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Abstract
Text-guided video editing (TGVE) has become a
recent hotspot due to its entertainment value and
practical applications. To reduce overhead, existing
methods primarily extend from text-to-image dif-
fusion models and typically involve reconstruction
and editing phases. However, challenges persist,
particularly in enhancing temporal consistency of a
video while adhering to textual alignment require-
ments. A crucial factor leading to the aforemen-
tioned issue is the inadequate and implicit tuning
of the attention module within existing methods,
which is specifically designed to capture temporal
information. In light of this, we introduce VidEvo,
a novel one-shot video editing method that lever-
ages explicit cues derived from the original video
to enhance temporal modeling. By integrating null-
video embedding (NVE) and window-frame at-
tention (WFA) components, VidEvo facilitates the
smooth and coherent generation of videos from
global and local perspectives simultaneously. To
be specific, NVE learns a set of multi-scale tempo-
ral embeddings within the visual space during the
reconstruction phase. These embeddings are subse-
quently directly injected into the attention module
of the editing phase, explicitly augmenting the tem-
poral consistency of the entire video. On the other
hand, WFA enhances local temporal modeling by
dynamically optimizing attention mechanisms be-
tween adjacent frames, which improves temporal
coherence with reduced computational costs. Ex-
perimental evaluations show that VidEvo enhances
frame-to-frame temporal consistency. Ablation
studies confirm NVE and WFA’s effectiveness and
their plug-and-play capability with other methods.

1 Introduction
Recent progress in large-scale diffusion models [Dhariwal
and Nichol, 2021] represents a notable shift in AI-Generated
Content (AIGC), surpassing the capabilities of GANs [Reed

∗Corresponding authors. This work was completed during the
internship at SGIT AI Lab, State Grid Corporation of China.

Figure 1: Comparison of one-shot video reconstruction. The blue
box highlights content preservation errors, and the yellow box marks
temporal inconsistencies between frames.

et al., 2016] and auto-regressive models [Ramesh et al.,
2021]. Leading-edge models including GLIDE [Nichol et al.,
2022], Imagen [Saharia et al., 2022], Stable Diffusion [Rom-
bach et al., 2022], and DALL-E2 [Ramesh et al., 2022] have
advanced the frontiers of image generation, offering higher
fidelity and complexity. This development has set the stage
for text-guided image editing (TGIE) techniques, including
ControlNet [Zhang et al., 2023], Plug-and-Play [Tumanyan et
al., 2023], and Prompt-to-Prompt (P2P) [Hertz et al., 2022],
which further enhance user control over image generation and
improve editing precision. Building on these advancements,
the editing focus is now shifting towards dynamic video con-
tent [Dang et al., 2024c]. This transition highlights the need
for text-guided video editing (TGVE) architectures, which
bridge the gap between textual prompts and video editing.

In addressing TGVE challenges, one approach involves
training models directly with large text-video datasets, though
limitations like dataset scarcity and high computational costs
restrict accessibility for many researchers. Alternatively, uti-
lizing pre-trained TGIE models offers a more cost-effective
strategy. This approach expands the TGIE model from 2D
to 3D, with the core of this approach being the application
of temporal modeling. Specifically, the TGIE-expended ap-
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Figure 2: Video editing utilizing our VidEvo framework. We demonstrate content editing (second row) and style transformation (third row).

proach can be grouped into three categories: a) Train-based
methods [Guo et al., 2023], which involve training a tem-
poral module on large datasets without retraining the entire
model. b) Zero-shot methods, which adapt existing text to im-
age (T2I) architectures to video without additional training.
c) One-shot methods, which fine-tune pre-trained T2I models
using just one video instance to enhance temporal represen-
tation. Given train-based methods’ high training demand and
zero-shot methods’ challenges in accurately capturing tem-
poral details from the source video, we opt for the one-shot
method. This method balances lower training requirements
with effective temporal modeling.

TGVE typically involves reconstruction and editing
phases, both using U-Net as the backbone. Previous one-
shot methods struggle with robust temporal modeling (e.g.,
video shaking or jumping) and more severe content preser-
vation issues during reconstruction, which impacts the sub-
sequent editing phase negatively, as shown in Fig. 1. The
vid2vid method utilizes null-text inversion but suffers from a
lack of global temporal modeling, leading to content preser-
vation problems. The TAV method, which tunes the model,
yields approximate reconstruction results but lacks precision
due to insufficient local temporal modeling. The core issue
lies in the simplistic and implicit tuning of existing attention
modules in U-Net over a single video, which exerts limited
influence on attention and inadequately captures the temporal
consistency. Hence, a critical question emerges: How can we
extract more temporal information from a single video?

A straightforward idea, prompted by the limitations of im-
plicitly tuning existing attention modules in U-Net, is to ex-
plore explicit cues from the original video to enhance both
global and local temporal consistency [Dang et al., 2024a].
In light of this, we developed the VidEvo model, which intro-
duces two key innovations: the null-video embedding (NVE)
and the window-frame attention (WFA), to achieve improved
video editing outcomes, as illustrated in Fig. 2. Specifically,
the NVE is designed to capture global temporal features, pro-
viding a robust foundation for maintaining coherence across

the entire video sequence. Diverging from previous methods
that integrate null embedding into the text space [Mokady et
al., 2023], primarily designed for image editing tasks, our
method explicitly learns a set of multi-scale temporal embed-
dings during the reconstruction phase in the visual space to
capture frame-to-frame consistency. Rather than implicitly
tuning attention, we explicitly integrate this embedding into
the temporal attention to enhance coherence during the edit-
ing phase. Concurrently, the WFA module enhances local
temporal cohesion by seamlessly integrating structural details
with the context of adjacent frames. This method not only
preserves structural integrity within frames but also ensures
smooth transitions between them, efficiently reducing com-
putational overhead compared to traditional self-attention
mechanisms. It is noteworthy that NVE and WFA offer plug-
and-play integration with existing video editing methods, also
supporting methods like TokenFlow [Geyer et al., 2024] and
SVD [Blattmann et al., 2023] that require optical flow and
motion information. Our key contributions include:

• We introduce a novel text-guided one-shot video edit-
ing method, dubbed VidEvo. It incorporates exhaustive
temporal modeling in both the reconstruction and edit-
ing phase, enhancing temporal consistency and content
preservation in video editing.

• Our methodology features NVE in the reconstruction
process to improve global frame coherence and en-
rich the source video’s representation for the subse-
quent editing. Simultaneously, WFA is applied across
both reconstruction and editing phases. This adaptation
enhances temporal modeling, ensuring frame-to-frame
consistency and preserving local details and textures in
the target video.

• Our experimental analysis showcases our method’s effi-
ciency and robust performance in enhancing frame con-
sistency and textual alignment. Moreover, ablation stud-
ies and orthogonality tests reveal the effectiveness and
plug-and-play capability of our modules.
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2 Related Work
The landscape of AIGC has seen a significant shift with the
advent of diffusion models in T2I tasks, outperforming GANs
and auto-regressive models. This evolution has extended to
video synthesis [Ho et al., 2022; Wang et al., 2023a; Wang et
al., 2023c], where various control signals drive model perfor-
mance. Among these, text-guided approaches have received
extensive focus, evidenced by models like pose-guided [Ma et
al., 2023] and motion-guided [Hu and Xu, 2023], signifying
a broad spectrum of research in controlled video generation.
Similar to video understanding tasks [Dang et al., 2023a;
Dang et al., 2023b; Dang et al., 2024b], the progression from
TGIE to TGVE synthesis is underscored by the critical need
for effective temporal modeling to produce coherent video
content.

Training-based methods focus on enhancing temporal
consistency by introducing specialized layers or adapters into
T2I models. Notable examples include GEN-1 [Esser et al.,
2023], Control-A-Video [Chen et al., 2023], and Animate-
Diff, which integrate temporal dynamics into T2I diffusion
models. These methods, while adept at controlling video con-
tent, typically require extensive datasets (e.g., WebVid [Bain
et al., 2021]) and substantial computational resources.

Zero-shot methods utilize pre-trained models in a zero-
shot manner, negating the need for additional training in
video editing tasks. This category includes FateZero [Qi
et al., 2023], T2V-Zero [Khachatryan et al., 2023] and
Pix2Video [Ceylan et al., 2023], which maintain motion fi-
delity through spatial-temporal blocks and self-attention fea-
tures. Additionally, InFusion [Khandelwal, 2023] presents an
approach by integrating residual and attention features spe-
cific to the edit prompt, enhancing zero-shot editing capa-
bilities while ensuring uniformity across edited and unedited
aspects. However, these methods can encounter spatio-
temporal distortions in practical video editing scenarios.

One-shot-tuned methods, like ControlVideo [Zhao et al.,
2023] and Tune-A-Video (TAV) [Wu et al., 2023], strike a
balance by fine-tuning pre-trained T2I models on specific
video instances. Video-P2P [Liu et al., 2023] and Vid2vid-
Zero [Wang et al., 2023b] further adapt this approach, em-
ploying null-text inversion and specialized attention mecha-
nisms for bidirectional temporal modeling. These methods,
while efficient, still confront challenges in computational in-
tensity and internal frame structure focus. Due to the dif-
ferent editing structures and high resource overhead of One-
shot-tuned methods like TokenFlow and SVD, we primarily
conducted experiments on P2P-based editing methods.

3 Method
In this section, we introduce VidEvo, a framework designed
for real-world text-guided video editing. Through exhaustive
global and local temporal modeling, our proposed method
preserves the reconstruction quality of the original video
while achieving vivid and realistic video editing effects.
Given a source video sequence V = {I1, I2, . . . , In} of n
frames, a source prompt P and a target editing text prompt
PE , our framework needs to generate a modified target se-
quence VE = {IE1 , IE2 , . . . , IEn } that fulfills the textual edit-

Algorithm 1 VidEvo video editing

Input: A source video V , a target prompt PE

Output: An edited video VE

zT ∼ N(0, I) a unit Gaussian random variable
Latent features from DDIM inversion: {z∗T , . . . , z∗0}
Initialize zIT ← z∗T , ∅T ← 0, P ← F(PE ,V);
for t = T to 1 do

for j = 0 to N − 1 do
∅t ← ∅t − η∇∅

∥∥z∗t−1 − zt−1(z
I
t ,∅t,P)

∥∥2
2

end for
zIt−1 ← zt−1(z

I
t ,∅t,P), ∅t−1 ← ∅t

end for
Initialize zET ← z∗T
for t = T to 1 do

if t < τnull then
∅t ← ∅

end if
z∗t−1,Mt ← DM(z∗t ,P, t,∅t)

ME
t ← DM(zEt ,PE , t,∅t)

M̂t ← Edit(Mt,M
E
t , t)

zEt−1 ← DM(zEt ,PE , t,∅t){Mt ← M̂t}
end for
VE ← D{zE0 }
return VE

ing requirements. For instance, to edit a video with P=“jeep
car” to PE=“red toy car”, the user simply alters the prompt
accordingly while VidEvo will be responsible for maintain-
ing the video’s structure and temporal consistency, as shown
in Fig. 2.

The whole editing process of our method consists of two
phases: reconstruction and editing, as shown in Fig. 3.
Reconstruction. This phase aims to convert V into latent
representations, which should have the ability to reconstruct
the source video itself. Related existing methods [Liu et al.,
2023; Wang et al., 2023b] employing null-text inversion in
this phase, which struggles with temporal inconsistency and
content distortion as shown in Fig. 7. We address this with
our novel null-video inversion technique (detailed in Section
3.1), which learns global temporal embeddings to represent
the video structures and keep the temporal continuity.
Editing. This phase utilizes the attention control method
P2P to achieve zero-shot video editing. However, directly
applying these strategies or existing improved methods [Liu
et al., 2023; Wang et al., 2023b] still encounters issues such
as temporally inconsistent editing results or high computa-
tional costs. Instead, we propose WFA (discussed in sec-
tion 3.2) to specifically enhance the focus on local temporal
features, aiming to simultaneously maintain temporal conti-
nuity and reduce computational overhead. Furthermore, sec-
tion 3.3 outlines how we explore such editing transformations
effectively executed within VidEvo.

3.1 Global Null-Video Inversion
To effectively edit real-world videos, video reconstruction is
an essential first step. The goal here is to develop a robust
representation of the temporal relationships within the source
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Figure 3: VidEvo Pipeline Overview. The reconstruction phase (top) utilizes DDIM inversion to derive latents from a video, optimizing
NVE sequence. In the editing phase, these embedding facilitate global temporal modeling for enhanced reconstruction, while the attention
map manipulation enables precise video editing. Source Prompt P and Target Prompt PE , see Fig. 2 for reference. More details about the
U-Net block can be seen in Fig. 5.

video for subsequent editing. Although an effective DDIM
inversion scheme has been suggested for unconditional dif-
fusion models, it falls short for text-guided diffusion mod-
els, especially when classifier-free guidance is necessary for
meaningful editing. Given the success of null-text inver-
sion [Mokady et al., 2023] in image reconstruction, vid2vid
directly applies it to video reconstruction. Unfortunately, this
approach struggles to capture temporal information between
frames (as depicted in Fig. 1). This is because the optimized
embedding is the same for all video frames, unable to capture
the temporal information between frames. To address this
limitation, we introduce NVE, an innovative method that en-
hances video reconstruction and strengthens global temporal
modeling. By incorporating our embedding within the im-
age channel and optimizing on the unconditioned branch, we
leverage the richer information capacity of images.

Next, we formalize this process. The diffusion model [Ho
et al., 2020; Sohl-Dickstein et al., 2015] serves as the foun-
dation of our approach. The network ϵθ is trained to predict
artificial noise, following the objective:

min
θ

Ez0∼N (0,I),t∼Uniform(1,T ) ∥ϵ− ϵθ(zt, t, C)∥
2
2 , (1)

where C represents control conditions such as the text condi-
tion, and zt is a noised sample where noise is added to the
sampled data z0 according to time step t. During inference,
starting from the noisy state zT , noise is gradually removed
using the noise predicted by ϵθ to obtain z0. We employ the
deterministic DDIM sampling:

zt−1 =

√
αt−1

αt
zt+

(√
1

αt−1
− 1−

√
1

αt
− 1

)
·ϵθ(zt, t, C),

(2)
where αt are the noise scales. z0 is the latent space repre-
sentation of the real image frame x0, obtained by mapping
through an image encoder z0 = D(x0), and an image decoder
is employed at the end of the diffusion backward process to
reconstruct x0 from z0.

In text-guided generative tasks, it is crucial to enhance the
influence of the textual prompt on ϵθ(zt, t, C). Classifier-free
guidance [Ho and Salimans, 2021] achieves this by interleav-
ing unconditional and text-conditioned predictions. Given an
empty text prompt embedding ψ(””) and a guidance scale w,
the classifier-free guidance output is formulated as:

ϵ̃θ(zt, t, C, ψ(””)) = w·ϵθ(zt, t, C)+(1−w)·ϵθ(zt, t, ψ(””)),
(3)

Through the above formulation, we can generate video
frames that align with textual descriptions from noise. How-
ever, this alone does not achieve our goal of reconstructing
real video by extracting information from the original video.
We first use DDIM inversion [Song et al., 2020] to obtain the
results of each step from z0 to zT :

zt+1 =

√
αt+1

αt
zt+

(√
1

αt+1
− 1−

√
1

αt
− 1

)
·ϵθ(zt, t, C),

(4)
We can then begin our optimization.

In practice, we optimize frames at a guidance scale of
w = 1, yielding a series of pivotal latent codes {z∗t,i}

T,n
t=0,i=1,

where i indexes each of the n frames within the time step t.
For simplicity, we denote these as {z∗t }Tt=0. NVE is defined
for each temporal step t as ∅t, with the aim of optimizing the
set {∅t}Tt=1.

The optimization begins with zIt initialized as z∗T , the start-
ing point of our process. At each subsequent time step t,
descending from T to 1, we perform N iterations of opti-
mization. Employing DDIM inversion with a default guid-
ance scale of w = 7.5, our objective at each time step t is to
minimize the following:

min
∅t

∥∥z∗t−1 − zt−1(z
I
t ,∅t, C)

∥∥2 . (5)

After each iteration, zIt−1 is updated according to:

zIt−1 = zt−1(z
I
t ,∅t, C). (6)
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Figure 4: Illustration of the WFA mechanism. When the first token of the current frame serves as the query, traditional self-attention
consider only the red tokens as key, while TA takes into account all blue tokens as key, and STA utilizes all the tokens as key. In contrast, our
WFA selectively focuses on the red and green tokens within a specified window size as key, thereby bolstering local temporal modeling by
integrating immediate sequential context with the targeted frame’s position.

Figure 5: More details about the U-Net block. (a) WFA and cross
attention. (b) U-Net block. (c) TA where we add NVE.

Having optimized the NVE, we can now proceed with zero-
shot editing without altering the network structure. The em-
bedding is simply injected into the U-Net. Unlike textual el-
ements that predominantly affect the cross-attention mech-
anism, our image channel impacts all attention and ResNet
blocks. Given our primary goal of interacting temporal in-
formation across all frames with NVE, we strategically inject
it into the temporal attention within the attention block, as
demonstrated in Fig. 5 (c). To better illustrate the tempo-
ral information captured by the NVE, we visualize the outer
layer embeddings from the final time step, as shown in Fig. 6.
The fifth column visualizes the impact of NVE in editing.
It demonstrates that this embedding provides global temporal
information for the initial consecutive frames. For a more dis-
cussion on the timing and placement of NVE injection, please
refer to the section 4.4.

3.2 Local Window-Frame Attention
Local temporal modeling in video editing presents unique
challenges, particularly due to the dynamic nature of video
content. While traditional 2D diffusion U-Nets are adept at
capturing intra-frame spatial relationships, their extension to

3D self-attention often falls short in addressing the critical
temporal dimension required for video continuity (see Fig. 4).

Key-frame attention [Qi et al., 2023] and sparse-causal at-
tention [Wu et al., 2023] (SCA) have shown promise in video
generation by focusing on key frames and their immediate
predecessors. However, their application in video editing is
limited by an underutilization of temporal progression in the
source material. Vid2vid’s spatio-temporal attention (STA)
aims to rectify this by introducing bi-directional temporal
modeling, where each frame element considers the entirety
of elements in all other frames. This approach, while thor-
ough, can become computationally intensive with an increas-
ing number of frames and may introduce irrelevant informa-
tion in cases of significant content variation.

To address these issues, we propose the WFA mechanism
as an alternative to traditional self-attention. As shown in
Fig. 4, this mechanism uses a window size of λ (e.g., 3)
to allow each token (e.g., the blue token in frame xt) to be
influenced by tokens within this window span (e.g., the red
and green tokens). Formally, with a window λ, we establish
boundary points at begin = t − λ−1

2 and end = t + λ−1
2 ,

allowing frame xt to focus on frames xbegin:end. The query
(Q), key (K), and value (V ) computations in this context are
redefined as:
Q =WQxi, K =WKxbegin:end, V =WV xbegin:end.

Here, WQ, WK , and WV are the pre-trained projection
weights within the self-attention layers, shared across spatial
and temporal tokens.

This WFA (using a window size of 3) enables our
VidEvo to effectively enhance local temporal details between
adjacent frame information. Further discussion on its impact
is provided in Section 4.4.

3.3 Attention Control
Once the optimized video embeddings are obtained and the
3D U-Net architecture is adapted, VidEvo is primed to ma-
nipulate attention for achieving precise video editing out-
comes. The attention control mechanism between recon-
structed and target edited videos is a common strategy to en-
able desired modifications. At a single-frame level, this is
achieved through a P2P control scheme, typical in image edit-
ing. For example, a word swap operation is represented as:
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Method Frame consistency Textual alignment Runtime [min] Memory [GB]

CLIP Score↑ FID↓ User Vote↑ CLIP Score↑ User Vote↑ Training Inference Max Memeory

T2V-Zero 0.921 30.17 17.3% 0.901 19.1% 0 1.5 28.9
TAV 0.941 26.98 18.8% 0.802 19.6% 10.3 0.6 10.4
Vid2vid 0.942 26.74 18.0% 0.786 16.8% 11.1 2.2 18.2
Video-P2P 0.947 25.03 19.9% 0.889 20.9% 15.8 1.5 29.4
VidEvo 0.969 23.32 26.2% 0.904 23.7% 7.2 1.5 23.8

Table 1: Comparison of P2P-based Video Editing Methods. We reported only Max Memeory for simplicity.

Figure 6: Visualization of the NVE. The fifth column illustrates the
global information captured by NVE.

Edit
(
Mt,M

E
t , t

)
:=

{
ME

t if t < τ

Mt otherwise
, (7)

where Mt and ME
t are the attention maps of the original and

edited videos at time step t, and τ is the threshold time step.
The full VidEvo algorithm is presented in Algorithm 1.

Here, F denotes the video caption model or GPT-4 used for
generating prompts, τnull is a parameter determining the tim-
ing for injecting null-video embeddings, and DM refers to
the use of the Stable Diffusion Model. The function Edit de-
notes the attention editing operations of the P2P method. For
further details on the Edit function, we suggest reading the
article on the P2P method for a complete understanding.

4 Results
In this section, we present quantitative and qualitative analy-
ses, ablation studies, and orthogonality analyses. Our method
is primarily evaluated on the DAVIS [Pont-Tuset et al., 2017]
dataset for comparison with existing works.

4.1 Quantitative analysis
Since there is no unified quantitative benchmark for video
editing, we performed our evaluation using the pre-trained
CLIP model [Radford et al., 2021], FID [Heusel et al., 2017]
and user studies. Similar to GROUND-A-VIDEO [Jeong and
Ye, 2023], for textual alignment, we calculate average cosine
similarity between the target prompt and the edited frames.
For frame consistency, we compute CLIP image features for
all frames in output video and then calculate the average co-
sine similarity between all pairs of video frames.

Automatic evaluation metrics such as CLIP score only
roughly reflect human judgment. Therefore, we also con-
ducted user studies on frame consistency and textual align-
ment. For this, we enlisted 100 participants to rank the edit-

Figure 7: Comparison with other methods. Our VidEvo achieves
both temporal consistency and fidelity to the source video.

ing outcomes based on frame-to-frame consistency and the
degree to which the edited results match the target prompt.
As indicated in Table 1, our proposed VidEvo method outper-
forms all competing methods in terms of frame consistency
and textual alignment. Particularly for frame consistency, our
method achieves a 2% increase in CLIP Score and a 6.8%
reduction in FID compared to the state-of-the-art one-shot
methods. Moreover, VidEvo accomplishes this without incur-
ring excessive memory costs and even accelerates inference
speeds through the implementation of WFA.

4.2 Qualitative analysis
The results of various methods applied to subject editing are
shown in Fig. 7. To effectively assess temporal consistency,
we selected videos with substantial motion. The TAV method,
having undergone temporal modeling and fine-tuning, gener-
ally exhibits better frame-to-frame consistency, though with
some discrepancies noticeable in the second column com-
pared to the input video. However, it falls short in the de-
gree of character cartoonization. The vid2vid approach aligns
well with the editing objective, yet shows weaker temporal
coherence. Our VidEvo method strikes a balance, achieving
cartoonization of characters while maintaining temporal con-
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Method CLIP-F↑ FID↓ CLIP-T↑ RT MEM

P2P-direct 0.853 34.71 0.807 14.5 18.4
w/o NVE 0.902 27.47 0.835 1.5 20.5
w/o WFA 0.864 27.18 0.822 11.2 23.8
Ours 0.969 23.23 0.904 8.7 23.8

Table 2: Ablation Study

Method CLIP-F↑ FID↓ CLIP-T↑
TAV+VidEvo +0.029 -3.81 +0.002
vid2vid+VidEvo +0.008 -1.41 +0.111
TokenFlow+VidEvo +0.021 -0.91 +0.094
SVD+VidEvo +0.006 -0.71 +0.014

Table 3: Module Orthogonality Validation

sistency and fidelity to the input video.Our VidEvo frame-
work displays commendable results in the localized editing
of structure and color, as well as in the global editing of style.

4.3 Ablation
After showcasing the VidEvo’s capabilities, this section fo-
cuses on the ablation study of various components within our
framework as shown in Fig. 8 and Table 2. Table 2 lists
the metrics, with CLIP-F and CLIP-T denoting Frame con-
sistency and Textual alignment under CLIP Score. Runtime
is calculated as the total of training and inference times.

The first row of Fig. 8 displays the result of directly us-
ing P2P, the fourth row highlights the editing effects achieved
by the full VidEvo framework, and rows two to three present
the results of component-specific ablations. The P2P method
performs well within individual frames but lacks consistency
across frames, as seen in the third frame where the back-
ground shifts from mountains to a city, and in the fourth
frame where part of the car turns into a road. The row ti-
tled w/o NVE represents an ablation of the NVE. This variant
exhibits a clear lack of global temporal consistency, not only
blurring the entire jeep car but also failing to effectively edit
the background, contrary to our intention of transforming the
road into snow. The w/o WFA row illustrates the ablation of
WFA. The outcome aligns the overall background with the
intended snow editing. However, it introduces significant in-
consistencies between adjacent frames, such as the complete
disappearance of the car in the third frame. This underscores
the critical role of WFA, which accounts for temporal infor-
mation between neighboring frames, achieving effective local
temporal modeling.

4.4 Orthogonality and Parameter Analyses
We performed an orthogonality analysis to demonstrate the
plug-and-play flexibility of NVE and WFA with other meth-
ods. As shown in Table 3, when NVE and WFA were applied
to TAV and vid2vid, there was a measurable enhancement in
temporal consistency with a 3% increase in CLIP Score and
a 7% reduction in FID. These two modules also improve the
performance of methods like TokenFlow and SVD, which do
not rely on P2P-based editing.

Figure 8: Ablations on direct using P2P (1st row) and the effective-
ness of each component in VidEvo (2nd ∼ 3rd row). Prompt and
source video see Fig. 2.

Different from max memory, real-time memory consump-
tion involves multiple components, including pipeline mem-
ory (influenced by base model size, batch inference frame
number, and resolution) and memory for the features being
tuned. For instance, when fixing the frame count at 8, Video-
P2P utilizes 10.4GB for pipeline memory and 19GB for tun-
ing; an SVD-based method uses 22.6GB for pipeline memory
and 48GB for motion tuning; and VidEvo employs 17.2GB
for pipeline memory alongside 6.6GB for NVE tuning.

What’s more, we further analyzed the positioning and hy-
perparameters of NVE and WFA. For the precise timing and
placement of NVE injection, we found that symmetrically
adding NVE at both shallow and deep layers of the U-Net
is most effective. It is beneficial to apply injection at only the
coarsest layer within each U-Net block for efficiency.

Our ablation studies reveal that for videos with minimal
motion, a window size of 3 for our WFA effectively maintains
temporal consistency and achieves robust results without sig-
nificant computational overhead. Additionally, placing tem-
poral attention after the Feedforward Network proves most
conducive to video editing, synergizing with textual prompts
to ensure stable and coherent editing transitions.

5 Conclusion
This paper introduces VidEvo, a one-shot framework de-
signed specifically to address the complex challenges of text-
guided real-world video editing, with significant progress
made in enhancing temporal coherence. We design two
exhaustive temporal modeling modules for both the recon-
struction and editing phases, including global NVE and lo-
cal WFA. They ensure high temporal consistency in both the
global video structure and local temporal details of the edited
target videos. Moreover, VidEvo’s plug-and-play characteris-
tic allows it to integrate seamlessly with various video editing
methods, yielding superior results.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
This work was supported by grants from the National Nat-
ural Science Foundation of China (NSFC) [grant num-
bers 72274152, 62403429 and 62202367] and the Zhejiang
Provincial Natural Science Foundation of China [grant num-
ber LQN25F030008].

References
[Bain et al., 2021] Max Bain, Arsha Nagrani, Gül Varol, and

Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In IEEE Interna-
tional Conference on Computer Vision, 2021.

[Blattmann et al., 2023] Andreas Blattmann, Tim Dockhorn,
Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti,
Adam Letts, et al. Stable video diffusion: Scaling latent
video diffusion models to large datasets. arXiv preprint
arXiv:2311.15127, 2023.

[Ceylan et al., 2023] Duygu Ceylan, Chun-Hao P Huang,
and Niloy J Mitra. Pix2video: Video editing using im-
age diffusion. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 23206–
23217, 2023.

[Chen et al., 2023] Weifeng Chen, Jie Wu, Pan Xie, Hefeng
Wu, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang Lin.
Control-a-video: Controllable text-to-video generation
with diffusion models. arXiv preprint arXiv:2305.13840,
2023.

[Dang et al., 2023a] Jisheng Dang, Huicheng Zheng, Jin-
ming Lai, Xu Yan, and Yulan Guo. Efficient and ro-
bust video object segmentation through isogenous memory
sampling and frame relation mining. IEEE Transactions
on Image Processing, 32:3924–3938, 2023.

[Dang et al., 2023b] Jisheng Dang, Huicheng Zheng, Xiao-
hao Xu, and Yulan Guo. Unified spatio-temporal dy-
namic routing for efficient video object segmentation.
IEEE Transactions on Intelligent Transportation Systems,
25(5):4512–4526, 2023.

[Dang et al., 2024a] Jisheng Dang, Huicheng Zheng, Bimei
Wang, Longguang Wang, and Yulan Guo. Temporo-spatial
parallel sparse memory networks for efficient video object
segmentation. IEEE Transactions on Intelligent Trans-
portation Systems, 2024.

[Dang et al., 2024b] Jisheng Dang, Huicheng Zheng, Xiao-
hao Xu, Longguang Wang, and Yulan Guo. Beyond ap-
pearance: Multi-frame spatio-temporal context memory
networks for efficient and robust video object segmenta-
tion. IEEE Transactions on Image Processing, 2024.

[Dang et al., 2024c] Jisheng Dang, Huicheng Zheng, Xiao-
hao Xu, Longguang Wang, Qingyong Hu, and Yulan Guo.
Adaptive sparse memory networks for efficient and robust
video object segmentation. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

[Dhariwal and Nichol, 2021] Prafulla Dhariwal and Alexan-
der Nichol. Diffusion models beat gans on image synthe-
sis. Advances in neural information processing systems,
34:8780–8794, 2021.

[Esser et al., 2023] Patrick Esser, Johnathan Chiu, Parmida
Atighehchian, Jonathan Granskog, and Anastasis Ger-
manidis. Structure and content-guided video synthesis
with diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
7346–7356, 2023.

[Geyer et al., 2024] Michal Geyer, Omer Bar-Tal, Shai
Bagon, Tali Dekel, et al. Tokenflow: Consistent diffusion
features for consistent video editing. Proceedings of the
2024 International Conference on Learning Representa-
tions (ICLR), 2024. Accepted.

[Guo et al., 2023] Yuwei Guo, Ceyuan Yang, Anyi Rao,
Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. An-
imatediff: Animate your personalized text-to-image dif-
fusion models without specific tuning. arXiv preprint
arXiv:2307.04725, 2023.

[Hertz et al., 2022] Amir Hertz, Ron Mokady, Jay Tenen-
baum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or.
Prompt-to-prompt image editing with cross-attention con-
trol. In The Eleventh International Conference on Learn-
ing Representations, 2022.

[Heusel et al., 2017] Martin Heusel, Hubert Ramsauer,
Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

[Ho and Salimans, 2021] Jonathan Ho and Tim Salimans.
Classifier-free diffusion guidance. In NeurIPS 2021 Work-
shop on Deep Generative Models and Downstream Appli-
cations, 2021.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851,
2020.

[Ho et al., 2022] Jonathan Ho, Tim Salimans, Alexey Grit-
senko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. In Advances in Neural In-
formation Processing Systems. NeurIPS, 2022.

[Hu and Xu, 2023] Zhihao Hu and Dong Xu. Videocontrol-
net: A motion-guided video-to-video translation frame-
work by using diffusion model with controlnet. arXiv
preprint arXiv:2307.14073, 2023.

[Jeong and Ye, 2023] Hyeonho Jeong and Jong Chul Ye.
Ground-a-video: Zero-shot grounded video editing using
text-to-image diffusion models. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

[Khachatryan et al., 2023] Levon Khachatryan, Andranik
Movsisyan, Vahram Tadevosyan, Roberto Henschel,
Zhangyang Wang, Shant Navasardyan, and Humphrey
Shi. Text2video-zero: Text-to-image diffusion mod-
els are zero-shot video generators. arXiv preprint
arXiv:2303.13439, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Khandelwal, 2023] Anant Khandelwal. Infusion: Inject and
attention fusion for multi concept zero-shot text-based
video editing. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 3017–3026,
2023.

[Liu et al., 2023] Shaoteng Liu, Yuechen Zhang, Wenbo Li,
Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
cross-attention control. arXiv preprint arXiv:2303.04761,
2023.

[Ma et al., 2023] Yue Ma, Yingqing He, Xiaodong Cun,
Xintao Wang, Ying Shan, Xiu Li, and Qifeng Chen. Fol-
low your pose: Pose-guided text-to-video generation using
pose-free videos. arXiv preprint arXiv:2304.01186, 2023.

[Mokady et al., 2023] Ron Mokady, Amir Hertz, Kfir Aber-
man, Yael Pritch, and Daniel Cohen-Or. Null-text inver-
sion for editing real images using guided diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6038–6047, 2023.

[Nichol et al., 2022] Alexander Quinn Nichol, Prafulla
Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela
Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen.
Glide: Towards photorealistic image generation and edit-
ing with text-guided diffusion models. In International
Conference on Machine Learning, pages 16784–16804.
PMLR, 2022.

[Pont-Tuset et al., 2017] Jordi Pont-Tuset, Federico Perazzi,
Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
Luc Van Gool. The 2017 davis challenge on video object
segmentation. arXiv preprint arXiv:1704.00675, 2017.

[Qi et al., 2023] Chenyang Qi, Xiaodong Cun, Yong Zhang,
Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
Chen. Fatezero: Fusing attentions for zero-shot text-based
video editing. arXiv preprint arXiv:2303.09535, 2023.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[Ramesh et al., 2021] Aditya Ramesh, Mikhail Pavlov,
Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image
generation. In International Conference on Machine
Learning, pages 8821–8831. PMLR, 2021.

[Ramesh et al., 2022] Aditya Ramesh, Prafulla Dhariwal,
Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 1(2):3, 2022.

[Reed et al., 2016] Scott Reed, Zeynep Akata, Xinchen Yan,
Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In Interna-
tional conference on machine learning, pages 1060–1069.
PMLR, 2016.

[Rombach et al., 2022] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 10684–10695, 2022.

[Saharia et al., 2022] Chitwan Saharia, William Chan,
Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language un-
derstanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

[Sohl-Dickstein et al., 2015] Jascha Sohl-Dickstein, Eric
Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermody-
namics. In International conference on machine learning,
pages 2256–2265. PMLR, 2015.

[Song et al., 2020] Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. Denoising diffusion implicit models. Inter-
national Conference on Learning Representations, 2020.

[Tumanyan et al., 2023] Narek Tumanyan, Michal Geyer,
Shai Bagon, and Tali Dekel. Plug-and-play diffusion fea-
tures for text-driven image-to-image translation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1921–1930, 2023.

[Wang et al., 2023a] Jiuniu Wang, Hangjie Yuan, Dayou
Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
Modelscope text-to-video technical report. arXiv preprint
arXiv:2308.06571, 2023.

[Wang et al., 2023b] Wen Wang, Kangyang Xie, Zide Liu,
Hao Chen, Yue Cao, Xinlong Wang, and Chunhua Shen.
Zero-shot video editing using off-the-shelf image diffusion
models. arXiv preprint arXiv:2303.17599, 2023.

[Wang et al., 2023c] Wenjing Wang, Huan Yang, Zixi Tuo,
Huiguo He, Junchen Zhu, Jianlong Fu, and Jiaying
Liu. Videofactory: Swap attention in spatiotemporal
diffusions for text-to-video generation. arXiv preprint
arXiv:2305.10874, 2023.

[Wu et al., 2023] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang,
Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-
video: One-shot tuning of image diffusion models for text-
to-video generation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 7623–
7633, 2023.

[Zhang et al., 2023] Lvmin Zhang, Anyi Rao, and Maneesh
Agrawala. Adding conditional control to text-to-image dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 3836–3847,
2023.

[Zhao et al., 2023] Min Zhao, Rongzhen Wang, Fan Bao,
Chongxuan Li, and Jun Zhu. Controlvideo: Adding con-
ditional control for one shot text-to-video editing. arXiv
preprint arXiv:2305.17098, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


