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Abstract
The #2-SAT and #3-SAT problems involve count-
ing the number of satisfying assignments (also
called models) for instances of 2-SAT and 3-SAT,
respectively. In 2010, Zhou et al. proposed an
O∗(1.1892m)-time algorithm for #2-SAT and an
efficient approach for #3-SAT, where m denotes the
number of clauses. In this paper, we show that the
weighted versions of #2-SAT and #3-SAT can be
solved inO∗(1.1082m) andO∗(1.4423m) time, re-
spectively. These results directly apply to the un-
weighted cases and achieve substantial improve-
ments over the previous results. These advance-
ments are enabled by the introduction of novel re-
duction rules, a refined analysis of branching oper-
ations, and the application of path decompositions
on the primal and dual graphs of the formula.

1 Introduction
The BOOLEAN SATISFIABILITY problem (SAT), the first
problem to be proven NP-complete [Cook, 1971], is a cor-
nerstone of computational complexity theory. Its count-
ing variant, the PROPOSITIONAL MODEL COUNTING prob-
lem (#SAT), introduced and shown to be #P-complete by
Valiant (1979), holds comparable significance.

Given a CNF formula, SAT seeks to determine whether the
formula is satisfiable, while #SAT aims to count the number
of satisfying assignments (also known as models). Both SAT
and #SAT, along with their variants, are among the most in-
fluential problems in computational theory due to their broad
applications in computer science, artificial intelligence, and
numerous other domains, both theoretical and practical. As
such, these problems have garnered substantial attention and
have been extensively studied across various fields, includ-
ing computational complexity and algorithm design. For
comprehensive surveys, For comprehensive surveys, we re-
fer to [Biere et al., 2021; Fichte et al., 2023a].

This paper focuses on #SAT and its weighted extension,
WEIGHTED MODEL COUNTING (WMC, or weighted #SAT).
In WMC, each literal (a variable or its negation) in the for-
mula is assigned a weight. The task is to compute the sum of

∗Corresponding Author

the weights of all satisfying assignments, where the weight
of an assignment is the product of the weights of its liter-
als. Notably, WMC reduces to #SAT when all literals have
identical weights. Efficient algorithms for (weighted) #SAT
have a profound impact on various application areas [Gomes
et al., 2021], such as probabilistic inference [Roth, 1996;
Bacchus et al., 2003; Sang et al., 2005; Chavira and Dar-
wiche, 2008], network reliability estimation [Dueñas-Osorio
et al., 2017], and explainable AI [Narodytska et al., 2019].
This significance is highlighted by the annual Model Count-
ing Competition1, which bridges theoretical advancements
and practical implementations in model counting.

A fundamental question is: how fast (weighted) #SAT can
be solved in the worst case? The naı̈ve algorithm, which enu-
merates all assignments, runs in O∗(2n) time2, where n is
the number of variables in the formula. Under the Strong Ex-
ponential Time Hypothesis (SETH) [Impagliazzo and Paturi,
2001], SAT (and thus #SAT) cannot be solved inO∗((2−ϵ)n)
time for any constant ϵ > 0. Another key parameter, the num-
ber of clauses m in the formula, has also been extensively
studied. It is well-known that #SAT can be solved inO∗(2m)
time using the Inclusion-Exclusion principle [Iwama, 1989;
Lozinskii, 1992], which also applies to the weighted variant.
However, no algorithm with a runtime of O∗(cm) for c < 2
was discovered. In fact, Cygan et al. (2016) proved that such
an algorithm does not exist unless SETH fails.

The barriers 2n and 2m can be broken for restricted
versions of (weighted) #SAT. One notable example is the
(weighted) #k-SAT problem, where each clause contains at
most k literals. There is a rich history of faster algorithms for
#2-SAT and #3-SAT [Dubois, 1991; Zhang, 1996; Dahllöf
et al., 2005; Kutzkov, 2007; Wahlström, 2008; Zhou et al.,
2010]. The current fastest algorithms for weighted #2-SAT
and #3-SAT achieve runtimes of O∗(1.2377n) [Wahlström,
2008] and O∗(1.6423n) [Kutzkov, 2007], respectively. For
the parameter m, Zhou et al. introduced an O∗(1.1740m)-
time algorithm for #2-SAT and suggested a simple approach
for #3-SAT. However, the analysis of the #3-SAT algorithm
in [Zhou et al., 2010] does not yield a valid runtime bound.

Our Contribution. We propose two novel algorithms,
Alg2CNF and Alg3CNF, for weighted #2-SAT and

1https://mccompetition.org/
2The O∗ notation suppresses polynomial factors in the input size.
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weighted #3-SAT, achieving runtime bounds ofO∗(1.1082m)
and O∗(1.4423m), respectively. The algorithms and com-
plexity bounds directly apply to the unweighted case, signifi-
cantly improving upon previous results. To this end, we bring
new techniques for (weighted) #2-SAT and #3-SAT.
Our Approach. Most existing algorithms, including ours,
are classical branch-and-search algorithms (also called
DPLL-style algorithms) that first apply reduction (prepro-
cessing) rules and then recursively solve the problem via
branching (e.g., selecting a variable and assigning it values).
Typically, variables are processed in descending order of their
degree, where the degree of a variable is the number of its
occurrences in the formula. However, such algorithms often
perform poorly when encountering low-degree variables. To
address this, previous work has employed tailored branching
strategies with intricate analyses to mitigate this bottleneck.

Our approach departs from these complexities. Instead of
elaborate branching, we apply path decompositions on the
primal and dual graphs of the formula to efficiently han-
dle low-degree cases. The primal and dual graphs represent
structural relationships between variables and clauses, and
path decompositions allow us to transform these structures
into a path-like form. Although our algorithms rely on sim-
ple branching, we demonstrate through sophisticated analy-
ses that this approach, combined with our reduction rules,
achieves substantial efficiency. These ideas may hold poten-
tial for broader applications in the future.
Other Related Works. There is extensive research on fast
algorithms for SAT and its related problems parameterized
by m. We list the current best results for some of these prob-
lems, following multiple improvements. Chu et al. (2021)
showed that SAT can be solved inO∗(1.2226m) time. Beigel
and Eppstein (2005) introduced an O∗(1.3645m)-time algo-
rithm for 3-SAT. We also mention the MAXIMUM SATISFIA-
BILITY problem (MaxSAT), an optimization version of SAT,
where the objective is to satisfy the maximum number of
clauses in a given formula. Currently, MaxSAT and Max-
2-SAT can be solved in time O∗(1.2886m) [Xiao, 2022] and
O∗(1.1159m) [Gaspers and Sorkin, 2009], respectively.

Proofs of lemmas marked with ♣ are deferred to the full
version of the paper due to space limitations.

2 Preliminaries
2.1 Notations
A Boolean variable (or simply variable) can be assigned
value 1 (TRUE) or 0 (FALSE). A variable x has two corre-
sponding literals: the positive literal x and the negative lit-
eral x̄. We use x̄ to denote the negation of literal x, and thus
¯̄x = x. Let V be a set of variables. A clause on V is a set of
literals on V . Note that a clause might be empty. A CNF for-
mula (or simply formula) over V is a set of clauses on V . We
denote by var(F ) the variable set of F . For a literal ℓ, var(ℓ)
denotes its corresponding variable. For a clause C, var(C)
denotes the set of variables such that either x ∈ C or x̄ ∈ C.
We denote by n(F ) and m(F ) the number of variables and
clauses in formula F , respectively.

An assignment for variable set V is a mapping σ : V →
{0, 1}. Given an assignment σ, a clause is satisfied by σ if at

least one literal in it gets value 1 under σ. An assignment for
var(F ) is called a model of F if σ satisfies all clauses in F .
We write σ |= F to indicate that σ is a model of F .
Definition 1 (Weighted Model Count). Let F be a formula,
ltr(F ) :=

⋃
x∈var(F ){x, x̄} be the set of literals of variables

in F , w : ltr(F ) → Z+ be a weight function that assigns a
(positive integer) weight value to each literal, and A(F ) be
the set of all possible assignments to var(F ). The weighted
model count WMC(F,w) of formula F is defined as

WMC(F,w) :=
∑

σ∈A(F )
σ|=F

( ∏
x∈var(F )
σ(x)=1

w(x) ·
∏

y∈var(F )
σ(y)=0

w(ȳ)
)
.

In the Weighted Model Counting problem (WMC), given
a formula F and a weight function w, the goal is to compute
the weighted model count WMC(F,w) of formula F . We
use weighted #2-SAT and weighted #3-SAT to denote the re-
stricted versions of WMC where the inputs are 2-CNF and
3-CNF formulas, respectively.

A clause containing a single literal ℓ may be simply written
as (ℓ). We use C1C2 to denote the clause obtained by con-
catenating clauses C1 and C2. For a formula F , we denote
F [ℓ = 1] as the resulting formula obtained from F by remov-
ing all clauses containing literal ℓ and removing all literals ℓ̄
from all clauses in F .

The degree of a variable x in formula F , denoted by
deg(x), is the total number of occurrences of literals x and
x̄ in F . A d-variable (resp., d+-variable) is a variable with
degree exactly d (resp., at least d). The degree of a formula
F , denoted by deg(F ), is the maximum degree of all vari-
ables in F . The length of a clause C is the number of literals
in C. A clause is a k-clause (resp., k−-clause) if its length
is exactly k (resp., at most k). A formula F is called k-CNF
formula if each clause in F has length at most k.

We say a clause C contains a variable x if x ∈ var(C).
Two variables x and y are adjacent (and neighbors of each
other) if they appear together in some clause. We denote by
N(x, F ) (resp., Ni(x, F )) the set of neighbors (resp., the set
of i-degree neighbors) of variable x in formula F . When F is
clear from the context, we may simply write N(x) and Ni(x).

2.2 Graph-related Concepts
The following two prominent graph representations of a CNF
formula, namely the primal graph and the dual graph, will be
used in our algorithms.
Definition 2 (Primal graphs). The primal graph G(F ) of a
formula F is a graph where each vertex corresponds to a
variable in the formula. Two vertices x and y are adjacent
if and only if x, y ∈ var(C) for some clause C ∈ F .
Definition 3 (Dual graphs). The dual graph Gd(F ) of a for-
mula F is the graph where each vertex corresponds to a
clause in the formula. Two vertices C1 and C2 are adjacent
if and only if var(C1) ∩ var(C2) ̸= ∅ for C1, C2 ∈ F .

We also use the concepts of path decompositions, which
offer a way to decompose a graph into a path structure.
Definition 4 (Path decompositions). A path decomposition of
a graph G is a sequence P = (X1, . . . , Xr) of vertex subsets
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Xi ⊆ V (G) (i ∈ {1, . . . , r}) such that: (1)
⋃r

i=1 Xi =
V (G); (2) For every uv ∈ E(G), there exists l ∈ {1, . . . , r}
such that Xl contains both u and v; (3) For every u ∈ V (G),
if u ∈ Xi∩Xk for some i ≤ k, then u ∈ Xj for all i ≤ j ≤ k.

The width of a path decomposition (X1, . . . , Xr) is defined
as max1≤i≤r{|Xi|}−1. The pathwidth of a graph G, denoted
by pw(G), is the minimum possible width of any path decom-
position of G. The primal pathwidth and dual pathwidth of a
formula are the pathwidths of its primal graph and dual graph,
respectively.

The following is a known bound in terms of the pathwidth.
Theorem 1 ([Fomin et al., 2009]). For any ϵ > 0, there ex-
ists an integer nϵ such that for every graph G with n > nϵ

vertices,

pw(G) ≤ n3/6 + n4/3 + n≥5 + ϵn,

where ni(i ∈ {3, 4}) is the number of vertices of degree i
in G and n≥5 is the number of vertices of degree at least 5.
Moreover, a path decomposition of the corresponding width
can be constructed in polynomial time.

Samer and Szeider (2010) introduced fast algorithms for
#SAT parameterized by primal pathwidth and dual pathwidth.
With minor modifications, these algorithms can be adapted to
solve the weighted version, specifically WMC, without in-
creasing the time complexity.
Theorem 2 ([Samer and Szeider, 2010]). Given an instance
(F,w) of WMC and a path decomposition P of G(F ), there
is an algorithm (denoted by AlgPrimalPw(F,w, P )) that
solves WMC in time O∗(2p), where p is the width of P .
Theorem 3 ([Samer and Szeider, 2010]). Given an instance
(F,w) of WMC and a path decomposition P of Gd(F ),
there is an algorithm (denoted by AlgDualPw(F,w, P ))
that solves WMC in time O∗(2p), where p is the width of P .

2.3 Branch-and-Search Algorithms
A branch-and-search algorithm first applies reduction rules
to reduce the instance and then searches for a solution by
branching. We need to use a measure to evaluate the size of
the search tree generated in the algorithm. Let µ be the mea-
sure and T (µ) be an upper bound on the size of the search tree
generated by the algorithm on any instance with the measure
of at most µ. A branching operation, which branches on the
instance into l branches with the measure decreasing by at
least ai > 0 in the i-th branch, is usually represented by a
recurrence relation

T (µ) ≤ T (µ− a1) + · · ·+ T (µ− al),

or simply by a branching vector (a1, . . . , al). The branch-
ing factor of the recurrence, denoted by τ(a1, . . . , al), is the
largest root of the function f(x) = 1 −

∑
1≤i≤l x

−ai . If
the maximum branching factor for all branching operations
in the algorithm is at most γ, then T (µ) = O(γµ). More
details about analyzing branching algorithms can be found in
[Fomin and Kratsch, 2010]. We say that one branching vec-
tor is not worse than the other if its corresponding branching
factor is not greater than that of the latter. The following use-
ful property about branching vectors can be obtained from
Lemma 2.2 and Lemma 2.3 in [Fomin and Kratsch, 2010].

Lemma 1. A branching vector (a1, a2) is not worse than (p−
q, q) (or (q, p− q)) if a1 + a2 ≥ p and a1, a2 ≥ q > 0.

3 Framework of Algorithms
An instance of WMC is denoted as I = (F,w). For the sake
of describing recursive algorithms, we use I = (F,w,W )
to denote an instance, where W is a positive integer and the
solution to this instance is W ·WMC(F,w). Initially, it holds
that W = 1, which corresponds to the original WMC.

Our algorithms for weighted #2-SAT and weighted #3-
SAT adopt the same framework, which contains three major
phases. The first phase is to apply some reduction rules to
simplify the instance. The reduction rules we use in the algo-
rithm will be introduced in the next subsection.

The second phase is to branch on some variable by assign-
ing either 1 or 0 to it. This phase will create branching vec-
tors and exponentially increase the running time of the algo-
rithm. Specifically, branching on variable x in an algorithm
Alg means doing the following:

• Wt ← Alg(F [x = 1], w,W );
• Wf ← Alg(F [x = 0], w,W );
• Return w(x) ·Wt + w(x̄) ·Wf .
In our algorithms, we may only branch on variables of (rel-

atively) high degree. When all variables have a low degree,
the corresponding primal or dual graphs usually have a small
pathwidth. In this case, we will apply Theorem 1 to obtain a
path decomposition with small width, and then invoke the al-
gorithms in Theorem 2 and Theorem 3 to solve the problem.
This is the third phase of our algorithms. Before introduc-
ing our algorithms for weighted #2-SAT and #3-SAT, we first
introduce our reduction rules for general WMC. Since our re-
duction rules are applicable for general WMC, they can also
be applied to both weighted #2-SAT and weighted #3-SAT.

3.1 Reduction Rules
A reduction rule takes I = (F,w,W ) as input and outputs a
new instance I ′ = (F ′, w′,W ′). A reduction rule is correct
if WMC(F,w) ·W = WMC(F ′, w′) ·W ′ holds.

In total, we have nine reduction rules. Due to the space
limitation, the proofs of the correctness of the rules are de-
ferred to the full version. When we consider a rule, we may
assume that all previous rules can not be applied now.

The first four reduction rules are simple and well-known.
R-Rule 1 (Elimination of duplicated literals). If a clause C
contains duplicated literals ℓ, remove all but one ℓ in C.
R-Rule 2 (Elimination of tautology). If a clause C contains
two complementary literals ℓ and ℓ̄, remove clause C.
R-Rule 3 (Elimination of subsumptions). If there are two
clauses C and D such that C ⊆ D, remove clause D.
R-Rule 4 (Elimination of 1-clauses). If there is a 1-clause
(ℓ), then W ←W · w(ℓ), and F ← Fℓ=1.

In the algorithms, we may also generate 0-variables that
are unassigned yet. The following rule can eliminate them.
R-Rule 5 (Elimination of 0-variables). If there is a unas-
signed variable x with deg(x) = 0, let W ← W · (w(x) +
w(x̄)) and remove variable x.
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Next two rules are going to deal with some 2-clauses.
R-Rule 6. If there are two clauses ℓaℓb and ℓaℓ̄bC in F , then
remove literal ℓ̄b from clause ℓaℓ̄bC.
R-Rule 7. If there are two clauses ℓaℓb and ℓ̄aℓ̄b in F , do the
following:

1. w(ℓ̄b)← w(ℓ̄b) · w(ℓa), w(ℓb)← w(ℓb) · w(ℓ̄a);
2. replace ℓa (resp., ℓ̄a) with ℓ̄b (resp., ℓb) in F ;
3. remove var(ℓa) and apply R-Rule 2 as often as possible.
We use Brute(F,w) to denote the brute-force algorithm

that solves WMC by enumerating all possible assignments.
Clearly, Brute(F,w) runs in O∗(2n(F )) time and it uses
constant time if the formula has only a constant number of
veriables. The following two rules are based on a divide-and-
conquer idea. However, we only apply them for the cases
where one part is of constant size.
R-Rule 8. If formula F can be partitioned into two non-
empty sub-formulas F1 and F2 with var(F1) ∩ var(F2) = ∅
and n(F1) ≤ 10, do the following:

1. W ′ ← Brute(F1, w);
2. W ←W ·W ′, and F ← F2.

R-Rule 9. If there is a variable x such that formula F can be
partitioned into two non-empty sub-formulas F1 and F2, with
var(F1)∩var(F2) = {x} and n(F1) ≤ 10, do the following:

1. Wt ← Brute(F1[x = 1], w);
2. Wf ← Brute(F1[x = 0], w);
3. w(x)← w(x) ·Wt, and w(x̄)← w(x̄) ·Wf ;
4. F ← F2.

Lemma 2 (♣). All of the nine reduction rules are correct.
Definition 5 (Reduced formulas). A formula F is called re-
duced if none of the above reduction rules is applicable. We
use R(F ) to denote the reduced formula obtained by itera-
tively applying the above reduction rules on F .
Lemma 3 (♣). For any formula F , applying any reduction
rule on F will not increase the number of clauses or increase
the length of any clause. Moreover, it takes polynomial time
to transfer F into R(F ).
Lemma 4 (♣). In a reduced formula F , it holds that (1) all
clauses are 2+-clauses; (2) all 2-clauses only contains 2+-
variables.
Lemma 5 (♣). In a reduced formula F , if there is a 2-clause
ℓaℓb, there is no other clause containing ℓaℓb, ℓ̄aℓb, or ℓaℓ̄b,
and there is no 2-clause ℓ̄aℓ̄b.

4 The Algorithm for Weighted #2-SAT
In this section, we introduce our algorithm, called Alg2CNF,
for WMC on 2-CNF formulas. The algorithm is presented
in Algorithm 1. As we mentioned before, the algorithm
comprises three main phases. Phase one (Line 1) is to ap-
ply reduction rules to get a reduced instance. Phase two
(Lines 4–8) is going to branch on 5+-variables and some spe-
cial 4-variables. After phase two, the primal graph of the
formula admits a small pathwidth. Phase three (Steps 10-
11) is, based on a path decomposition, to use the algorithm
AlgPrimalPw in Theorem 2 to solve the problem directly.

Algorithm 1 Alg2CNF(F,w,W )

Input: 2-CNF formula F , weight function w, and integer W .
Output: The weighted model count W ·WMC(F,w).

1: Apply reduction rules exhaustively to reduce F and up-
date w and W accordingly.

2: if F is empty then return W .
3: if F contains empty clause then return 0.
4: if deg(F ) ≥ 5 then
5: Select a variable x with deg(x) = deg(F );
6: Branch on x.
7: else if ∃ x such that deg(x) = 4 and |N4(x)| ≥ 3 then
8: Branch on x.
9: else

10: P ← path decomposition of G(F ) via Theorem 1.
11: Wpw ← AlgPrimalPw(F,w, P );
12: return W ·Wpw.

4.1 The Analysis
Although the algorithm itself is simple, its running time anal-
ysis is technically involved. We first prove some properties of
a reduced 2-CNF, which will be used in our analysis.

Lemma 6 (♣). In a reduced 2-CNF formula F , it holds
that (1) all clauses are 2-clauses; (2) all variables are 2+-
variables; (3) n(F ) ≤ m(F ).

Lemma 7 (♣). In a reduced 2-CNF formula F , for a variable
x, any clause contains at most one variable in N2(x).

Lemma 8. Let F be a reduced 2-CNF formula and x be a
variable in F . All clauses containing x would not appear in
R(F [x = 0]) and R(F [x = 1]).

Proof. By Lemma 6, all clauses in F are 2-clauses. Con-
sider the case that we assign x = 1, and the case for x = 0
is analogous. All clauses that contain literal x are satisfied
and removed. Furthermore, all clauses that contain literal x̄
become 1-clauses, and thus R-Rule 4 would be applied to re-
move them. Thus, all clauses containing x would not appear
in R(F [x = 0]) and R(F [x = 1]).

To analyze the running time bound, we focus on phase
two and phase three since phase one will not exponentially
increase the running time. For phase two, we mainly use
Lemma 1 to get the worst branching vector. Thus, we need to
analyze lower bounds for the decrease of m(F ) in a branch-
ing operation, which is formally presented in Lemma 9 be-
low. Due to space limitations, we provide a proof sketch of
the lemma that includes several claims, with their proofs de-
ferred to the full version.

Lemma 9. Let F be a reduced 2-CNF formula of degree d
and x be a d-variable in F . Let ∆t = m(F ) −m(R(F [x =
1])) and ∆f = m(F )−m(R(F [x = 0])). It holds that

1. ∆t,∆f ≥ d+ |N2(x)|;

2. ∆t+∆f ≥ 2d+|N2(x)|+
⌈
1
2

∑
2≤i≤d(i− 1)|Ni(x)|

⌉
+

1 if d ≤ 7.

Proof Sketch. For clarity, we define the following notations:
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𝑁ሺ𝑥ሻ
𝑥

𝑦ଵ 𝑦ଶ 𝑧ସ 𝑧ହ
𝑁ଶሺ𝑥ሻ ⋃ 𝑁௜ሺ𝑥ሻ௜ஹଷ

𝑡ଵ

𝑧଺

𝑡ଶ

: clauses in 𝑆଴ : clauses in 𝑆ଵ : clauses in 𝑆ଶ

𝑃 𝑧ସ ൌ ሼ𝑦ଶ, 𝑧ଷ, 𝑧ହሽ

𝑦ଷ

𝑄 𝑧ସ ൌ ሼ𝑡ଶሽ

Other variables in the formula 

Figure 1: An illustrative example of the primal graph of a for-
mula, highlighting the relationships among variables x, variables in
N2(x) = {y1, y2, y3} and

⋃
i≥3 Ni(x) = {z4, z5, z6}, and vari-

ables t1, t2 (that co-occur in clauses with N(x)). By Lemma 6, each
edge in the graph corresponds to a unique clause in F . By Lemma 7,
there is no edge between variables in N2(x).

• S0: the set of clauses that contain variable x.

• S1: the set of clauses that contain variable(s) in N2(x)
but not contain variable x.

• S2: the set of clauses that contain variable(s) in Ni(x),
where i ≥ 3, but not contain any variable in N2(x)∪{x}.

By definition, S0, S1, S2 are pairwise disjoint. The primal
graph of F shown in Figure 1 provides a useful perspective
for understanding these notations and the subsequent proofs.

We plan to analyze the bounds for ∆t, ∆f , and ∆t + ∆f

by considering whether a clause in S0 ∪ S1 ∪ S2 would be
removed after we assign a value to variable x (i.e., whether a
clause would appear in R(F [x = 0]) or R(F [x = 0])).

Claim 1 (♣). All clauses in S0 and S1 would not appear in
both R(F [x = 0]) and R(F [x = 1]).

By claim 1, we have ∆t ≥ |S0| + |S1| and ∆f ≥ |S0| +
|S1|. Since |S0| = d (by definition) and |S1| = |N2(x)| (by
Lemma 7), it holds that ∆t,∆f ≥ d+ |N2(x)|.

Next, we consider the clauses in S2. Let D be a clause that
contains variable x and a variable z ∈ Ni(x) where i ≥ 3.
Assigning either x = 0 or x = 1 would make D become a 1-
clause that only contains variable z. When clause D becomes
such 1-clause, R-Rule 4 would be applied to assign a value
to z, and then remove all clauses containing z according to
Lemma 8. Thus, for a clause in S2, it would not appear in at
least one of R(F [x = 0]) and R(F [x = 1]). Together with
previous analyses on S0 and S1, we have

∆t +∆f ≥ 2 |S0|+ 2 |S1|+ |S2|
= 2d+ 2 |N2(x)|+ |S2| .

(1)

To accurately characterize S2 (and |S2|), we need some
additional notations. For a variable y ∈ N(x), we define
P (y) := N(y)∩N(x) and Q(y) := N(y)\(N(x)∪{x}). For
instance, in the example shown in Figure 1, we have P (z5) =
{y2, z4, z6} and Q(z5) = {t2}. For each i ≥ 2 we define
pi :=

∑
y∈Ni(x)

|P (y)| and qi :=
∑

y∈Ni(x)
|Q(y)|.

Claim 2 (♣). For all i ≥ 2, we have pi+qi = (i−1)|Ni(x)|.

We write p≥3 :=
∑

i≥3 pi and q≥3 :=
∑

i≥3 qi for brevity.
The size of S2 is given in the following claim.

Claim 3 (♣). It holds that

|S2| =
1

2
(p≥3− p2)+ q≥3 and (p≥3− p2) mod 2 = 0. (2)

By putting (2) into (1) and writing β := (p≥3 − p2) +
2(p2 + q2) + 2q≥3 for convenience, we have

∆t +∆f ≥ 2d+ 2(p2 + q2) +
1

2
(p≥3 − p2) + q≥3

= 2d+ (p2 + q2) +
1

2
β = 2d+ |N2(x)|+

1

2
β.

(3)

Claim 4 (♣). It holds that

1

2
β ≥

12
∑

2≤i≤d

(i− 1)|Ni(x)|

+ 1.

With (3), the lemma directly follows from Claim 4.

With Lemma 9 in hand, we proceed to determine the
branching vectors of our branching operations.
Lemma 10 (♣). In Alg2CNF, the branching operation in
Line 6 generates a branching vector not worse than (5, 11).

Lemma 11. In Alg2CNF, the branching operation in Line 8
generates a branching vector not worse than (4, 11).

Proof. In this branching operation, we branch on a 4-variable
x with |N4(x)| ≥ 3. Note that in this step we have deg(F ) =
4. By Lemma 9 with d = 4, we have ∆t,∆f ≥ d = 4 and

∆t +∆f ≥ 2d+ |N2(x)|+

12
∑

2≤i≤d

(i− 1)|Ni(x)|

+ 1

≥ 2d+

⌈
1

2

(
2 |N2(x)|+

d∑
i=3

(i− 1)|Ni(x)|

)⌉
+ 1

≥ 2d+

12
|N4(x)|+

∑
2≤i≤d

2|Ni(x)|

+ 1

≥ 2d+

⌈
1

2
(3 + 2d)

⌉
+ 1 = 15.

By Lemma 1, the branching vector generated by this step is
not worse than (4, 11).

Next, we analyze the phase three (Lines 10–11).
Lemma 12. Phase three (lines 10-11) of Alg2CNF can be
excuted in O∗(1.1082m) time.

Proof. When the algorithm reaches Line 10, the fomrula F is
a reduced 2-CNF formula with d(F ) ≤ 4 such that for every
4-variable x, |N4(x)| ≤ 2.

Let n := n(F ), m := m(F ), and ni (resp., n≥i) be the
number of variables with degree i (resp., with degree ≥ i) in
F , where i ∈ Z. Consider the primal graph G(F ) of formula
F . Note that n is also the number of vertices in G(F ), and
ni (resp., n≥i) is also the number of vertices with degree i in
G(F ). By Lemma 6, we have n1 = 0. Since d(F ) ≤ 4, we
have n≥5 = 0 and

m =
2n2 + 3n3 + 4n4

2
=

3

2
(n3 + 2n4)− n4 + n2.
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By rearranging the above equation, we get

n3 + 2n4 =
2

3
(m+ n4 − n2) ≤

2

3
(m+ n4). (4)

Let V4 be the set of 4-variables in the formula. The number
of clauses that contain two 4-variables is 1

2

∑
x∈V4

|N4(x)|,
and the number of clauses that contain at most one 4-variable
is at least

∑
x∈V4

(4− |N4(x)|). Thus, we have

m ≥ 1

2

∑
x∈V4

|N4(x)|+
∑
x∈V4

(4− |N4(x)|)

≥
∑
x∈V4

(4− 1

2
|N4(x)|) ≥

∑
x∈V4

(4− 1) = 3n4,

which means n4 ≤ m/3. By putting this into (4), we have

n3 + 2n4 ≤
2

3
(m+ n4) ≤

8

9
m. (5)

Let ϵ be a small constant (say 10−9) and nϵ be the corre-
sponding integer (which is also a constant) in Theorem 1. Let
n := n(F ) and m := m(F ). If n ≤ nϵ, we invoke algorithm
Brute to solve the problem in constant time. Otherwise, if
n > nϵ, we can apply Theorem 1 and get

pw(G(F )) ≤ n3/6 + n4/3 + n≥5 + ϵn

= (n3 + 2n4)/6 + ϵn

≤ (4/27 + ϵ)m by (5).

Moreover, by Theorem 1, a path decomposition of G(F ) with
width at most (4/27 + ϵ)m can be constructed in polynomial
time. Then, we can apply Theorem 2 to solve the problem in
time O∗(2(4/27+ϵ)m) ⊆ O∗(1.1082m).

Now we are ready to conclude a running-time bound of Al-
gorithm Alg2CNF. By Lemma 10 and Lemma 11, branch-
ing operations in Line 6 and Line 8 generate a branching
vector not worse than (5, 11) and (4, 11), respectively. By
Lemma 12, phase three (Lines 10 and 11) takesO∗(1.1082m)
time. Since τ(5, 11) < 1.0956 and τ(4, 11) < 1.1058, we
have the following result.

Theorem 4. Algorithm Alg2CNF solves WMC on 2-CNF
formulas in O∗(1.1082m) time, where m is the number of
clauses in the input formula.

5 The Algorithm for Weighted #3-SAT
Our algorithm for WMC on 3-CNF formulas is called
Alg3CNF and presented in Algorithm 2. The first phase is
also to apply reduction rules to get a reduced instance. Note
that by Lemma 3, a reduced formula is still a 3-CNF. The sec-
ond phase is to branch on all 3+-variables. When the maxi-
mum degree of the formula is at most 2, we compute a path
decomposition of the dual graph of the formula and then in-
voke the algorithm AlgDualPw to solve the problem.

5.1 The Measure
The analysis of the algorithm is different from that of the al-
gorithm for #2-SAT. In this algorithm, it may not be effective
to use m(F ) as the measure in the analysis since we can not

Algorithm 2 Alg3CNF(F,w,W )

Input: 3-CNF formula F , weight function w, and integer W .
Output: The weighted model count W ·WMC(F,w).

1: Apply reduction rules exhaustively to reduce F and up-
date w and W accordingly.

2: if F is empty then return W .
3: if F contains empty clause then return 0.
4: if there is a d-variable x in F with d ≥ 3 then
5: Branch on x.
6: else
7: P ← path decomposition of Gd(F ) via Theorem 1.
8: Wpw ← AlgDualPw(F,w, P );
9: return W ·Wpw

guarantee this measure always decreases in all our steps. For
example, a variable x may only appear as a positive literal
in some 3-clauses. After assigning x = 0, it is possible that
no reduction rule is applicable and no clause is removed (i.e.,
m(F ) = m(R(F [x = 0]))). One of our strategies is to use
the following combinatorial measure to analyze the algorithm

µ(F ) := m3(F ) + α ·m2(F ),

where mi(F )(i ∈ {2, 3}) is the number of i-clauses in for-
mula F and 0 < α < 1 is a tunable parameter. Note that
m(F ) = m3(F ) +m2(F ) since there is no 1-clause in a re-
duced formula by Lemma 4 (we can simply assume that the
initial input formula is reduced). Thus, µ(F ) ≤ m(F ). It
can be verified that all the reduction rules would not increase
µ(F ) for any 0 < α < 1. If we can get a running time bound
of O∗(cµ(F )), with a real number c > 1, we immediately get
a running time bound ofO∗(cm(F )). We will first analyze the
algorithm and obtain the branching vectors related to α, and
then set the value of α to minimize the largest factor.

5.2 The Analysis
We first analyze lower bounds for the decrease of the measure
µ(F ) in a branching operation.

Lemma 13. Let F be a reduced 3-CNF formula, x be a vari-
able in F , and ck(k ∈ {2, 3}) be the number of k-clauses
containing variable x. Let ∆t := µ(F ) − µ(R(F [x = 1]))
and ∆f := µ(F )− µ(R(F [x = 0])). It holds that

1. ∆t,∆f ≥ c2 · α+ c3 · (1− α);

2. ∆t +∆f ≥ c2 · 2α+ c3 · (2− α).

Proof. Let Sℓ
k, where k ∈ {2, 3} and ℓ ∈ {x, x̄}, be the

set of k-clauses that contain literal ℓ. By definition, we have
ck = |Sx

k |+ |Sx̄
k | for k ∈ {2, 3}.

Consider what happens after we assign x = 1. First, all
clauses containing literal x (i.e., clauses in Sx

3 and Sx
2 ) are

satisfied (and so removed). This decreases ∆t by at least
|Sx

3 | + |Sx
2 | · α. Second, all 3-clauses that contain literal x̄

(i.e., clauses in Sx̄
3 ) become 2-clauses. This decreses ∆t by

at least |Sx̄
3 | · (1− α). Third, all 2-clauses that contain literal

x̄ (i.e., clauses in Sx̄
2 ) become 1-clauses, and then R-Rule 4

would be applied to remove these clauses. This decreases ∆t
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by at least |Sx̄
2 | · α. In summary, we have

∆t ≥ |Sx
3 |+ |Sx

2 | · α+
∣∣Sx̄

3

∣∣ · (1− α) +
∣∣Sx̄

2

∣∣ · α
= |Sx

3 |+ (|Sx
2 |+

∣∣Sx̄
2

∣∣) · α+ (c3 − |Sx
3 |) · (1− α)

= c2 · α+ c3 · (1− α) + |Sx
3 | · α.

Analogously, we have ∆f ≥ c2 · α+ c3 · (1− α) + |Sx̄
3 | · α.

Thus, ∆t,∆f ≥ c2 · α+ c3 · (1− α) and

∆t +∆f ≥ 2 · c2 · α+ 2 · c3 · (1− α) +
∣∣Sx̄

3

∣∣ · α+ |Sx
3 | · α

= c2 · 2α+ c3 · 2(1− α) + c3 · α
= c2 · 2α+ c3 · (2− α).

This completes the proof.

Armed with Lemma 13, we can derive the branching vec-
tors generated by phase two (Line 5) in the algorithm.
Lemma 14. In Alg3CNF, the branching operation in Line 5
generates a branching vector not worse than the worst one of
the following branching vectors:

(3, 3− 3α), (2 + α, 2− α), (1 + 2α, 1 + α), and (3α, 3α).

Proof. Let x be a d-variable with d ≥ 3. Let p := c2 · 2α +
c3 · (2 − α) and q := c2 · α + c3 · (1 − α). By Lemma 13,
we have ∆t +∆f ≥ p and ∆t,∆f ≥ q. With Lemma 1, we
know that the branching vector is not worse than (q, p− q) =
(c2 · α+ c3 · (1− α), c2 · α+ c3). It is evident that larger c2
and c3 result in superior branching vectors. Since c2 + c3 =
d ≥ 3, it suffices to consider the case where c2 + c3 = 3. By
enumerating all four possible configurations of c2 and c3, we
obtain the results stated in the lemma.

Next, we analyze the time complexity of phase three
(Lines 7 and 8) in the algorithm.
Lemma 15. Phase three (Lines 7-8) of Alg3CNF can be ex-
ecuted in O∗(1.1225

µ(F )
α ) time.

Proof. When the algorithm reaches Line 7, the branching op-
eration is not applicable. Thus, at this point, the formula F is
a reduced 3-CNF formula with deg(F ) ≤ 2.

Let m := m(F ) and µ := µ(F ). Consider the dual graph
Gd(F ) of formula F . The number of vertices in Gd(F ) is m.

Let C ∈ F be a clause in formula F . We have |C| ≤ 3.
Since each variable in C has a degree of at most two, the
number of clauses that share a common variable with C
is at most |C| ≤ 3. That is, for any C ∈ F , we have
|{D ∈ F | D ̸= C and var(C) ∩ var(D) ̸= ∅}| ≤ 3.

This means that in Gd(F ), each vertex has a degree of at
most three. Let ni(i ∈ Z) be the number of vertices with de-
gree i in Gd(F ). We have ni = 0 for i ≥ 4 and n3 ≤ m. Let
ϵ be a small const (say 10−9) and mϵ be the corresponding
integer (which is also a constant) in Theorem 1. If m ≤ mϵ,
we invoke brute-force algorithm Brute to solve the prob-
lem in constant time. Otherwise, if m > mϵ, we can apply
Theorem 1 and get

pw(Gd(F )) ≤ n3/6 + n4/3 + n≥5 + ϵm

≤ (1/6 + ϵ)m ≤ (1/6 + ϵ)
µ

α
.

Phases Branching vectors Factors / Base
α = 0.6309297

Phase two

(3, 3− 3α) 1.4423
(2 + α, 2− α) 1.4324
(1 + 2α, 1 + α) 1.4325

(3α, 3α) 1.4423

Phase three - 1.1225
1
α = 1.2011

Table 1: The branching vectors and corresponding factors generated
by phase two of Alg3CNF, and the base of the time complexity in
terms of µ(F ) of phase three, all under α = 0.6309297.

Here, the last inequality follows from m ≤ 1
αµ, which can

be derived by the definition of m and µ. In addition, by
Theorem 1, a path decomposition of Gd(F ) with width at
most (1/6 + ϵ) µ

α can be constructed in polynomial time.
Then, we can apply Theorem 3 to solve the problem in time
O∗(2

(1/6+ϵ)µ
α ) ⊆ O∗(1.1225

µ
α ).

We are now poised to analyze the overall running time
of Alg3CNF. The time complexity of phase two (by
Lemma 14) and phase three (by Lemma 15) are summarized
in Table 1. By setting α = 0.6309297, the largest factor
in phase two is minimized to 1.4423, corresponding to the
branching vectors (3, 3 − 3α) and (3α, 3α). The time com-
plexity of phase three isO∗(1.1225

µ(F )
α ) ⊆ O∗(1.2011µ(F )).

With µ(F ) ≤ m(F ), we arrive at the following result.

Theorem 5. Algorithm Alg3CNF solves WMC on 3-CNF
formulas in O∗(1.4423m) time, where m is the number of
clauses in the input formula.

6 Conclusion and Discussion
In this paper, we demonstrate that Weighted Model Count-
ing (WMC) on 2-CNF and 3-CNF formulas can be solved in
O∗(1.1082m) and O∗(1.4423m) time, respectively, achiev-
ing significant improvements over previous results. The triv-
ial barrier of O∗(2m) for WMC on general CNF formulas
cannot be overcome unless SETH fails [Cygan et al., 2016].
It remains an open question whether a running time bound of
O∗(cm) with a constant c < 2 can be achieved for WMC on
k-CNF formulas for any constant k.

Our algorithms first use branch-and-search to effectively
eliminate certain problem structures (such as high-degree ver-
tices). Once the remaining problem exhibits some favorable
structural properties (such as having a small primal pathwidth
or dual pathwidth), dynamic programming and other meth-
ods are employed to solve the problem. This approach may
have potential for application in solving other problems. Fur-
thermore, this method holds significant promise in the de-
sign of practical algorithms. In practical solving, tree de-
compositions have been employed in various model coun-
ters [Dudek et al., 2020; Hecher et al., 2020; Fichte et al.,
2019; Korhonen and Järvisalo, 2021; Fichte et al., 2022;
Fichte et al., 2023b]. Therefore, the practicality of this ap-
proach warrants further investigation and exploration.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
The work is supported by the National Natural Science Foun-
dation of China, under the grants 62372095, 62172077, and
62350710215.

References
[Bacchus et al., 2003] Fahiem Bacchus, Shannon Dalmao,

and Toniann Pitassi. Algorithms and complexity results for
#sat and bayesian inference. In 44th Symposium on Foun-
dations of Computer Science (FOCS 2003), 11-14 October
2003, Cambridge, MA, USA, Proceedings, pages 340–351.
IEEE Computer Society, 2003.

[Beigel and Eppstein, 2005] Richard Beigel and David Epp-
stein. 3-coloring in time o(1.3289n). J. Algorithms,
54(2):168–204, 2005.

[Biere et al., 2021] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfiabil-
ity - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2021.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artif. Intell., 172(6-7):772–799, 2008.

[Chu et al., 2021] Huairui Chu, Mingyu Xiao, and Zhe
Zhang. An improved upper bound for SAT. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages 3707–
3714. AAAI Press, 2021.

[Cook, 1971] Stephen A. Cook. The complexity of theorem-
proving procedures. In Michael A. Harrison, Ranan B.
Banerji, and Jeffrey D. Ullman, editors, Proceedings of
the 3rd Annual ACM Symposium on Theory of Comput-
ing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages
151–158. ACM, 1971.

[Cygan et al., 2016] Marek Cygan, Holger Dell, Daniel
Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Mag-
nus Wahlström. On problems as hard as CNF-SAT. ACM
Trans. Algorithms, 12(3):41:1–41:24, 2016.
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[Dueñas-Osorio et al., 2017] Leonardo Dueñas-Osorio,
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