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Abstract

The global simple evolutionary multi-objective op-
timizer (GSEMO) is a simple, yet often effective
multi-objective evolutionary algorithm (MOEA).
By only maintaining non-dominated solutions, it
has a variable population size that automatically ad-
justs to the needs of the optimization process. The
downside of the dynamic population size is that the
population dynamics of this algorithm are harder to
understand, resulting, e.g., in the fact that only spo-
radic tight runtime analyses exist. In this work, we
significantly enhance our understanding of the dy-
namics of the GSEMO, in particular, for the clas-
sic CountingOnesCountingZeros (COCZ) bench-
mark. From this, we prove a lower bound of order
Q(n?logn), for the first time matching the semi-
nal upper bounds known for over twenty years. We
also show that the GSEMO finds any constant frac-
tion of the Pareto front in time O(n?), improving
over the previous estimate of O(n?logn) for the
time to find the first Pareto optimum. Our meth-
ods extend to other classic benchmarks and yield,
e.g., the first Q(n**1) lower bound for the OJZJ
benchmark in the case that the gap parameter is
k € {2,3}. We are therefore optimistic that our
new methods will be useful in future mathematical
analyses of MOEAs.

1 Introduction

Many real-world optimization problems are characterized by
several, often conflicting objectives. A common solution con-
cept for such multi-objective optimization problems is to com-
pute a diverse set of Pareto optima (solutions which cannot be
improved in one objective without compromising in another
objective) and let a human decision maker select one of these.
Due to their population-based nature, multi-objective evolu-
tionary algorithms (MOEAs) are among the most prominent
approaches to such problems and have found applications in
numerous subfields of multi-objective optimization [Coello et
al., 2007; Zhou et al., 2011].

The mathematical runtime analysis of MOEAs was started
around 20 years ago [Laumanns et al., 2002; Giel, 2003;
Thierens, 2003]. It has gained considerable momentum in

the last years, among others, with analyses of classic algo-
rithms such as the NSGA-II, NSGA-III, SMS-EMOA, and
SPEA?2 [Zheng et al., 2022; Bian and Qian, 2022; Wietheger
and Doerr, 2023; Bian et al., 2023; Ren et al., 2024; Opris et
al., 2024; Wietheger and Doerr, 2024; Alghouass et al., 2025;
Doerr et al., 2025a; Deng et al., 2025; Li et al., 2025;
Opris, 2025] or works discussing how MOEAs can solve
submodular problems [Qian et al., 2019; Qian et al., 2020;
Crawford, 2021; Do et al., 2023].

The by far dominant algorithm in the rigorous analysis
of MOEAs is the global simple evolutionary multi-objective
optimizer [Giel, 2003] (GSEMO). Due to its apparent sim-
plicity, it was the first MOEA for which mathematical run-
time analyses were conducted, and it is still often the first
algorithm for which new phenomena are discovered, see,
e.g., [Dinot er al., 2023; Dang et al., 2024] for recent ex-
amples. At the same time, it is a central algorithm, and
many other algorithms, in particular in the area of submod-
ular optimization, build on it. For example, algorithms such
as POSS (Pareto Optimization for Subset Selection) [Qian et
al., 2015], POMC (Pareto Optimization for Monotone Con-
straints) [Qian e al., 2017], and POMS (Pareto Optimization
for Multiset Selection) [Qian et al., 2018] are all variants of
the GSEMO applied to a suitable bi-objective formulation of
the submodular problem of interest.

Despite this impressive body of theoretical works on the
GSEMO, a real understanding of the working principles of
this algorithm is still missing. This is most visible from the
fact that there are almost no lower bounds matching the ex-
isting runtime guarantees (see Section 2 for a detailed discus-
sion of this point). The reason is that for matching bounds,
a deeper understanding of the population dynamics is nec-
essary. This is particularly crucial for the GSEMO with its
dynamic population size (note that the probability to choose
a particular individual as parent is the reciprocal of the popu-
lation size).

Our contribution: In this work, we greatly expand our un-
derstanding of the population dynamics of the GSEMO. To
this end, we study how this algorithm optimizes the clas-
sic CountingOnesCountingZeros (COCZ) benchmark. For
readers less familiar with the area of runtime analyses, we
note that it is the established approach of this field to study
how a specific randomized search heuristics solves a well-
understood benchmark problem, and from this derive insights
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into the working principles of the heuristic. All runtime ana-
lysis works cited above follow this approach.

We give more details on our new understanding of the pop-
ulation dynamics later (Section 4) when we have made pre-
cise the GSEMO algorithm and the COCZ benchmark, and
now only describe two implications. First, we indeed succeed
in proving a lower bound of Q(n? logn) (Theorem 4), which
matches the classic upper bound of [Laumanns et al., 2002;
Giel, 2003]. This is the first tight lower bound for a bench-
mark problem in which reaching the Pareto front is non-trivial
(as opposed to, e.g., the OneMinMax benchmark, where all
solutions are on the Pareto front). Second, we also gain a
deeper understanding on how difficult it is to reach the Pareto
front. Whereas previously the time to find the first solution
on the Pareto front was estimated by O(n?logn), we prove
that O(n?) iterations suffice with high probability to reach the
Pareto front and to compute any linear fraction of it (Corol-
lary 8).

Our results are made possible by a number of new argu-
ments. The most interesting one is that we add dummy in-
dividuals to the population to reach a population size equal
to the maximum possible size. If such a dummy individual is
chosen as parent, this iteration has no effect (but is counted as
iteration). This argument helps overcome the changing popu-
lation size of the original GSEMO. What is interesting is that
this argument, which slows down the original algorithm, can
be used to prove lower bounds on the runtime. The reason
is that we exploit this argument not to estimate times directly
(which is not possibly due to the unclear deceleration from
the dummy individuals) but only to understand the shape of
the population in the objective space. We are optimistic that
this argument, and our other new proof ideas, will be useful
in future runtime analyses of MOEAs as well. As a first sup-
port for this claim, we show that our methods also give a tight
lower bound for the runtime of the GSEMO on the OJZJ
benchmark for all £ (where previous works could not analyze
the cases £ = 2 and k = 3) and that all our results extend to
the SEMO algorithm.

2 Previous Works

In the interest of space, we concentrate on the previous works
most relevant for ours. For a general introduction to MOEAs
and their success in applications, we refer to [Coello et al.,
2007; Zhou et al., 2011].

We refer to [Neumann and Witt, 2010; Auger and Doerr,
2011; Jansen, 2013; Zhou et al., 2019; Doerr and Neumann,
2020] for introductions to mathematical runtime analyses of
randomized search heuristics. We note here that the typical
approach in this area is to analyze, with mathematical means,
how a specific heuristic solves a particular, often artificial,
problem, and to derive from this analysis a deeper under-
standing of the working principles of the algorithm. Such
works have successfully detected strengths or weaknesses of
algorithms (e.g., the NSGA-II has intrinsic difficulties with
three or more objective [Zheng and Doerr, 2024]), have pro-
posed suitable settings for parameters (e.g., the cutoff time
of automated algorithm configurators [Hall er al., 2022]), or
have led to the design of novel algorithms (e.g., a variant of

the SMS-EMOA with stochastic selection of the next parent
population [Bian et al., 2023]).

Already the first mathematical runtime analysis of a
MOEA proved an O(n? log n) runtime guarantee for the sim-
ple evolutionary multi-objective optimizer (SEMO), a prede-
cessor of the GSEMO, on the COCZ benchmark [Laumanns
et al., 2002], see [Laumanns et al., 2004] for the journal ver-
sion. The same bound for the GSEMO followed a year later
[Giel, 2003]. As we will see in this work, both bounds are
tight. When looking at the proofs, both results estimate both
the time to find the first Pareto optimum and the subsequent
time to compute the full Pareto front by O(n? log n), whereas
we shall show that the Pareto front is reached, and in fact any
constant fraction of it is computed, in time O(n2). Since then,
many more upper bounds on runtimes of the (G)SEMO were
shown, and later also for more complex algorithms like the
NSGA-II, only very few lower bounds exist, and these only
apply to very specific situations.

The first lower bound, matching their own upper bound, is
that the SEMO optimizes the LOTZ benchmark in time 2(n3)
[Laumanns et al., 2002]. While clearly non-trivial, this re-
sult heavily exploits that the SEMO with its one-bit mutation
operator cannot generate incomparable solutions until a solu-
tion on the Pareto front is found, and from that point on, the
population always forms a contiguous interval of the Pareto
front. With these restricted population dynamics, proving
lower bounds was possible already in the first runtime ana-
lysis paper on MOEAs. For the GSEMO, the population dy-
namics are more complex. In particular, at any time, solu-
tions not comparable with the parent can be generated. Con-
sequently, despite attempts in [Doerr et al., 20131, no inter-
esting lower bounds exist for the GSEMO on LOTZ.

The first tight lower bound for the GSEMO on a clas-
sic benchmark was given by [Doerr and Zheng, 20211, who
showed that the GSEMO optimizes the OJZJ; benchmark
in time %en’“rl + o(n**1) when the gap parameter satisfies
4 < k = o(n). That such a tight bound is possible builds
on particular properties of this benchmark. The Pareto front
of the OJZJ;, benchmark consists of an easy-to-explore inner
part, from which two solutions are separated by difficult-to-
cross gap of size k. When assuming & > 4 as in this re-
sult, it is easy to argue that the inner part is computed before
the gaps are traversed, and hence the traversal of the gaps is
slowed down by the then linear-size population. This argu-
ment breaks down for smaller values of k, and this is why
no tight lower bounds existed in this case prior to this cur-
rent work. The only other tight lower bound for the GSEMO
on a classic benchmark we are aware of is the Q(n?logn)
bound for the OneMinMax benchmark [Bossek and Sudholt,
2024]. This benchmark has the particularity that all solutions
are Pareto optimal, hence the optimization process lacks the
phase of advancing towards the Pareto front, which was the
most demanding one in our work. Recently, lower bounds
where proven for the runtime of the NSGA-II [Doerr and
Qu, 2023], but again, these only regard the OneMinMax and
0JZJ}, benchmarks; also, clearly, the population dynamics of
the NSGA-II with its fixed population size are very different
from the GSEMO. In summary, it is safe to say that there are
very few interesting lower bounds for the GSEMO, and that
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this is caused by the difficulty of understanding the popula-
tion dynamics of this algorithm.

3 Preliminaries

We now provide some general notation and definitions for
multi-objective optimization, define the algorithms (Sec-
tion 3.1) and benchmark functions (Section 3.2) that used in
this study, and state the mathematical tools needed in our ana-
lysis (Section 3.3).

Let Z denote the integers, N := Z>( the natural numbers
(including 0), and R the reals. For all a,b € R, let [a..b] ==
[a,b] N Z and [a] == [1..a].

We study pseudo-Boolean bi-objective maximization, that
is, the maximization of objective functions f: {0,1}" — R?
of problem size n € N>o. We call each x € {0,1}" an
individual, and f(z) the objective value of x. For all i € [n],
we denote the value of x at position ¢ by x;.

We compare objective values via the weak and strong dom-
inance relationships, which are (strict) partial orders. For all
objective values u, v € R?, we say that u weakly dominates v
(written as u > v) if and only if w; > vy and ug > wve. If
in addition w # v, then we say that u strictly dominates v
(written as v > v). We say that u and v are incomparable
if neither weakly dominates the other. We extend this termi-
nology to individuals, where it then refers to the individuals’
objective values.

Given an objective function f, we call the set of maxi-
mal objective values (with respect to dominance) the Pareto
front of f, that is, the set {f(z) | = € {0,1}* A fy €
{0,137 f(y) = f(2)}.

3.1 The Algorithms SEMO and GSEMO

We study both the simple evolutionary multi-objective op-
timizer [Laumanns ef al., 2002] (SEMO) and the global
SEMO [Giel, 2003] (GSEMO), which only differ in how they
create new solutions (Algorithm 1).

The (G)SEMO maintains a population of individuals,
which will contain a maximum subset of non-dominated so-
lutions among all solutions seen so far. This population is ini-
tialized with a single individual drawn uniformly at random
from the search space. In each iteration, one individual is se-
lected uniformly at random (the parent) and used to create a
new individual (the offspring) via mutation, that is, a small
random perturbation of the parent. Afterward, the algorithm
removes all individuals from the population that are weakly
dominated by the offspring, and the offspring is added to the
population if it is not strictly dominated by a member of the
population. This main loop is repeated until a user-defined
termination criterion is satisfied.

The difference between the SEMO and the GSEMO is how
they create the offspring y from the parent 2z € {0,1}". The
SEMO uses [-bit mutation, which chooses a position i € [n]
uniformly at random and copies x except for position ¢, which
is flipped to the other value. That is, for all j € [n] \ {i},
we have y; = x;, for the i-th position we have y; = 1 —
;. The GSEMO uses standard bit mutation, which decides
independently for each position whether to flip the bit (with

Algorithm 1: The (G)SEMO algorithm [Laumanns
et al., 2002; Giel, 2003] for maximization of a given
bi-objective function f: {0,1}" — R2. The SEMO
uses 1-bit mutation, the GSEMO standard bit muta-
tion (see also Section 3.1).

1 2(®) + an individual from {0, 1}" chosen uniformly
at random;

, PO — {x(O)};

3t 0;

4 while termination criterion not met do

5 choose z(*) from P(*) uniformly at random;
s |y« mutation( ®));

7 Q(t) — PO\ {ze PO f(y") = f(2)};
s | if Bz QW: f(2) = f(y®) then

POD Q1 U {51},

o | else Pt Q)

10 t+—t+1;

probability +) or not. That is, for all ¢ € [n] independently,

we have Prly; = ;] =1— 2 and Prly; = 1 — 2y = L.

Runtime. As common in the runtime analysis of MOEAs,
we define the runtime of the (G)SEMO maximizing f as the
(random) number of evaluations of f until the objective val-
ues of the population contain the Pareto front of f for the
first time (we say that the population covers the Pareto front).
To this end, we assume that the objective value of an indi-
vidual is evaluated once, namely when it is created. For our
definition of runtime to make sense, we assume that the algo-
rithm is never stopped. Since the (G)SEMO creates exactly
one individual in each iteration and creates a single individual
initially, the runtime is one plus the number of iterations until
the population covers the Pareto front of f for the first time.

3.2 The COCZ Benchmark

The function COUNTINGONESCOUNTINGZEROS (COCZ)
[Laumanns et al., 2002; Laumanns et al., 2004] is defined
for even problem sizes n € N>g. Forall z € {0,1}", we
have

COCZ(x

n [n/2]
(Zmz,2x+ 3 1—a:l> ()
i=n/2+1

This popular benchmark models common goals (maximizing
the number of ones in the first half of the bit-string) and con-
flicting goals (maximizing the number of ones resp. zeros in
the second half). Formally, let g1, g2: {0,1}" — R denote
the number of ones in the first and in the second half of the
bit string, respectively. Then, for all z € {0,1}",

COCZ(x) = (g1(x) + ga(), 91 (x) + /2 — ga()).

With this notation, it is immediate that the objective space
of the COCZ problem is COCZ({0,1}") = {(i + 7,7 +
n/2 —j) | i,j € [0..n/2]}. Only the objective values with
g1(x) = n/2 are Pareto optimal, that is, the Pareto front is
{(n/2 + j,m —3j) | j € [0..n/2]} and has size n/2 + 1.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Most objective values, namely all with g1 (z) € [0..n/2 — 1],
and hence most individuals, are not Pareto-optimal. This is
a notable difference to benchmarks such as OneMinMax and
0JZJ, where all or most individuals are Pareto-optimal and,
in particular, random individuals with high probability lie on
the Pareto front.

For COCZ, we finally note that for all ¢ € [0..n/2], in-
dividuals with exactly ¢ ones in their first half are either in-
comparable or have the same objective value. We use this
property in our proofs in Section 4.

3.3 Mathematical Tools

In our analysis, we are mostly concerned with bounding the
tails of stopping times. To this end, we decompose a stopping
time into smaller parts, each of which denotes a certain phase
of the entire process. Theorem 1 provides us with strong guar-
antees when understanding the separate phases well.

Theorem 1 ([Witt, 2014]). Let k € N>y, and let {D;};ci)
be independent geometric random variables with respective
positive success probabilities (p;)ie(x). Let T* := 3,y Di,
5 = Zie[k] p%, and pmin = min{p; | i € [k]}. Then for all
A € R>q, we have

Pr[T* > E[T*] + A] < exp(—4 min{2- Apuin}) and
Pr[T* < E[T*] - A] < exp(~3;)-

In order to conveniently estimate the sums appearing in ap-
plications of Theorem 1, we use the following well-known
estimates.

Theorem 2 ([Cormen et al., 2001, Inequality (A.12)]). Let
g: R — R be a monotonically non-increasing function, and
let o, B € Rwith o < 8. Then

B+1 B
/ g(z)dx < Zi:ag(x) < /71 g(z)dz.

Last, the following classic Chernoff bound is used to esti-
mate the objective values of initial solutions.

Theorem 3 ([Chernoff, 1952]). Let k € Nxi1, and let
{Xi}ick) be independent random variables taking values in
[0,1]. Let X* =37,y Xi and 6 € [0,1]. Then

Pr[X* < (1-46)E[X*]] <exp (—(SZEQ[X])

4 Runtime Analysis on COCZ

Our main result is Theorem 4 below, which proves that
the (G)SEMO (Algorithm 1) optimizes the COCZ bench-
mark (equation (1)) with high probability and thus also in
expectation in 2(n?logn) objective-function evaluations.
This matches the O(n?logn) upper bound by [Laumanns
et al., 2004], resulting overall in a tight runtime bound of
©(n?logn) expected objective-function evaluations.

Theorem 4. With probability 1 — ©(n™1), the (G)SEMO
maximizes COCZ in at least Q(n?logn) objective-function
evaluations.

Another interesting result of our analysis detailed in the
following is that the (G)SEMO achieves a linear population
size on the Pareto front of COCZ with high probability after
only O(n?) iterations (Corollary 8). Previously, this time was
estimated pessimistically only as O(n? log n).

In order to prove Theorem 4, we need to closely follow the
population size of the (G)SEMO during the run. Although
the (G)SEMO only creates a single offspring each iteration
(and thus only evaluates the objective function a single time),
the population size and its composition affect the algorithm’s
runtime crucially. If the population size is large, progress is
only made quickly if the probability is high to select a parent
that can be likely turned into a useful offspring. This proba-
bility, in turn, relies on where the current population is. For
COCZ, assume that the entire population is already on the
Pareto front, that is, for each individual x in the population,
we have g1(z) = n/2. If the go-values of the population
consist of a contiguous interval, that is, there is an i € [n/2]
such that for each j € [i,n/2 — 4], there is an x in the popu-
lation such that go(x) = j, then new solutions are only cre-
ated likely if individuals with a g-value close to the interval
borders are chosen.! The situation is different if we assume
that the individuals have more spread-out gs-values, that is, if
there are some go-values in the interval [i,n/2 — 4] that are
not covered by the current population. Then, each individual
that is close to the border of some gs interval can be useful
for finding novel objective values.

A central question to proving our main result (Theorem 4)
is which composition the population of the (G)SEMO has
once it reaches the Pareto front (and a short time thereafter).
In order to answer this question satisfactorily, we view the
progress of the algorithm covering the Pareto front of COCZ
in two dimensions, namely, with respect to the maximum g -
value in the population and with respect to the extremal go-
values in the population. The g; quantity translates to how
close the population is to reaching the Pareto front, as each
individual with a g;-value of n/2 is Pareto-optimal. The go
quantity translates to how close the population is to reaching
the values in the second objective that are hardest to achieve,
that is, n/2 (having only zeros in the second half) and n (hav-
ing only ones in the second half).

In our analysis, we optimistically assume, roughly, that
once an individual reaches the Pareto front, all other individ-
uals are also placed there immediately by setting their num-
ber of ones in the first half to the maximum value of n/2.2
Thus, tracking the extremal gs-values tells us from this mo-
ment how close the algorithm is to covering the entire Pareto
front. In a nutshell, we show that once the algorithm reaches
the Pareto front, the extremal go-values are still at least or-
der \/n away from the borders of the g interval (Lemma 9).
From there on, based on a coupon collector argument, the al-
gorithm still requires order n log n iterations with useful par-
ents in order to cover the entire Pareto front. Since we also

'"For the SEMO, even only the two extreme individuals with a
g2-value of 7 or n/2 — i can create a novel objective values.

2 Actually, we place all individuals on the Pareto front after a time
that is a bit longer than it takes the algorithm to reach the Pareto
front, but the main idea remains the same.
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prove that the (G)SEMO has a population size of at least 7
once it reaches the Pareto front (Corollary 8), the probability
to choose a useful parent is in the order % Thus, it still takes
Q(n?logn) iterations until the algorithm covers the entire
front (Lemma 10). Reaching the Pareto front is done faster
than that (Lemma 7), and thus Theorem 4 follows.

A modified (G)SEMO algorithm. A main challenge in
our proof strategy is to track the exact population size of the
algorithm while there are individuals not on the Pareto front.
This is due to such individuals being potentially dominated by
better solutions and then removed. Once the entire population
is on the Pareto front, this problem vanishes, as solutions ei-
ther have the same objective value or are incomparable. In or-
der to estimate the population size more easily until the Pareto
front is reached, we make the following important observa-
tion: We only aim to show that the extremal gs-values are
sufficiently far from n/2 and n before the (G)SEMO reaches
the Pareto front. This is a relative statement, essentially com-
paring the progress made with the maximum g;-value in the
population to the progress made with the extremal g,-values.
Thus, we can arbitrarily modify the (G)SEMO as long as we
make sure that this relative order is not harmed. We call the
resulting algorithm the modified (G)SEMO.

The modified (G)SEMO is identical to the (G)SEMO (Al-
gorithm 1) except for line 5, which is replaced by the follow-
ing procedure, using the notation of the pseudocode. Choose
a value i € [0..2] uniformly at random. Check if {z € P |
g2(z) = i} is empty. If it is, continue with the next itera-
tion. Otherwise, note that the set contains exactly one individ-
ual ("), as all individuals with equal g,-value are comparable
and P(*) thus contains at most one such individual. Continue
with line 6 exactly seen in Algorithm 1, using z(*). Note that
the resulting modified (G)SEMO resembles a version of the
original (G)SEMO that may add some pointless iterations not
modifying the algorithm’s state. Thus, in particular, each up-
per bound on the runtime of the modified (G)SEMO is also
an upper bound on the runtime of the original (G)SEMO.

A key observation is that if we consider a run of the modi-
fied (G)SEMO and remove all iterations in which an index ¢
with no corresponding individuals is chosen, the algorithm
is identical of the original (G)SEMO. Thus, any statements
about the states of either algorithm based on stopping times
defined only on algorithm states are identical. This allows us
to translate results from the modified (G)SEMO to the origi-
nal one, and it addresses the challenge above of estimating the
population size of the original (G)SEMO very closely. Once
the modified (G)SEMO reaches the Pareto front and has a lin-
ear population size, we switch back to the original (G)SEMO
in order to derive a runtime bound for this exact algorithm.

As outlined above, we compare the time it takes the mod-
ified (G)SEMO to reach the Pareto front (measured via the
maximum g;-value in the population) and the time it takes
to reach extremal go-values in the order of y/n. More specifi-
cally, we show that the modified (G)SEMO reaches the Pareto
front with high probability in O(n?) iterations (Lemma 6),
whereas it takes €2(n?logn) iterations until the go-values
progressed sufficiently far (Lemma 9). In addition, we show
that once the modified (G)SEMO reaches the Pareto front, it

reaches a population size linear in n within the same order of
time (Lemma 7). Combining these statements, we get with
high probability that the modified (G)SEMO (and thus also
the original (G)SEMO) has a linear population size before the
extremal gs-values are close to covering the entire interval.

We recall that all upper bounds on the iterations for the
modified (G)SEMO algorithm also hold for the original
(G)SEMO algorithm.

Progress of the modified (G)SEMO on the g;-values.
We begin by showing that the modified (G)SEMO quickly
reaches the Pareto front of COCZ and expands its population
to a linear size (where we recall that for the (G)SEMO, differ-
ent Pareto optima in the population necessarily have different
objective values). To this end, we determine the probability
to cover a fitness vector of the current best cooperative level
if a linear fraction of these vectors is still uncovered.?

Lemma 5. Let 0 < § < 1. Consider one iteration of the
modified (G)SEMO maximizing f == COCZ, and denote by
Zy the number of individuals with a maximum g,-value ¢ in
P®). Suppose that 1 < Z; < on/2. Then the probability to

: : 1 1-5
increase Z; by one is at least w7l e

With Lemma 5, we bound the expected time to find a Pareto
optimal individual in the modified (G)SEMO from above.

Lemma 6. Consider the modified (G)SEMO maximizing
f == COCZ. With probability 1 — exp(—Q(\/n)), after at
most O(n?) iterations, for every initialization of (%) the pop-
ulation of the modified (G)SEMO reaches the Pareto front, i.e.
P contains a Pareto optimal individual x.

Once the modified (G)SEMO reaches the Pareto front, we
show that it achieves a population size linear in the problem
size in the same amount of time.

Lemma 7. Consider the modified (G)SEMO maximizing
COCZ and suppose there is an individual on the Pareto front.
Then with probability 1 — exp(—Q(n)), after at most O(n?)
iterations the population of the modified (G)SEMO contains
at least 7 individuals on the Pareto front.

Combining Lemmas 6 and 7, we obtain that the modified
(G)SEMO has a linear population size and is on the Pareto
front in at most O(n?) iterations, with high probability.

Corollary 8. Consider the modified (G)SEMO maximiz-
ing COCZ. Then with probability 1 — exp(—Q(y/n)), af-
ter at most O(n?) iterations the population of the modified
(G)SEMO contains at least % individuals on the Pareto front.

Progress of the modified (G)SEMO on the g>-values. We
show that the modified (G)SEMO takes some time in order
to find solutions that are close to the extremal solutions of
the Pareto front. We call this value the distance to the Pareto
borders. Formally, for all z € {0,1}", let the distance of z
to the Pareto borders be dpp(z) == min{gs(z), & — g2(2)}.
Using the notation of Algorithm 1, forall¢ € N, we define the
distance of the algorithm to the Pareto borders in iteration t
as dpF(P(t)) = minzep(f,) dPF(Z)

3For reasons of space, most proofs had to be omitted in this ex-
tended abstract. They can be found in the long version [Doerr et al.,
2025b].
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Lemma 9. Consider the modified (G)SEMO maximizing
COCZ. Let ¢ € R+ be a sufficiently small constant. With
probability at least 1 — O(n=2/%), for all iterations t €
[0..cn? Inn), the distance of the algorithm to the Pareto bor-
ders in iteration t is at least \/n.

How the original (G)SEMO computes the full Pareto
front. We show that if the original (G)SEMO is started in a
state that the modified (G)SEMO reaches with high probabil-
ity in O(n?) iterations, the original (G)SEMO still requires
at least order n? Inn iterations in order to cover the Pareto
front. This statement relies on the linear lower bound on the
population size from Corollary 8 as well as on the distance of
at least \/n to the Pareto borders from Lemma 9.

Lemma 10. Consider the (G)SEMO maximizing COCZ,
starting with a population size of ©(n) on the Pareto front
and a distance to the Pareto borders of at least \/n. Then
with probability 1 — ©(n~1), the algorithm covers the Pareto
front after 2(n?log n) objective-function evaluations.

Last, we prove our main result (Theorem 4) by showing
that the starting state assumed in Lemma 10 is reached with
high probability, as sketched before the lemma.

Proof of Theorem 4. We only start counting function evalua-
tions once the (G)SEMO has at least O(n) individuals on the
Pareto front. Let 7" denote the first iteration in which this is
the case. We proceed to argue why it has with probability
1 — ©(n~!) a distance of at least \/n to the Pareto borders
in iteration 7. By applying Lemma 10, the statement follows
then and the proof is concluded.

In order to show that the (G)SEMO is in the desired
state in iteration 1", we consider the modified (G)SEMO in-
stead. Recall that the original (G)SEMO changes states if
and only if the modified (G)SEMO does so, albeit in poten-
tially different iterations, and they transition into identical
states. Let S denote the first iteration in which the modi-
fied (G)SEMO has at least ©(n) individuals on the Pareto
front. By Lemma 6, with probability 1 — exp(—Q(y/n)), we
have that S = O(n2). Moreover, by Lemma 9, we have with
probability 1 — ©(n~2/%) that the distance of the modified
(G)SEMO to the Pareto borders is at least v/n. Hence, with
probability 1 — ©(n~2/%), the modified (G)SEMO is in the
desired state in iteration S

Since S and T refer to the same state of the respective al-
gorithm, it follows that the original (G)SEMO is also in the
desired state in iteration 7" with probability 1 — ©(n 1), con-
cluding the proof. O

5 Runtime Analysis on OMM and OJZJ

We show that our insights from Section 4 about the popu-
lation dynamics on COCZ also translate to the popular bi-
objective benchmarks OMM [Giel and Lehre, 2010] and
0JZJ [Doerr and Zheng, 2021].

The OMM benchmark aims at maximizing and minimiz-
ing the number of ones in a bit string, resulting in a/l individ-
uals being Pareto-optimal. This function resembles COCZ
without the cooperative part. Formally, for all z € {0,1}",

OMM(z) = (Zie[n] i Y iem (1 x)) 2)

The Pareto front of OMM is {(i,n — i) | ¢ € [0.n]}. In
particular, each individual is Pareto-optimal, different from
COCZ.

The OJZJ benchmark requires a gap size k € [2..|n/2]]
and is structurally identical to OMM for all individuals whose
number of ones is at least k at most n — k. Those individu-
als are all Pareto-optimal. In addition, the all-ones and the
all-zeros bit string are Pareto-optimal as well. All other indi-
viduals are strictly worse. This usually requires algorithms to
flip at least & bits in order to find the extremal Pareto optima.
This is formally defined as for all z € {0,1}", letting |z|;
and ||y denote respectively the number of ones and the num-
ber of zeros in z, let OJZJ(z) = (f1(z), f2(x)) with

k+|x\1,
n— |x|q,

k+lz|o, if|zlo<n—Fkorz=0",
n—|x|o, else.

if|z)s <n—korx=1",
else, and

filz) = { 3)

f2(z) :{

The first objective is the single-objective JUMP;, benchmark,
which features a local optimum at n—k. The second objective
is structurally identical to the first but with the roles of ones
and zeros reversed. [Doerr and Zheng, 2021] showed that the
Pareto front F'* of OJZJ, is {(a,2k+n—a) | a € [2k...n]U
{k,n — k}}. Note that each individual z with f(z) € F*
strictly dominates each individual y with f(y) ¢ F* since,
for all j € [2], we have f;(x) > kbut f;(y) < n—(n—
k+ 1) = k — 1. For OMM, tight bounds are already known
(see Section 5.1). Hence, our results just provide a different
angle of proving them. For OJZJ, tight bounds were known
for all £ € N>, (see Section 5.2), as a pessimistic bound of n
for the population size is sufficient. Our result shows that this
bound also holds for the cases k € {2, 3}, where our insights
into the population dynamics are important.

For both benchmarks, we follow a similar strategy as
in Section 4. Especially, we rely again on the modified
(G)SEMO. This modification needs to be slightly adjusted
as follows, using the notation from its original definition:
We choose a value ¢ € [0..n] uniformly at random (instead
of from [0..2]) and check whether the set {z € P(®) |
g1(z) + 92(25 = i} is empty. That is, instead of focusing
only on the number of ones in the first half, we now consider
the number of ones in the entire bit string. The rest remains
identical.

Progress of the modified (G)SEMQO. Lemma 11 below es-
sentially translates Corollary 8§ to OMM and OJZJ and shows
that the modified (G)SEMO reaches a population size of % in
O(n?) iterations.

Lemma 11. Consider the modified (G)SEMO maximizing
OMM or OJZJj for 1 < k < n/4. With probability
1 — exp(—=Q(y/n)), after at most O(n?) iterations, for ev-
ery initialization of (9 in case of OMM or for an initial-
ization on the Pareto front distinct from 0™ and 1™ in case of
OIJZJy, the population of the modified (G)SEMO contains at
least n/2 individuals.

Lemma 12 below translates Lemma 9 to this setting and
also uses its terminology. It shows that the extremal solutions



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

in the population are still at least 1/n away from the borders.
We need to re-define though what these terms exactly mean
in the setting of OMM and OJZJ.

The extremal solutions of the Pareto front are 1" and 0"
instead of 17 and 1"/20"/2 for COCZ. Furthermore, for all
z € {0,1}™, let the distance of z to the Pareto borders be
dpr(z) == min{|z|,,n—|z|, } which s also slightly different
to the case of COCZ above. However, the distance of the
algorithm to the Pareto borders in iteration t is defined as
dpp(P®) == min, . pw dpp(z) for all ¢ € N in the same
way as in Section 4.

Lemma 12. Consider the modified (G)SEMO maximizing
OMM or OJZJy. for 1 < k < n/4. Let c € Rs be a suffi-
ciently small constant. With probability at least 1—© (n=2/%),
for all iterations t € [0..cn? Inn], the distance of the algo-

rithm to the Pareto borders in iteration t is at least \/n for
OMM and at least max{\/n, k} for OJZJ.

5.1 OMM

For OMM we prove a bound of (n?logn) objective-
function evaluations, with high probability (Theorem 13).
This matches the O(n?logn) bound by [Giel and Lehre,
2010]. The tight ©(n?logn) runtime for the GSEMO was
already proven by [Bossek and Sudholt, 2024] as a special
case of the single-objective problem of quality diversity on
the ONEMAX benchmark. The bound ©(n?logn) for the
SEMO was shown by [Covantes Osuna er al., 2020].

Theorem 13. With probability 1 — ©(n~1), the (G)SEMO
maximizes OMM in Q(n?logn) objective-function evalua-
tions.

The proof of Theorem 13 is very similar to that of Theo-
rem 4. We use Lemmas 11 and 12 for OMM from above.

Lemma 14. Consider the (G)SEMO maximizing OMM,
starting with a population size of ©(n) on the Pareto front
and the distance to the Pareto borders is at least \/n. Then
with probability 1 — ©(n~1), the algorithm covers the Pareto
front after )(n? log n) objective-function evaluations.

By combining Lemmas 11, 12, and 14, we obtain the proof
for Theorem 13 in a similar way as the proof of Theorem 4.

52 0JZ)

For OJZJ, we only consider the GSEMO, as the SEMO does
not cover the Pareto front with high probability ([Doerr and
Zheng, 2021]), due to the deceptive nature of the benchmark
and the 1-bit mutation being incapable of creating the ex-
tremal Pareto optima from non-extremal Pareto optima. For
gap size k € [2..%], we prove a bound of Q2(n**1) objective-
function evaluations, with high probability (Theorem 15).
This matches the bound O(n**1) for all of these values of k
by [Doerr and Zheng, 2021]. Moreover, for k € [4..5 — 1],
[Doerr and Zheng, 2021] proved already a matching bound of
Q((n—2k)n*). However, for k € {2, 3}, our results are new.

Theorem 15. In expectation, the GSEMO maximizes OJZIJj,
for k € [2..2] in Q(n**1) objective-function evaluations.

The proof of Theorem 15 makes use of Lemma 16 below,
which shows that it takes the GSEMO a lot of time to find the
all-ones and all-zeros bit string.

Lemma 16. Consider the GSEMO maximizing OJZJ;, for
1 < k < n/4, starting with a population size of ©(n) on
the Pareto front, but neither O™ nor 1™ are in the population.
Then the algorithm covers the Pareto front in expectation af-
ter Q(n**Y) objective-function evaluations.

Theorem 15 can be proven in a similar way to Theorems 4
and 13 by using Lemmas 11 and 12 for OJZJ; when1 < k <
n/4 and then following Lemma 16.

6 Conclusion

We studied the population dynamics of the (G)SEMO, that is,
the size and shape of its population over time. For the COCZ
benchmark, we proved that the algorithm has a population
size linear in the size of the Pareto front (Corollary 8) while
it is still sufficiently far away from covering the entire Pareto
front (Lemma 9). Covering these remaining solutions takes
at least Q(n? log n) iterations (Theorem 4). Since a matching
upper bound exists, this result is tight.

Our proof strategy relies on defining a modified process
that allows an easier estimate of the probability to select a
useful parent for making progress. This modification affects
the absolute number of iterations but not the relative order of
state changes. Thus, insights into state behavior for the modi-
fication also translate directly back to the original (G)SEMO.

We show that our insights for COCZ also transfer to OMM
and OJZJ, where we derive lower bounds that match known
upper bounds. Although most of these lower bounds were
already known, our proof strategy provides a different angle
for deriving them. Moreover, our lower bounds for gap sizes
k € {2,3} for OJZJ) are new. Since we prove a general
lower bound for a large range of k, all of which are tight, our
method captures the true nature of the (G)SEMO well.

Our analysis shows that the GSEMO is hampered by ex-
ploiting easy parts of the search space too quickly. This lets
the population grow quickly, slowing down the selection re-
quired for exploring harder-to-reach parts of the search space.

For future work, it would be interesting to derive lower
bounds for the population size while the (G)SEMO is ap-
proaching the Pareto front. In this article, we only derive up-
per bounds for this time (Corollary 8). Lower bounds would
give us a clearer picture how wasteful the algorithm is in
terms of function evaluations before reaching the Pareto front.

Another interesting open problem is to derive tight lower
bounds of the GSEMO for the LEADINGONESTRAILING-
ZEROS (LOTZ) benchmark. For this setting, so far, only the
bound O(n?) [Giel, 2003] exists (but a ©(n?) bound for the
SEMO). In contrast to the setting in this article, for LOTZ, it
is far more likely for the GSEMO to get closer to the Pareto
front than to create an incomparable offspring. Only once the
Pareto front is reached, these two probabilities are in the same
order. Hence, the dynamics seem to be different from here.

Our result can also serve as a stepping stone towards the
deeper understanding of the population dynamics of other
MOEAs, like the NSGA-II. However, since the NSGA-II has
a fixed population size, parts of the analysis need to focus on
how duplicate entries in the population are treated, which is a
separate topic and thus left for future work.
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