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Abstract

In recent years, with the rise of large language mod-
els, model sizes have grown dramatically, garner-
ing attention for their remarkable performance but
also raising concerns about the substantial com-
putational and communication resources they re-
quire. This has created significant challenges in
fine-tuning or re-training models on devices with
limited computing and memory resources. Effi-
cient model compression through low-rank factor-
ization has emerged as a promising solution, offer-
ing a way to balance the tradeoff between compres-
sion ratio and prediction accuracy. However, ex-
isting approaches to low-rank selection often rely
on trial-and-error methods to determine the opti-
mal rank, lacking theoretical guidance and incur-
ring high computational costs. Furthermore, these
methods typically treat low-rank factorization as a
post-training process, resulting in suboptimal com-
pressed models. In this paper, we design a novel
approach by integrating rank selection into the low-
rank training process and performing independent
layer-wise rank selection under the guidance of a
theoretical loss error bound. Specifically, we first
conduct a comprehensive theoretical analysis to
quantify how low-rank approximations impact the
training losses. Building on these insights, we de-
velop an efficient layer-wise rank search algorithm
and seamlessly incorporate it into low-rank singu-
lar value decomposition (SVD) training. Our eval-
uation results on benchmark datasets demonstrate
that our approach can achieve high prediction accu-
racy while delivering significant compression per-
formance. Furthermore, our solution is generic and
can be extended to broader learning models.

1 Introduction

Deep neural networks have grown increasingly complex and
computationally demanding in recent years, often compris-
ing billions or trillions of parameters. Examples include
large language models (LLMs) like ChatGPT, computer vi-
sion systems like DALL-E, and simulation frameworks like
AlphaFold. Without compression, local training or inference

on these models typically requires high-performance com-
puting resources and can take days to complete. For in-
stance, training AlexNet on ImageNet originally needed 2-
3 days using an NVIDIA K40 GPU in 2012 [Cheng et al.,
2018]. More recently, with the surge of LLMs, training a
state-of-the-art 7B visual language model can take up to 400
GPU days, let alone even larger models [Liu et al., 2024].
Thus, effectively reducing model size is crucial for scenar-
ios demanding fast re-training (fine-tuning) and inference on
resource-constrained edge devices or transferring models be-
tween devices with limited computational or communication
resources.

The primary challenge in model compression is balanc-
ing the tradeoff between reducing model size and maintain-
ing prediction accuracy, ensuring the compressed model does
not underfit [Cheng et al., 2018]. Traditionally, three main
types of approaches are used: pruning, quantization, and low-
rank factorization [Cai et al., 2022]. Particularly, pruning,
effective for overparameterized networks, removes unneces-
sary elements from the weight tensor and is often followed by
fine-tuning to minimize the accuracy drop [Han et al., 2015].
Quantization reduces the bit precision of model weights, ei-
ther through quantization-aware training, where quantization
errors are adjusted during training, or post-training quantiza-
tion, which applies quantization without retraining [Jacob et
al.,2018; Cai et al., 2022]. In contrast, low-rank factorization
techniques, such as singular value decomposition (SVD), de-
compose tensors or matrices into simpler components, accel-
erating inference operations, reducing memory usage in fully
connected layers, and adapting well to complex architec-
tures like CNNs, RNNs, and transformers [Yang et al., 2020;
Hsu er al., 2022]. Among these techniques, low-rank fac-
torization has attracted more attention recently as it provides
better fine-grained control for precise rank adjustments for
layer-wise weight matrices, enabling better control over the
tradeoff between compression and accuracy.

Despite advances in low-rank factorization, existing ap-
proaches [Yang et al., 2020; Kim er al., 2020; Eo et al., 2021,
Hsu et al., 2022] still exhibit two major gaps that motivate
our work. First, there is no unified principle for selecting
the approximated rank that can quantitatively measure how
different low-rank constraints degrade training performance.
In particular, current methods lack a clear analysis of the
core factors influencing the training loss dropping under low-
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Layer-Wise Rank Selection

(Theory-Driven vs. Heuristic)

Search Strategy Rank Selection Timing

(During- vs. Post-Training)

Approach (Independent vs. Dependent)
[Cheng et al., 2020] Dependent
[Kim et al., 2020] Dependent
[Eo et al., 2021] Independent
[Sobolev et al., 2022] Dependent
[Xiao et al., 2023] Dependent
[Wang er al., 2023] Independent
[Cao et al., 2024] Dependent
Ours Independent

Heuristic Post-Training
Theory-Driven Post-Training
Heuristic Post-Training
Heuristic Post-Training
Heuristic Post-Training
Heuristic During-Training
Heuristic Post-Training

Theory-Driven During-Training

Table 1: Comparisons with existing rank selection approaches.

rank approximation, leaving practitioners to rely on trial-and-
error or exhaustive searches for each layer’s weight matrix’s
rank, posing prohibitively high computational costs. Second,
most solutions handle rank selection strictly as a post-training
pruning step, overlooking the benefits of jointly optimizing
rank selection and network parameters throughout the low-
rank training process. These drawbacks highlight the need for
a more theoretically grounded approach that systematically
integrates rank selection into low-rank training and reduces
the search space in rank selections.

In this paper, we design a novel approach for model com-
pression by integrating rank selection into the low-rank train-
ing process and performing independent layer. The technical
contributions are summarized as follows.

* We provide an in-depth theoretical analysis of how low-
rank approximation affects training losses in a quantita-
tive measure.

* We conduct rank selection during training by developing
an efficient layer-wise rank search algorithm and incor-
porating it into low-rank SVD training.

e Our evaluation results on CIFAR-10 and ImageNet
datasets verify that our compression approach maintains
high prediction accuracies and significant compression
performance.

2 Related Work
2.1 Low-Rank Training

Low-rank training often incorporates various penalty terms
in the loss function to reduce the rank of weight matri-
ces while preserving high accuracy. For example, [Idel-
bayev and Carreira-Perpifidn, 2020] introduced a Lagrangian-
augmented version of a quadratic penalty term into the loss
function. [Idelbayev and Carreira-Perpifidn, 2020] performed
two-step low-rank training with alternating updates of the
full-rank matrices and their approximated low-rank matrices.
[Eo et al., 2021] added a stable rank term to reduce the num-
ber of parameters needed during training. Likewise, [Yang
et al., 2020] introduced an orthogonality regularization loss
and sparsity-inducing regularizers, including the Nuclear and
Hoyer norm regularizers. Also, [Huang et al., 2019] intro-
duced altered versions of the Nuclear and Frobenius norms
that could potentially be used as penalty terms during train-
ing. Furthermore, [Indyk et al., 2019] designed a new train-
ing algorithm that produces a learned sketch matrix, reducing
the approximation error compared to a random sketch matrix.

The low-rank approximation is computed through a projec-
tion of the learned sketch matrix.

2.2 Rank Selection

In prior research, rank selection is typically performed on
pre-trained deep neural networks to identify the optimal rank
based on criteria such as the trade-off between compression
and accuracy in the layer-wise matrix and/or tensor decom-
positions. For example, [Eo ef al., 2021] proposed a modified
beam search strategy, utilizing both greedy and full-search
methods for rank determination. [Sobolev et al., 2022] intro-
duced a novel proxy rank selection metric applicable across
multiple types of networks. [Cheng er al., 2020] developed
an iterative rank selection process for pre-trained model lay-
ers, incorporating an action-reward system to guide decisions.
[Kim et al., 2020] used a Bayesian statistical model to de-
termine a globally optimal rank. In addition, [Xiao et al.,
2023] designed an algorithm that considers hardware con-
straints while exploring various rank search spaces. [Wang
et al., 2023] approached rank selection differently by focus-
ing on stabilizing layer ranks, identifying the optimal epoch
to transition from full-rank to low-rank training. [Cao et al.,
2024] proposed a method for jointly learning model weights
and decomposition ranks of tensorized neural networks using
an {p-norm based probabilistic approximation.

Rethinking this problem, we categorize existing rank selec-
tion approaches along three key dimensions as shown in Ta-
ble 1: (1) Independent vs. Dependent Layer-Wise Rank Se-
lection. This measures whether determining the optimal rank
for a layer’s weight matrix depends on the rank choices in
other layers. Independent selections generally require fewer
layer-wise iterations in rank selection throughout the whole
network, thereby incurring lower computational costs than
dependent ones. (2) Theory-Driven vs. Heuristic Rank
Search Strategy. Most existing approaches perform rank se-
lection by relying on heuristic observations on how differ-
ent rank values affect prediction performance, without an in-
depth analysis of how the choice of k in rank-k matrix ap-
proximations would theoretically incur the increase in train-
ing loss. (3) During-Training vs. Post-Training Rank Se-
lection. Traditionally, rank selection happens after the train-
ing is complete, which would incur increased training loss
and reduced prediction precision. Thus, methods to effec-
tively merge rank selection into the training procedure could
deserve more investigation to help maximally mitigate these
drawbacks. This motivates us to consider integrating rank
selection into the low-rank training process and performing
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independent layer-wise rank selection under the guidance of
theoretical loss error bounds.

3 Preliminaries

3.1 Problem Formulation

We consider a neural network of L layers, denoted b
fw(:), which is parameterized by W, ie, W =
{W1 W2, ..., WL}, and can be represented as the follow-
ing cascaded computation form, with the input X° € Rd:
X = a/(WiX!=1) for | = 1,2,...,L. Particularly,
W' a', X! represent the layer-wise weight matrix, non-linear
activation function, and the output of the [-th layer for all
I, where W! € Ru*di-1 and X! € R%. Given the train-
ing dataset D", e.g., D' = {X0,y;}1",, where X0 € R0
and y; € RYL denote the i-th input-output pairs in D", we
define the empirical loss on dataset D" as L(W;D'") =
% Zle 9(fw(X?), y;), where loss function g is commonly
chosen to be the cross entropy and the squared ¢ norm in
classification and regression problems, respectively.

3.2 Low-Rank Training

Strategy 1: Two-Step Low-Rank Training

This strategy aims to search a series of low-rank matrices,
eg, ® = {©1,02%...,0%}, to approximate each dense
matrix in W, each with a matrix rank no more than r. Re-
flecting on the loss function, it would become:

R L
S |
=1

1=1
st. rank(®') <rVie(l,2,...,1L],

where A is the control hyper-parameter and || - ||z denotes
the Frobenius norm. To solve this, [Idelbayev and Carreira-
Perpifidn, 2021] proposed the learning-compression (LC) al-
gorithm by alternatively updating W or ® while fixing the
other. It can be decomposed by a “learning” step to update W
and ensure learning convergence and a “compression” step to
optimize © based on the updated W to achieve the low-rank
requirements. However, a key limitation of this two-step ap-
proach is the misalignment of optima between the “learning”
and “compression” steps, which can hinder overall model ef-
ficiency and convergence.

Strategy 2: One-Step Low-Rank Training

Enabling simultaneous optimization for both accuracy and
compression, this strategy aims to ensure model convergence
and low-rank properties in an integrated way by leverag-

ing different low-rank regularization during training, e.g.,
R(W1), as:

R L
—_— 1
LOWV; D) = > a(fw(XD),ui) +A D RW).
=1 =1
L1 (W;D*r) Lr(W;DT)

Particularly, the common choices of R(W') include: the
{o-matrix norm ||W!||o, the ¢;-matrix norm (Nuclear norm)
||[W|1, and the Hoyer norm ||W!||,/||W||r. Here, since

{y is non-differentiable and non-smooth, a simple and con-
ventional way is to relax ¢y to ¢;. Lp(W;D?) and
Lr(W; D) denote the learning and regularization loss

each. In what follows, we define full-rank training as the con-
dition where R(W') = 0.

3.3 SVD Matrix Factorization and Low-Rank
Approximations

Applying SVD, a matrix W & R™*" can be decomposed
as UXVT, where U € R™*" and V € R™™" (U and V
are orthogonal), ¥ € R"*" is a diagonal matrix, i.e., 3 =
diag(o), o = [01,09,...,0.], and ok (k € [r]) are singular
values of W, where 07 > 09 > --- > o, > 0. Here, r
is the rank of W and r < min{m,n}. Similarly, we can
decompose W as the product of W, and W5, where W, =
UVY and W, = vV V7. By choosing an appropriate k, we
have the corresponding low-rank matrix Wj, = UkEkaT,
where Uy, 3., Vj, are top-k vectors truncated from U, 3, V.

4 Our Approach

4.1 A Theoretical Analysis of Loss Error Bounds
Under Layer-Wise Rank-%£ Approximation

We first provide an in-depth theoretical analysis of how low-
rank approximation affects predictive accuracy in a quanti-
tative measure. By examining the key factors that influence
loss error bounds in traditional classification and regression
problems resulting from low-rank approximations, we de-
rive practical principles for selecting an appropriate rank. To
this end, we investigate the discrepancy in the output layer
between the full-rank and low-rank parameter spaces when
given the same inputs, as illustrated in Fig. 1 and quantified
in Theorem 1.

Theorem 1 (The output difference bound for rank-k approx-
imation over L-layer neural networks). We denote a' to be
the activation function for the I-th layer, and assume a' is p;-
Lipschitz and a'(0) = 0 for all | € [1,L]. Let X° be the
initial input vector, X' and X ,lc be the output vectors as a
result of passing the full-rank matrix W' and low-rank ma-
trix W,i through the l-th layer, respectively, and o' be the
i-th singular value of W'. We define k' such that the top k'
largest singular values of the full-rank matrix W' are kept in
the corresponding low-rank SVD approximated matrix W,ﬁ
in layer 1. Then, the output difference from rank-k approxi-
mation over L-layer feed-forward networks || X1 — XE||5 is

o_l
wper-bounded by (TTE, o) (S, S ) 1)L

We then present two extended results on loss error bounds
for rank-k approximations in classification and regression
tasks, as stated in Theorems 2 and 3, respectively.

Theorem 2 (The loss error bound from rank-k approximation
in classification problems). Following the settings in The-
orem 1, we consider a C-class classification problem. Let
XL e RY and ka € RC be the output logits when feeding a
input X? sampled from the training dataset D", e.g., D'" =
{Xzo,yi}il, from the full-rank parameter space VYV and
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Figure 1: An illustration of our focus: the output difference bound
caused by rank-k approximation over L-layer feed-forward net-
works.

low-rank parameter space Wy, respectively. Particularly,
W={WI W2 . WLy Ww,={WLW2. .. Wk}
Xto= fwXD), Xy = fwi(XD)), and |X7]]2 < B,
for Vi € [1,R]. Let z; = softmax(X}) and 2z, =
softmax(X sz) where softmax is the softmax function. We
consider the cross-entropy function as the loss function, i.e.,
9(z,y) = —yTlog(z). Let LW; X)) = g(zi,y;) and
o_l
LWi; X?) = g(zik,vi). Now, we set ialf“—l <4 Vle
1
[1,L]. Then, we have, for¥ e > 0,36 =

s.t. [LOW; D) — LWg; DI)| < e.

Theorem 3 (The loss error bound from rank-k approxi-
mation in regression problems). Following the settings in
Theorem 1, we consider a regression problem. Let XiL
and X{jk be the outputs at layer L when feeding a input

X0 sampled from the training dataset D', e.g., D" =

€
V2BL(TTi, prot)’

{X O,yi}f;l, from the full-rank parameter space W and

1
low-rank parameter space Wy, respectively. Particularly,

W={WL w2 . WLy W, ={WL W2 .. Wt}
X = fwXD), X = fwi(XPy), and || XP]]2 < B,
forY i € [1, R]. We consider the loss function as g(z,y) =
12 = ylla- Let LOW; X7) = g(X [, y;) and L(Wi; X7)

g(X%k,yi). Now, we set 251 < §, 1 € [1,L]. Then, we

i 0’%
have, forV e > 0,34 = B , s.t. |[LOW; D) —

€
HlL:1 PLo i)
L(Wy;D")| < e
The results in Theorem 2 and 3 indicate the principle to
adjust the optimal k£ to maintain the loss error bound. For
instance, if the tolerance of the maximum loss decrease is ¢,

then we can always find the corresponding optimal rank k'
for the I-th layer matrix, ensuring that ' is the largest index

1

whose singular value satisfies %l > 6,V 1 € [L]. Here, ¢ is
fixed when ¢, p;, L, B, and aﬁ are fixed values. Furthermore,
it is noteworthy that the determination of the optimal k! in
our method is layer-wise independent, meaning it does not
rely on the optimal rank information of other layers.

To validate the feasibility of identifying § based on our de-
rived e-d correlation and determining the optimal k!, we con-

Decison Boundary
on Training Dataset

Decison Boundary
on Testing Dataset

£

(a) Full-rank model space (e = 0)

Decison Boundary
on Testing Dataset

£

(b) Low-rank model space (¢ = 0.28, 6 = 0.025)

Deciso_n_Boundary Decison Boundary
on Training Dataset on Testing Dataset
.,

Decison Boundary
on Training Dataset

(c) Low-rank model space (¢ = 0.33, § = 0.03)

Figure 2: A visualization of the decision boundaries on the training
dataset (left column) and testing dataset (right column).

duct a pilot study using a simple 3-layer feed-forward neural
network for a ternary classification problem. Fig. 2 visualizes
the decision boundaries for each model space. Particularly,
in the first row, the decision boundary under the initial full-
rank model space clearly separates the data classes correctly.
However, as the loss error bound € increases, the correspond-
ing § also increases, indicating that more information is trun-
cated as smaller values of k! are assigned to each layer. This
truncation leads to underfitting in the low-rank model, pre-
venting it from effectively capturing the patterns of the origi-
nal full-rank model. Thus, we aim to identify the key turning
point where the smallest k! is sufficient to retain the full-rank
model’s representational capacity.

4.2 Independent Layer-Wise Rank Selection

Due to the complex non-linear structure in complex CNN
models, such as ResNets or DenseNets, calculating the exact
Lipschitz constant of layer-wise parameters is computation-
ally expensive and often requires time-consuming approxi-
mation techniques like Jacobian analysis [Bhowmick ef al.,
2021] or layer-wise local estimations [Herrera et al., 2020].
These challenges hinder the extension of theoretical findings
from simpler feed-forward networks to more complex CNN
architectures.

To address this and facilitate efficient determination of an
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Algorithm 1: Our Rank Selection Algorithm

Input: full-rank parameters W, loss error tolerance ¢,
stop searching precision Ad

Output: low-rank parameters Wy
1 Function RankSelection (W, ¢ Ad):
floss <+ Lp(W; D7),
Il 0u+— 10+ (l+u)/2
while |l — u| > Ad or |floss — loss| > e do
Wy < SVDLowRankApprox(W,d);
loss < Ly (Wh; D7),
if | floss — loss| < e then

| 160 (I4u)/2;
else
10 | w050 « (I 4+u)/2;

[

e w 9 &

1 return Wy, ;

Algorithm 2: SVD Low-Rank Approximation

1 Function SVDLowRankApprox (W, §) :
2 Wy «— O;
3 for each W' € W do

4 UL, 3LV svp(Wh;
5 k' + argmax, {k|oL /ot > §};
6 Wi« Ul VE Wy +— Wi, U W

!/ U,i,Eéc,Vkl are top-k! vectors
truncated from Ul7EI,Vl

7 return Wy,

appropriate rank k!, we develop a binary search-based rank
selection algorithm inspired by the results of Theorems 2 and
3, detailed in Algorithms 1 and 2. It is designed to identify
an optimal value of § (on a scale from 0 to 1) such that the
difference between the low-rank loss and full-rank loss floss
is below €. We repeatedly update the lower and upper bounds
of 4, i.e., [ and u, and repeatedly halve the search space until
the searching precision Ad has been reached. Assuming the
time complexity of function SVDLowRankApproxis 7', the
time complexity of Algorithm 1is O(T log(1/AJ)). In prac-
tice, we observe that when A¢ is sufficiently small and the
condition | floss — loss| < e is satisfied, we stop the search
early to avoid unnecessary computations.

4.3 Our Integrated Solution: Rank Selection
Enabled Low-Rank SVD Training

Traditionally, rank selection only happens after the training is
complete, which does not fully utilize the benefits of during-
training rank selections, incurring increased training loss and
reduced prediction precision. Thus, we merge rank selec-
tion into the training by integrating Algorithm 1 into low-rank
SVD training.

Being aware of the potentially high computational cost as-
sociated with performing SVD after model training, to ad-
dress this, we adopt low-rank SVD training [Yang et al.,
2020]. It directly optimizes U, V and 3 as the trainable pa-

rameters, replacing the original kernel K or weight matrix W
in the network, thereby avoiding repeated SVD computations
after training, in each layer.

Particularly, during the forward pass, K or W are con-
verted into the form of two consecutive layers as follows. For
example, for a convolution layer, the kernel K € Rrxexwxh
can be represented as a 4-D tensor, where n, ¢, w, h represent
the number of filters, the number of input channels, and the
width and the height of the filter, respectively. Then, we can
employ either channel-wise decomposition or spatial-wise
decomposition to decompose the convolution layer. Specif-
ically, channel-wise decomposition first reshapes K to a 2-
D matrix K € R"*% and decomposes it using SVD into
U e R,V € RWhXT and 3 € R™*", where U and V are
unitary matrices and r = min(n, cwh). Thus, K is decom-
posed into two consecutive layers with the kernels of K; €
Rrxexwxh and Ko € R™7*1X1 Similarly, spatial-wise de-
composition reshapes K to a 2-D matrix K € R"wxch and
decomposes it into U € R"*", V € R"X" and & € R"™*"
with 7 = min(nw, ch). Thus, the decomposed layers would
have kernels K € R™>¢*1xh gnd Ko € RX7xwx1

Afterwards, backpropagation and optimization are then
performed directly on U, V and X for each layer. This allows
for direct access to the singular values 3 without performing
the time-consuming SVD as in Algorithm 2.

Thus, our training parameter space would become: U =
{ut,u?,..., U}, ¥ = (=2 ... ,%f}, and V =
{V1 V2 ... VE} The corresponding loss function would
become:

LU, S, V; D) = LU, 2, V)+ o Lo U, V)+ArLr(S)

Here, L1 represents the training loss, which satisfies

R
Lo 3,V) = 5 3 g(fw(X0), )
=1

Lo represents the orthogonalization loss, which satisfies

L
UHTU! —T||p + ||(VH)TV! -1
LO(uJ;)ZZH( ) |F(rz)l|( ) e
=1

and Ly represents the low-rank regularization loss. Partic-
ularly, for each W! € W, we have W! = U'S{(VHT,
For the low-rank regularization term, we consider the fol-
lowing two penalty functions: (1) Nuclear norm Lg(X) =

Zle (Z:lzl af); (2) Squared Hoyer norm Lp(X) =
1 2

L ( i=1 Ui)
hyperparameters that control the trade-off between the or-
thogonality loss and the sparsity-inducing regularization loss,
respectively, and are critical to the training process.

In our design, we consider conducting rank selec-
tion after each round of training based on loss function
L(U,X,V; D). During the training process, we repeatedly
perform truncations by replacing U', !, V! with the trun-
cated form Ufc, 22, qu, which replaces W! with va =
UL 3L (V)T after each round of training.

. I is the identity matrix. Ao and \g are
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Figure 3: The comparisons between full-rank and low-rank training on the ResNet-20 model.

Then, we present two claims to highlight the advantages
of low-rank over full-rank training in compression efficiency
and the benefits of in-training rank selection, supported by
our empirical observations.

Claim 1. Compared to regular full-rank training, low-rank
training achieves better compression performance under the
same 0 and experiences smaller increases in training loss
when post-training matrix truncations are applied.

As illustrated in Fig. 3, we evaluate the training perfor-
mance of both low-rank and full-rank training on the bench-
mark ResNet-20 model using the CIFAR-10 dataset to vali-
date Claim 1. Particularly, we consider channel-wise decom-
position and the squared Hoyer norm as the low-rank penalty
term. We first depict the curves of ol /o} in the 1%, 8",
15th layers in the model, respectively, in Fig. 3a-3c. We find
that when we choose the truncation threshold § to be 0.1, the
matrix (reshaped kernel) rank has a slight reduction in each
layer, i.e., from 16 to 13, from 32 to 29, and from 64 to 54, af-
ter truncations under full-rank training. In contrast, low-rank
training (with low-rank regularization enforcement) leads to
a significant rank reduction in each layer, from 16 to 2, 32 to
2, and 64 to 2. This demonstrates the substantially high com-
pression rate achieved with low-rank training when applying
rank selection algorithms. Moreover, as shown in Fig. 3d,
low-rank training results in smaller increases in training loss,
as fewer informative features are truncated (evidenced by
smaller cumulative singular values being removed) compared
to full-rank training. These findings underscore the impor-
tance of low-rank training when applying rank selection.

Claim 2. Compared with post-training rank selection,
during-training rank selection comes with lower training loss
errors dfter post-training matrix truncations.

Following the same experimental setting in Claim 1, we
evaluate the training performance of both post-training and
during-training rank selection after post-training truncations
to validate Claim 2 as shown in Fig. 4. In particular, we
consider performing rank selection immediately after each
training round, which ensures that model parameters in the
next round are updated based on the truncated model, further
reinforcing the model’s low-rank structure and sparsity. As
demonstrated in Fig. 4b, incorporating rank selection during
the training significantly reduces fluctuations in training loss
after post-training truncations, highlighting its effectiveness
compared to rank selection alone after the training.

mmm Before truncation
After truncation

—— Post-training rank selection 0.008
—-= During-training rank selection

0.012

C 0.006

Train loss value
s o o
g 8 £
g 8 8
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Figure 4: The comparisons between post-training and during-
training rank selection on the ResNet-20 model.

5 Performance Evaluation

5.1 Experimental Setup

Datasets and Training Models. We conducted our training
procedure using models from the ResNet series [He et al.,
2016], including ResNet-20, ResNet-32, and ResNet-56 on
the CIFAR-10 dataset [Krizhevsky et al., 2009], and ResNet-
18 and ResNet-50 on the ImageNet dataset [Russakovsky et
al.,2015]. All models were trained on a workstation with two
NVIDIA RTX 3090 GPUs.

Hyper-parameters Settings. We set the learning rate to
0.001 with a scheduled learning delay in later training rounds.
The batch sizes for training and testing are set to 100 and
1000, respectively. Additionally, Ao and Ag are dynamically
adjusted based on datasets and low-rank regularizers.

Performance Evaluation Metrics. We consider two key
aspects in performance evaluations for each model compres-
sion approach, e.g., testing accuracy and compression ratio.
Particularly, we define compression ratio CR as in [Eo et al.,
2021] as CR = Sy dzdlfﬂl:-l-?“l (di+di—1)(1-1")
Ez: 1didia

defined as 1 if d;d;_1 < r'(d;+d;_1) and 0 otherwise, and d;
is the output vector’s shape at the [-th layer. The smaller CR,
the better model compression is achieved. Also, we assess the
training and testing loss errors under various rank-% approxi-
mations to demonstrate the effectiveness of our approach.

, where 1! is

5.2 Correlation Between the Training Loss Error
Bound and Rank Selection
We begin with analyzing how the choice of e influences the

selected rank k at each layer, as illustrated in Fig. 5, with
some selected layers as examples. Our findings reveal that a
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Figure 5: The correlation between the training loss error and rank selection on the ResNet-20 model.
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Figure 6: Analysis of during-training rank selections on the ResNet-
20 model.

larger training loss error tolerance € allows for a smaller fi-
nal rank. More importantly, for the same threshold value of
€, the truncated matrix rank obtained through low-rank train-
ing is substantially smaller than that achieved with standard
full-rank training. This highlights the necessity of low-rank
training to facilitate rank selections.

5.3 Analysis of During-Training Rank Selections

Next, we conduct an in-depth analysis of the fluctuations in-
troduced by applying rank selection immediately after each
round of training. Fig. 6 provides a detailed illustration of
these fluctuations under our low-rank SVD training frame-
work, which incorporates rank selection during training. No-
tably, the training loss error caused by low-rank approxima-
tions is higher during the early training stages compared to
the later stages. This can be attributed to two key factors:
(1) the model becomes progressively sparser as training ad-
vances; (ii) the learning rate decay weakens training loss er-
rors over time. Then, the testing loss errors exhibit lower
magnitudes than their corresponding training loss errors.

5.4 Effectiveness and Superiority of Our Solution

Finally, we evaluate the performance of various approaches
in terms of test accuracy and compression ratio on both the
CIFAR-10 and ImageNet datasets, as shown in Table 2 and
Table 3, respectively. We find our approach consistently
achieves the best performance on both datasets, demonstrat-
ing the highest test accuracy and the lowest CR. Addition-
ally, we observe a notable trend: as the model complex-

ResNet-20 ResNet-32 ResNet-56

Approach TestAccT CRJ] TestAccT CRJ] TestAccT CR]

[Yang et al., 2020]
(Channel, Squared Hoyer)
[Yang et al., 2020]
(Spatial, Squared Hoyer) 0.866 0.242 0.889 0413 0.918 0.522

[Wang et al., 2023] 0.822 0.337 0.834 0.398 0.844 0.441
Ours
(Channel, Nuclear) 0.870 0.155 0.879 0.312 0.892 0.422
Ours
(Spatial, Nuclear)
Ours
(Channel, Squared Hoyer)
Ours
(Spatial, Squared Hoyer)

0.887 0.202 0.893 0.367 0.924 0.485

0.867 0.221 0.873 0.319 0.899 0.438
0.892 0.155 0.899 0.312 0.929 0.422

0.873 0.221 0.881 0.319 0.912 0.438

Table 2: Performance evaluation on the CIFAR-10 dataset.

ResNet-18 ResNet-50
Test AccT CRJ] TestAccT CRJ]

0.684 0.204 0.691 0.392

Approach

[Yang et al., 2020]
(Channel, Squared Hoyer)
[Yang et al., 2020]
(Spatial, Squared Hoyer)
Ours
(Channel, Squared Hoyer)
Ours
(Spatial, Squared Hoyer)

0.670 0.221 0.678 0.411

0.690 0.181 0.696 0.366

0.672 0.207 0.681 0.398

Table 3: Performance evaluation on the ImageNet dataset.

ity increases, test accuracy improves slightly, accompanied
by further reductions in CR. Furthermore, compared to the
nuclear norm low-rank regularization term, we find that the
squared Hoyer norm shows better performance in both utility
and compression efficiency under the same settings.

6 Final Remarks

In this paper, we have designed a novel approach by inte-
grating rank selection into the low-rank training process and
performing independent layer-wise rank selection under the
theoretical loss error bound guidance. The technical contri-
butions are summarized as follows. We have provided an in-
depth theoretical analysis that quantitatively measures how
low-rank approximation affects training losses. This analysis
is a key aspect of our work. We have also considered rank se-
lection during training by developing an efficient layer-wise
rank search algorithm and incorporating it into low-rank sin-
gular SVD training. Our evaluation results on CIFAR-10 and
ImageNet datasets have verified that our approach maintains
high precision and significant compression performance.
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