk [Peng
et al., 2024], and TTSF [Jang et al., 2024] have made signifi-

∗Corresponding author.

Figure 1: Comparison of real and audio-drive synthesized teeth.

cant progress in both lip synchronization and the consistency
of facial expressions.

However, a critical yet unexplored challenge remains:
maintaining the temporal consistency and realism of teeth
appearance under dynamic teeth occlusion during speech.
Since the teeth occlusion phenomenon frequently occurs dur-
ing speech, the generation of the teeth region shifts from an
image editing problem to an image inpainting problem, intro-
ducing two additional technical challenges. Firstly, teeth in-
consistency arises in the generated videos, as shown in Fig. 1
(a), (b), (c), and (d), with unnatural expansion or contraction
of the teeth size across frames, leading to instability in the
rigid structure. This issue is exacerbated by models that gen-
erate frames independently, causing inconsistent regeneration
of the teeth region. Secondly, there is the problem of gener-
ation hallucination in the teeth region. As shown in Fig.1
(a), significant hallucinations appear in the lower teeth, while
Fig.1 (c) shows severe degradation of teeth details and surface
textures, with blurred gaps between teeth. Due to insufficient
prior knowledge, models may create, remove, or distort teeth
structures, resulting in unnatural textures, uneven edges, and
unrealistic shapes. This issue is exacerbated by facial move-
ments involving complex interactions between the lips and
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teeth. These phenomena make generated videos look obvi-
ously fake, negatively impacting viewer experience.

To address these challenges, we propose the Orthodontist
Network (OrthoNet), which focuses on the teeth region of
generated talking face videos to enhance their realism. In-
spired by the outstanding orthodontists in aligning and sta-
bilizing teeth, we also propose the Detail-oriented Teeth
Aligner and Memory-guided Teeth Stabilizer to eliminate
artifacts in the teeth region of TFS. OrthoNet introduces
the Detail-oriented Teeth Aligner module to address gener-
ation hallucinations. One branch preserves fine details of
the target person’s teeth region using dense remap convolu-
tion (DRM-Conv), while the other adapts the teeth shapes
during lip movements through polymorphic kernel convolu-
tion (PKConv). Additionally, the Memory-guided Teeth Sta-
bilizer combines long-term memory (LTM) for global teeth
features with short-term memory (STM) for fine-grained dy-
namics during speech, ensuring temporal consistency in the
teeth region.

Our key contributions are as follows:
• To the best of our knowledge, our paper is the first to in-

troduce and address the temporal inconsistency and arti-
fact of the teeth region in the TFS task.

• Guided by prior information about the target person’s
teeth, the Detail-oriented Teeth Aligner module mod-
els the structural patterns in the dynamic talking face to
eliminate generation hallucinations.

• The Teeth Stabilizer leverages the interaction between
LTM and STM to maintain a stable teeth appearance,
even with the frequent disturbance caused by the occlu-
sion phenomenon.

• Our method is a plug-and-play framework that can be
integrated with other Audio2Video methods to enhance
generation realism, as demonstrated by extensive quali-
tative and quantitative experimental results.

2 Related Work
Audio-driven TFS makes significant strides with deep learn-
ing advancements [Tao et al., 2025]. Early methods focus on
direct audio-visual mappings, with foundational works like
Chen et al. [Chen et al., 2018] and Zhou et al. [Zhou et al.,
2019] establishing basic frameworks for lip synchronization
and expression generation.

Recent developments bring substantial improvements in
synthesis quality and controllability. SyncDiffusion [Zhao
et al., 2024] introduces a diffusion-based framework that
achieves remarkable temporal coherence and lip-sync accu-
racy. HeyGen [Li et al., 2024] proposes a attention mecha-
nism specifically designed for handling dynamic facial fea-
tures during speech. Additionally, SadTalker [Zhang et al.,
2023a] develops a robust emotion-aware generation pipeline
that significantly enhances the naturalness of facial expres-
sions. Similar approaches for feature enhancement and arti-
fact detection have been explored in other domains [Tao et
al., 2021].

The latest research focuses on enhancing fine-grained con-
trol and generalization [Xu et al., 2024b]. DiffTalk [Wang et

al., 2024] employs a conditional diffusion model that enables
precise control over facial attributes while maintaining speech
synchronization. VideoReTalking [Xu et al., 2024d] achieves
impressive results in cross-identity synthesis through care-
ful disentanglement of speech content and speaker identity.
VASA [Xu et al., 2024c] further advances the field by in-
troducing a view-adaptive speaking architecture that handles
varying head poses effectively.

Several works specifically target temporal consistency.
TalkLip [Wang et al., 2023] introduces a temporal discrim-
inator architecture that significantly improves lip movement
stability. SpeechToFace [Zhang et al., 2024] develops an ad-
vanced temporal coherence loss that enhances the smoothness
of facial transitions. EMO [Tian et al., 2025] proposes an
emotional-aware framework that maintains consistency while
incorporating expressive variations.

Multi-modal methods also gain prominence. AudioStyle
[Chen et al., 2024a] combines audio features with style trans-
fer techniques to achieve more personalized facial anima-
tions. StyleTalk [Liu et al., 2024] leverages style-based gen-
eration to enhance the visual quality of synthesized faces.
These methods demonstrate significant improvements in gen-
erating realistic and temporally coherent facial animations.

Despite these advances, existing methods typically treat all
facial features uniformly without specific consideration for
rigid structures like teeth. While recent works make sub-
stantial progress in lip synchronization and overall facial an-
imation quality, they do not address the unique challenges of
maintaining teeth temporal consistency throughout the gener-
ated video sequence. This oversight often leads to temporal
inconsistencies and artifacts in the teeth region, particularly
under dynamic teeth occlusion during speech.

3 Method
As shown in Fig. 2, we present OrthoNet, a plug-and-play
framework for teeth restoration in talking face videos that
operates as a virtual orthodontist. It has two main parts:
Detail-oriented Teeth Aligner for extracting precise teeth fea-
tures and Memory-guided Teeth Stabilizer for maintaining
stability over time. Detail-oriented Teeth Aligner uses dual-
branch: DRM-Conv preserves fine-grained teeth details, and
PKConv captures the overall shape of the teeth, ensuring both
small parts and the whole structure are accurately modeled.
Memory-guided Teeth Stabilizer has a dual-memory stream
inspired by post-orthodontic treatment. LTM maintains the
temporal consistency of the teeth, and STM enables teeth
adaptation to speech dynamics, similar to how orthodontists
use different retainers to retain strength while adapting natu-
rally during speech.

3.1 Detail-oriented Teeth Aligner
The Detail-oriented Teeth Aligner module extracts precise
teeth features through a dual-branch method, similar to the
method used by orthodontists with different tools to adjust
teeth position and shape.
Fine-grained Feature Extraction. Given an input fea-
ture map Fin ∈ RC×H×W , where C represents the chan-
nel dimension and H,W denote spatial dimensions, our
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Figure 2: The framework of OrthoNet. Our architecture consists of: Detail-oriented Teeth Aligner - a dual-branch fine-grained feature ex-
traction module with DRM-Conv for detail preservation and PKConv for shape adaptation; and Memory-guided Teeth Stabilizer - combining
LTM bank for maintaining global teeth structure consistency and STM module for capturing local temporal dynamics. Cross-attention mech-
anism fuses information from both memory modules to ensure temporal consistency while preserving teeth details.

dual-branch structure extracts comprehensive teeth features
through two complementary pathways: DRM-Conv for pre-
serving fine-grained details and PKConv for dynamic shape
adaptation. The DRM-Conv branch, illustrated in Fig. 3a,
preserves critical fine-grained details through a space-to-
depth transformation followed by specialized convolution op-
erations:
Fdrm = Conv(Cat(Fin[i : N : scale, j : N : scale]),Wdrm),

(1)
where scale = 2 is empirically determined to maintain op-
timal balance between computational efficiency and preser-
vation of critical edge details. The operation Cat(·) con-
catenates feature maps along the channel dimension, while
Wdrm represents learnable convolution weights [Sunkara and
Luo, 2022] specifically designed for detail enhancement. For
handling complex teeth shapes and occlusions, the PKConv
branch, depicted in Fig. 3b, employs an adaptive sampling
mechanism:
Fpk(p) =

∑
k∈Pn

wk(p)·Fin(p+∆pk+foffset(Fin,Mteeth)), (2)

where p represents the spatial position, Pn denotes the sam-
pling pattern with n points, wk(p) are position-specific adap-
tive weights, and foffset(Fin,Mteeth) computes dynamic
offsets [Zhang et al., 2023b] based on both input features and
teeth segmentation mask Mteeth. The multi-scale features
from both branches are integrated through an adaptive fusion
mechanism:

Fout =

L∑
l=1

βl · Up(αl · F l
drm + (1− αl) · F l

pk), (3)

where αl ∈ [0, 1] dynamically balances the contribution of
local details and global structure at each scale level l, Up(·)

performs bilinear upsampling to align feature resolutions, and
βl are learnable scale-specific weights that optimize the im-
portance of each resolution level. This multi-scale fusion en-
sures comprehensive feature extraction across different spa-
tial scales, crucial for accurate teeth alignment planning.
Feature Quality Enhancement. To ensure pixel-level ac-
curacy between the generated teeth region Ig and the ground
truth Igt, we employ:

Lrec = α1∥Ig − Igt∥1 + α2∥Ig − Igt∥22. (4)
This reconstruction loss [Li et al., 2023] ensures pixel-level

accuracy and perceptual similarity between generated and
ground truth images. Additionally, we introduce a teeth per-
ception loss to capture structural characteristics:

Lteeth = β · Lstruct + (1− β) · Ldetail, (5)
where:

Lstruct =
1

Nt

∑
p∈Mt

∥φl(I
p
g )− φl(I

p
gt)∥

2
2, (6)

Ldetail =
1

Nt

∑
p∈Mt

∥φh(I
p
g )− φh(I

p
gt)∥1. (7)

Here, Mt denotes the teeth region mask, φl and φh represent
low-level and high-level VGG-19 features respectively, with
β set to 0.7.

3.2 Memory-guided Teeth Stabilizer
To maintain temporal consistency while preserving the struc-
tural details of teeth, we propose a Memory-guided Teeth Sta-
bilizer that integrates both long-term and short-term temporal
dependencies [Xu et al., 2021], similar to how orthodontic
retainers stabilize teeth after treatment, as detailed in Algo-
rithm 1.
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(a) DRM-Conv

(b) PKConv

Figure 3: Illustrations of DRM-Conv and PKConv.

Long-term Memory Module. The LTM module maintains
a feature buffer BL ∈ R30×C storing teeth structural infor-
mation from past 30 frames. Quality assessment (Qstruct)
evaluates each new frame’s teeth features before updating
the buffer. Only high-quality frames meeting the threshold
θq are retained through Top-K selection, ensuring the buffer
maintains representative exemplars of teeth structure. This
adaptive update mechanism prevents degradation from poor-
quality frames while preserving stable global features.
Short-term Memory Module. The STM module employs
a ConvLSTM architecture to capture frame-to-frame varia-
tions in teeth appearance within a 4-frame sliding window
(Sst). Through specialized PKConv-based queries, it gener-
ates hidden states (ht) that encode local temporal dependen-
cies. This enables focused attention on relevant teeth features
and smooth transitions between frames. The STM adapts to
dynamic speech patterns while maintaining local consistency.
Memory Integration. The framework integrates LTM and
STM features through a cross-attention mechanism. Atten-
tion weights (wlt) determine the relevance of long-term fea-
tures to the current frame. Temporal fusion combines ConvL-
STM states with current features, while an adaptive blending
factor (α) balances global stability from LTM with local dy-
namics from STM based on frame quality. This dual-memory
method ensures both temporal consistency and natural motion
during speech. The temporal consistency is enforced through
two key loss components:

First, we utilize an adversarial loss based on WGAN-GP:

Ladv = EIg∼Pg [D(Ig)]− EIgt∼Pr [D(Igt)] + λgpLgp, (8)

where D(·) is the discriminator, Pg and Pr are distributions
of generated and real images, and Lgp is the gradient penalty

Algorithm 1 Memory Bank Update in OrthoNet

Require: Current frame Ft, Long-term buffer BL, Short-
term states Sst, Quality threshold θq

Ensure: Temporally consistent features Fout

1: Qstruct ← QualityAssess(Ft)
2: if Qstruct > θq then
3: fteeth ← ExtractTeethFeatures(Ft)
4: Bnew ← Top-K(BL ∪ {fteeth},K = 30)
5: BL ← Bnew

6: end if
7: Snew ← Sst[2 :] ∪ {Ft}
8: ht ← ConvLSTM(Ft, Snew)
9: Sst ← Snew

10: wlt ← SoftmaxAttn(Ft, BL)

11: flt ←
∑30

i=1 w
i
lt ·Bi

L
12: fst ← TemporalFusion(ht, Sst)
13: α← σ(Qstruct)
14: Fout ← α · flt + (1− α) · fst
15: return Fout

term. Second, we introduce a temporal consistency loss:

Ltemp = ∥Itg − w(It−1
g )∥1︸ ︷︷ ︸

local consistency

+γ ∥ht − flstm(ht−1, I
t
g)∥1︸ ︷︷ ︸

memory consistency

, (9)

where w(·) represents optical flow warping, ht is the ConvL-
STM hidden state, and flstm(·) is the state transition function.

The overall loss function is formulated as:

Ltotal = λ1Lrec + λ2Ladv + λ3Ltemp + λ4Lteeth, (10)

where {λ1, λ2, λ3, λ4} are empirically set to balance different
loss terms.

4 Experiments
In this section, we present experimental results evaluating our
OrthoNet framework. We introduce evaluation metrics for
teeth quality and temporal consistency, then compare against
state-of-the-art (SOTA) methods and conduct ablation studies
to validate our design choices.

4.1 Experimental Settings
Dataset and Data Processing. We train the proposed
method on High-Definition Talking Face (HDTF) [Zhang et
al., 2021] dataset and our self-built high-resolution news an-
chor dataset. HDTF contains videos of 362 different identi-
ties with a total duration of 15.8 hours. The reason for choos-
ing HDTF is that the teeth regions in this dataset are relatively
clear and well-exposed during speech. Additionally, to enrich
the diversity of teeth appearances under different speaking
conditions and enhance the model’s ability to learn stable and
accurate teeth representations, we constructed a supplemen-
tary dataset collected from various news channels. This self-
built dataset features news anchors with appropriate speaking
speeds and high probability of teeth exposure, making it ideal
for capturing teeth features. The videos in this dataset have
resolutions of 720P or 1080P with a total duration of 24.7
hours. We will publicly release our dataset to facilitate future
research. The details of data processing are shown in Fig 4.
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Figure 4: Details regarding data processing. For each video frame
that is generated, face landmarks are detected in order to precisely
locate the mouth region. This is achieved by identifying crucial
points like the left and right corners of the mouth, the tip of the nose,
and the jaw. Subsequently, the mouth region is cut out. Moreover,
masks for the teeth and lips, along with their contours, are created
based on these identified key points. Eventually, the cropped regions
and the generated masks are resized to a resolution of 96×96 pixels,
which helps to guarantee consistent resolution for all the input data.

Evaluation Indicators. To evaluate teeth generation and
temporal consistency in talking face videos, we propose a
framework combining traditional and specialized metrics:

• Fréchet Video Distance (FVD):
FVD = ∥µr−µg∥22+Tr(Σr+Σg−2(ΣrΣg)

1/2), (11)
where µr, µg are mean feature embeddings, and Σr, Σg

are covariance matrices of real and generated video se-
quences. Extracted using the I3D network, FVD evalu-
ates temporal coherence of the face region.

• Structural Similarity Index (SSIM):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (12)

where µx, µy are local means, σ2
x, σ2

y are variances, and
σxy is covariance. Constants c1, c2 stabilize division.

• Teeth Stability Metric (TSM):

TSM = 1− 1

T − 1

T−1∑
t=1

1

3
(∆rpa(t) + ∆rar(t) + ∆an(t)) .

(13)
TSM quantifies temporal consistency of teeth shapes
across frames, using perimeter-area ratio (rpa), aspect
ratio (rar), and normalized area (an).

• Edge Clarity Index (ECI):

ECI =
1

T

T∑
t=1

1

Ne

∑
(x,y)∈Et

√
G2

x(x, y) +G2
y(x, y)

Gmax
.

(14)
ECI evaluates sharpness and definition of teeth edges,
where Et are edge pixels (Canny operator), Gx, Gy

are Sobel gradients, and Gmax is the maximum gradi-
ent magnitude.

Method TSM↑ ECI↑ SSIM↑ FVD↓
AniPortrait 0.753 4.068 0.847 238.5

AniPortrait+OrthoNet 0.847 4.321 0.884 233.8
Audio2Head 0.662 3.968 0.899 242.4

Audio2Head+OrthoNet 0.785 4.213 0.907 237.9
EchoMimic 0.728 4.013 0.856 347.9

EchoMimic+OrthoNet 0.843 4.276 0.889 343.5
JoyHallo 0.713 4.003 0.869 170.8

JoyHallo+OrthoNet 0.826 4.239 0.895 166.1
Hallo2 0.686 3.953 0.879 158.2

Hallo2+OrthoNet 0.813 4.249 0.906 153.6
Real video 0.882 4.386 0.939 -

Table 1: Comprehensive comparison of different methods with and
without OrthoNet enhancement. ↑ indicates higher is better, ↓ indi-
cates lower is better.

Implementation Details. We implement our framework
using PyTorch and train it on four A6000 GPUs. The input
frames are processed to 96 × 96 resolution with detected fa-
cial landmarks for teeth and lip mask generation. For network
architecture, we set scale = 2 in DRM-Conv. The memory
modules maintain a 30-frame long-term buffer and 4-frame
short-term window based on ablation studies. During train-
ing, we employ the Adam optimizer with a learning rate of
1 × 10−5 and train for 30,000 epochs with batch size 4. The
model is trained on the combined HDTF dataset and our self-
built dataset.

4.2 Experimental Results
Quantitative Analysis. We evaluate OrthoNet against five
SOTA TFS methods: AniPortrait [Wei et al., 2024], Au-
dio2Head [Wang et al., 2021], EchoMimic [Chen et al.,
2024b], JoyHallo [Shi et al., 2024], and Hallo2 [Cui et al.,
2024]. For each baseline, we compare its original version
with a OrthoNet-enhanced version (denoted as ”+OrthoNet”).
Table 1 presents quantitative results across all evaluation met-
rics.

Our framework demonstrates significant improvements in
shape stability, with TSM scores increasing by 9.8% to 15.7%
across different baselines. Notably, EchoMimic+OrthoNet
achieves the largest improvement from 0.728 to 0.843, while
Hallo2+OrthoNet reaches the highest absolute score of 0.813
among enhanced methods. In terms of structural quality, the
integration of OrthoNet consistently improves teeth edge def-
inition and overall structural similarity, with ECI improve-
ments of 0.2-0.3 points observed across all methods. AniPor-
trait+OrthoNet achieves particularly strong gains with a 6.2%
increase in ECI. The temporal coherence, as measured by
FVD scores, also shows consistent enhancement, with Joy-
Hallo+OrthoNet achieving the most substantial improvement
through a 2.8% reduction in FVD. As shown in Table 1, our
method achieves significant improvements in teeth-specific
metrics (TSM, ECI, SSIM) for the mouth region evaluation,
while also demonstrating modest gains in global video quality
as measured by FVD.
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Figure 5: Qualitative comparison. In the images, green boxes highlight results generated by the original baseline methods, while red boxes
show results after incorporating our proposed approach. Our OrthoNet framework consistently improves temporal stability and temporal
consistency of teeth across different baseline methods, particularly under varying degrees of teeth occlusion.

Qualitative Analysis. Fig. 5 presents visual comparisons
highlighting the qualitative improvements brought by Or-
thoNet. The enhanced geometric consistency is particularly
evident in the preservation of teeth shapes and proportions
across frames during rapid mouth movements. Our method
maintains consistent teeth width and height ratios under vary-
ing degrees of teeth occlusion, whereas baseline methods of-
ten exhibit noticeable shape fluctuations.

The preservation of fine-grained teeth features represents
another significant improvement in our results. OrthoNet
successfully maintains consistent teeth edges and surface
textures, effectively preventing the common issue of detail
loss during mouth motion. Furthermore, our framework ex-
hibits robust performance in handling dynamic teeth occlu-
sion, where OrthoNet successfully reconstructs partially vis-
ible teeth while maintaining structural coherence, addressing
a major limitation of existing methods.

The memory-guided method also enables more natural
transitions in teeth visibility. As shown in Fig. 5, our method
eliminates abrupt changes and artifacts during mouth open-
ing/closing sequences, resulting in more realistic mouth an-
imations. This improvement is particularly noticeable in se-
quences with rapid speech patterns, where baseline methods

often struggle to maintain consistency.

Cross-Method Performance Analysis. OrthoNet demon-
strates its effectiveness as a general enhancement module
through consistent performance improvements across diverse
baseline architectures, with enhancement ratios varying by
less than 3%. This highlights its adaptability and gener-
alization capability. The framework complements baseline
methods, preserving their strengths while improving teeth-
related quality. For example, JoyHallo retains its strong lip
synchronization performance with a 15.7% gain in teeth sta-
bility. Moreover, methods with lower initial teeth genera-
tion performance (e.g., EchoMimic) show larger absolute im-
provements, while high-performing baselines (e.g., Hallo2)
achieve notable gains. These results validate OrthoNet’s abil-
ity to enhance teeth consistency in TFS while maintaining
compatibility with diverse baselines, proving the effective-
ness of our memory-guided method.

4.3 Ablation Studies

We conduct ablation studies on OrthoNet’s three key compo-
nents—memory modules, feature extraction, and loss func-
tions—to validate their effectiveness (Table 2).
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Memory-guided Teeth Stabilizer Ablation
Method TSM↑ ECI↑ SSIM↑ FVD↓
w/o Memory 0.695 3.982 0.883 157.8
w/o LTM 0.741 4.087 0.891 156.2
w/o STM 0.775 4.163 0.897 154.8
Full Model 0.813 4.249 0.906 153.6

Detail-oriented Teeth Aligner Ablation
Standard Conv 0.702 3.993 0.884 157.5
w/o DRM-Conv 0.748 4.096 0.892 155.9
w/o PKConv 0.777 4.174 0.897 154.7
Full Model 0.813 4.249 0.906 153.6

Loss Function Ablation
Basic Loss 0.708 4.012 0.885 157.2
w/o Ltemp 0.753 4.112 0.893 155.6
w/o Lteeth 0.779 4.169 0.897 154.5
Full Model 0.813 4.249 0.906 153.6

Table 2: Ablation studies on different components of OrthoNet using
Hallo2 as the baseline method.

LTM STM TSM↑ ECI↑ SSIM↑ FVD↓
10 4 0.767 4.128 0.893 155.9
20 4 0.789 4.186 0.898 154.8
30 4 0.813 4.249 0.906 153.6
40 4 0.811 4.245 0.905 153.8
30 2 0.785 4.173 0.896 154.9
30 3 0.798 4.208 0.901 154.2
30 4 0.813 4.249 0.906 153.6
30 5 0.812 4.247 0.905 153.7

Table 3: Analysis of memory size configurations in OrthoNet.

Memory Module Analysis. We evaluate different mem-
ory configurations to validate our dual-memory design. Re-
moving both memory modules causes significant degradation
(TSM: -14.5% to 0.695), with LTM showing greater impact
than STM when ablated individually (TSM: -8.9% vs -4.7%).
For optimization of memory capacity, as presented in Table 3,
experiments demonstrate that a 30-frame LTM buffer and a
4-frame STM window achieve optimal performance (TSM:
0.813). Smaller LTM sizes (10/20 frames, TSM: 0.767/0.789)
or STM windows (2/3 frames, TSM: 0.785/0.798) lead to
reduced stability, while larger sizes yield minimal improve-
ments. These results validate both the effectiveness of our
dual-memory architecture and its optimal configuration set-
tings. As shown in Fig. 6, the model produces irregular teeth
variations and temporal instability without memory modules,
particularly evident in the sudden changes of teeth shape and
size between consecutive frames, as well as the degradation
of fine-grained details during mouth movements.

Feature Extraction Analysis. Our dual-branch design sig-
nificantly outperforms standard convolution (TSM: -13.7% to
0.702). Between the two specialized branches, DRM-Conv
shows greater importance in preserving teeth details, as its
removal causes more substantial degradation (TSM: -8.0% to
0.748) compared to PKConv ablation (TSM: -4.4% to 0.777).

Figure 6: Visualization of partial ablation study results.

This indicates the crucial role of spatially-aware deformable
convolution in capturing teeth morphological features. As
shown in Fig. 6, standard convolution causes detail loss and
unrealistic artifacts, manifesting as blurred teeth edges and
inconsistent gaps between teeth that fail to capture the natu-
ral structural patterns present in real teeth during speech.
Loss Function Analysis. Using only basic reconstruction
and adversarial losses limits the model’s performance (TSM:
0.708). The Lteeth proves important, as its removal leads to
notable degradation (TSM: -4.2% to 0.779) compared to tem-
poral loss ablation (TSM: -7.4% to 0.753). The complete loss
function achieves the best results across all metrics (TSM:
0.813, FVD: 153.6), validating our loss design.

5 Conclusion
We introduce OrthoNet, a plug-and-play framework for im-
proving teeth realism in audio-driven TFS. It consists of two
components: the Teeth Aligner, which preserves detail dur-
ing mouth movement, and the Teeth Stabilizer, which ensures
consistency through a memory system combining structural
patterns with motion features. OrthoNet integrates easily into
existing synthesis systems and addresses teeth hallucination
and inconsistency issues during complex movements. Exper-
imental results demonstrate significant improvements in tem-
poral consistency and structural stability, enhancing visual re-
alism in speech synthesis.
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Ethical Statement
This research on talking face synthesis technology focuses
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ate permissions. We support responsible development prac-
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advancement of detection technologies alongside generation
capabilities.

Acknowledgments
This work is supported in part by the National Key
Research and Development Program of China (No.
2023YFC3305600), the Joint Fund of Ministry of Edu-
cation of China (8091B02072404), the National Natural
Science Foundation of China (62132016, 62171343, and
62406238), the Natural Science Basic Research Program
of Shaanxi (2020JC-23), the Fundamental Research Funds
for the Central Universities (ZYTS25149), and the Na-
tional Key Laboratory Foundation of China (Grant No.
HTKJ2024KL504011).

References
[Chen et al., 2018] Lele Chen, Zhiheng Li, Ross K Maddox,

Zhiyao Duan, and Chenliang Xu. Lip movements gener-
ation at a glance. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 520–535, 2018.

[Chen et al., 2024a] Xingyu Chen, Jun Wu, Youjin Wang,
and Hong Zhang. Audiostyle: Audio-driven talking
face generation with style transfer. arXiv preprint
arXiv:2401.08742, 2024.

[Chen et al., 2024b] Zhiyuan Chen, Jiajiong Cao, Zhiquan
Chen, Yuming Li, and Chenguang Ma. Echomimic:
Lifelike audio-driven portrait animations through editable
landmark conditions. arXiv preprint arXiv:2407.08136,
2024.

[Cui et al., 2024] Jiahao Cui, Hui Li, Yao Yao, Hao Zhu,
Hanlin Shang, Kaihui Cheng, Hang Zhou, Siyu Zhu,
and Jingdong Wang. Hallo2: Long-duration and high-
resolution audio-driven portrait image animation. arXiv
preprint arXiv:2410.07718, 2024.

[Jang et al., 2024] Youngjoon Jang, Ji-Hoon Kim, Junseok
Ahn, Doyeop Kwak, Hong-Sun Yang, Yoon-Cheol Ju,
Il-Hwan Kim, Byeong-Yeol Kim, and Joon Son Chung.
Faces that speak: Jointly synthesising talking face and
speech from text. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
8818–8828, 2024.

[Li et al., 2023] Yongyuan Li, Xiuyuan Qin, Chao Liang,
and Mingqiang Wei. Hdtr-net: A real-time high-definition
teeth restoration network for arbitrary talking face gen-
eration methods. In Chinese Conference on Pattern

Recognition and Computer Vision (PRCV), pages 89–103.
Springer, 2023.

[Li et al., 2024] Xinjie Li, Yichen Song, Kaihao Zhang,
and Wenhan Yang. Heygen: Speaking style-preserving
audio-driven talking face generation. arXiv preprint
arXiv:2401.09920, 2024.

[Liu et al., 2024] Zhimeng Liu, Xiaodong Xie, Wenqiang
Wang, and Yuming Guo. Styletalk: One-shot talking
head generation with high-fidelity identity. arXiv preprint
arXiv:2401.09447, 2024.

[Peng et al., 2024] Ziqiao Peng, Wentao Hu, Yue Shi, Xi-
angyu Zhu, Xiaomei Zhang, Hao Zhao, Jun He, Hongyan
Liu, and Zhaoxin Fan. Synctalk: The devil is in the syn-
chronization for talking head synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 666–676, 2024.

[Prajwal et al., 2020] KR Prajwal, Rudrabha Mukhopad-
hyay, Vinay P Namboodiri, and CV Jawahar. A lip sync
expert is all you need for speech to lip generation in the
wild. In Proceedings of the 28th ACM international con-
ference on multimedia, pages 484–492, 2020.

[Shi et al., 2024] Sheng Shi, Xuyang Cao, Jun Zhao, and
Guoxin Wang. Joyhallo: Digital human model for man-
darin. arXiv preprint arXiv:2409.13268, 2024.

[Sunkara and Luo, 2022] Raja Sunkara and Tie Luo. No
more strided convolutions or pooling: A new cnn building
block for low-resolution images and small objects. In Joint
European conference on machine learning and knowledge
discovery in databases, pages 443–459. Springer, 2022.

[Tao et al., 2021] Renshuai Tao, Yanlu Wei, Xiangjian Jiang,
Hainan Li, Haotong Qin, Jiakai Wang, Yuqing Ma, Libo
Zhang, and Xianglong Liu. Towards real-world x-ray se-
curity inspection: A high-quality benchmark and lateral
inhibition module for prohibited items detection. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pages 10923–10932, 2021.

[Tao et al., 2025] Renshuai Tao, Manyi Le, Chuangchuang
Tan, Huan Liu, Haotong Qin, and Yao Zhao. Oddn: Ad-
dressing unpaired data challenges in open-world deepfake
detection on online social networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39,
pages 799–807, 2025.

[Tian et al., 2025] Linrui Tian, Qi Wang, Bang Zhang, and
Liefeng Bo. Emo: Emote portrait alive generating expres-
sive portrait videos with audio2video diffusion model un-
der weak conditions. In European Conference on Com-
puter Vision, pages 244–260. Springer, 2025.

[Wang et al., 2021] Suzhen Wang, Lincheng Li, Yu Ding,
Changjie Fan, and Xin Yu. Audio2head: Audio-driven
one-shot talking-head generation with natural head mo-
tion. arXiv preprint arXiv:2107.09293, 2021.

[Wang et al., 2023] Jiadong Wang, Xinyuan Qian, Malu
Zhang, Robby T Tan, and Haizhou Li. Seeing what you
said: Talking face generation guided by a lip reading ex-
pert. In Proceedings of the IEEE/CVF Conference on

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Computer Vision and Pattern Recognition, pages 14653–
14662, 2023.

[Wang et al., 2024] Zhiyuan Wang, Fei Zhao, Tianyi Li,
and Jiashuo Zhang. Difftalk: Crafting diffusion models
for generalized audio-driven portraits animation. arXiv
preprint arXiv:2401.09145, 2024.

[Wei et al., 2024] Huawei Wei, Zejun Yang, and Zhisheng
Wang. Aniportrait: Audio-driven synthesis of photoreal-
istic portrait animation. arXiv preprint arXiv:2403.17694,
2024.

[Xu et al., 2021] Mingze Xu, Yuanjun Xiong, Hao Chen,
Xinyu Li, Wei Xia, Zhuowen Tu, and Stefano Soatto.
Long short-term transformer for online action detec-
tion. Advances in Neural Information Processing Systems,
34:1086–1099, 2021.

[Xu et al., 2024a] Chenghao Xu, Guangtao Lyu, Jiexi Yan,
Muli Yang, and Cheng Deng. Llm knows body language,
too: Translating speech voices into human gestures. In
ACL, pages 5004–5013, 2024.

[Xu et al., 2024b] Chenghao Xu, Jiexi Yan, Muli Yang,
and Cheng Deng. Rethinking noise sampling in class-
imbalanced diffusion models. IEEE Transactions on Im-
age Processing, 2024.

[Xu et al., 2024c] Sicheng Xu, Guojun Chen, Yu-Xiao Guo,
Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang,
Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-
driven talking faces generated in real time. arXiv preprint
arXiv:2404.10667, 2024.

[Xu et al., 2024d] Yuqi Xu, Yue Liu, Qianyu Dong, and
Chenxin Xu. Videoretalking: Audio-based lip synchro-
nization for talking head video editing in the wild. arXiv
preprint arXiv:2401.07874, 2024.

[Zhang et al., 2021] Zhimeng Zhang, Lincheng Li, Yu Ding,
and Changjie Fan. Flow-guided one-shot talking face gen-
eration with a high-resolution audio-visual dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3661–3670, 2021.

[Zhang et al., 2023a] Wenxuan Zhang, Xiaodong Cun, Xuan
Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and
Fei Wang. Sadtalker: Learning realistic 3d motion coef-
ficients for stylized audio-driven single image talking face
animation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023.

[Zhang et al., 2023b] Xin Zhang, Yingze Song, Tingting
Song, Degang Yang, Yichen Ye, Jie Zhou, and Liming
Zhang. Akconv: Convolutional kernel with arbitrary sam-
pled shapes and arbitrary number of parameters. arXiv
preprint arXiv:2311.11587, 2023.

[Zhang et al., 2024] Kai Zhang, Wei Li, Yu Liu, and Feng
Jiang. Speechtoface: High-fidelity facial animation syn-
thesis from speech. arXiv preprint arXiv:2401.11167,
2024.

[Zhao et al., 2024] Jianhong Zhao, Wei Zhang, Xiaoyu
Zhou, and Yuxuan Wang. Syncdiffusion: More realis-

tic talking face generation with neural diffusion models.
arXiv preprint arXiv:2401.12251, 2024.

[Zhou et al., 2019] Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo,
and Xiaogang Wang. Talking face generation by adver-
sarially disentangled audio-visual representation. In AAAI
Conference on Artificial Intelligence, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


