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Abstract

Meta-Black-Box Optimization (MetaBBO) garners
attention due to its success in automating the con-
figuration and generation of black-box optimizers,
significantly reducing the human effort required for
optimizer design and discovering optimizers with
higher performance than classic human-designed
optimizers. However, existing MetaBBO methods
conduct one-off training under the assumption that
a stationary problem distribution with extensive
and representative training problem samples is pre-
available. This assumption is often impractical in
real-world scenarios, where diverse problems fol-
lowing shifting distribution continually arise. Con-
sequently, there is a pressing need for methods
that can continuously learn from new problems
encountered on-the-fly and progressively enhance
their capabilities. In this work, we explore a novel
paradigm of lifelong learning in MetaBBO and in-
troduce LiBOG, a novel approach designed to learn
from sequentially encountered problems and gen-
erate high-performance optimizers for Black-Box
Optimization (BBO). LiBOG consolidates knowl-
edge both across tasks and within tasks to miti-
gate catastrophic forgetting. Extensive experiments
demonstrate LiBOG’s effectiveness in learning to
generate high-performance optimizers in a lifelong
learning manner, addressing catastrophic forgetting
while maintaining plasticity to learn new tasks.

1 Introduction
Black-Box Optimization (BBO) solves optimization prob-
lems by using only the output of the objective function,
without requiring knowledge of its internal structure. It is
commonly used in tasks with complex structures like metal
manufacturing [Bi et al., 2022], protein docking [Tsaban
et al., 2022], and hyper-parameter tuning of learning algo-
rithms [Lechner et al., 2022; Gu et al., 2021]. Typically, de-
signing and tuning BBO optimizers is labor-intensive and re-
quires expertise. Meta-Black-Box Optimization (MetaBBO)

∗Yi Mei is the corresponding author.
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Figure 1: Existing MetaBBO methods train the BBO optimizer O
with data D0 obtained from the problem distribution P0 available
during the training phase, then freeze the model after training to
solve the newly arising problems from distributions (P1, P2, . . . ).
New data obtained from subsequent problems are discarded. In
contrast, lifelong learning MetaBBO utilizes the data obtained from
each encountered problem to update the optimizer continually.

automates this process with machine learning, greatly reduc-
ing manual effort. By training on BBO problems sampled
from a given distribution, MetaBBO learns to directly pro-
pose solutions [Chen et al., 2017; TV et al., 2020] to some
given problems, configure optimizers with expert-derived so-
lution update rules [Sharma et al., 2019; Yi et al., 2023;
Lu et al., 2020; Chaybouti et al., 2022], or generate optimiz-
ers by automatically generating solution update rules [Chen et
al., 2024]. Existing MetaBBO methods rely on one-off train-
ing, where the optimizer is trained on problems sampled from
a pre-defined fixed distribution, and then is directly applied to
test problems (e.g., learned parameters are frozen) [Lu et al.,
2020; Tang and Yao, 2024], as shown in Fig 1a.

In real-world optimization scenarios, the distribution of op-
timization problems commonly varies over time, leading to
the emergence of new problems with different but related
characteristics. For example, the scheduling problem faced
by a manufacturer may vary from season to season due to
dynamic factors such as demands and resource supplies. Di-
rectly applying the pre-trained optimizer to solve new prob-
lems could be ineffective [Liu et al., 2023; Pei et al., 2024;
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Tang and Yao, 2024; Yang et al., 2025]. To address this issue,
the traditional way in practice typically involves modifica-
tions of the optimizer by human experts when problem char-
acteristics change significantly [Hoos, 2012]. However, ex-
isting MetaBBO methods encounter limitations in this adapt-
ability. MetaBBO approaches capable of continuously learn-
ing from emerging problems to enhance their ability in a life-
long learning manner, as shown in Fig 1b, are desired.

Lifelong learning [Wang et al., 2024] is a natural paradigm
to continually learn/adapt BBO solvers when facing chang-
ing problem distribution over time. Although lifelong learn-
ing has achieved great success in common machine learning
tasks [Kirkpatrick et al., 2017; Wang et al., 2020], to the best
of our knowledge, no study has investigated it in the con-
text of MetaBBO. In particular, a major challenge in lifelong
learning is catastrophic forgetting [Khetarpal et al., 2022;
Wang et al., 2024], i.e., models’ performance on previous
data distributions reduces significantly after training on a new
distribution. Mostly studied, catastrophic forgetting usually
occurs between tasks as the data from different tasks exhibit
significant differences. However, catastrophic forgetting may
also occur when learning a single task, especially in rein-
forcement learning (RL) [Igl et al., 2021; Lan et al., 2023;
Zhang et al., 2023].

In this paper, we focus on the unexplored paradigm of
lifelong learning MetaBBO, with the aim of training a sin-
gle model capable of generating high-performance optimiz-
ers for any problem drawn from previously learned distribu-
tions, in scenarios where problem distributions arrive sequen-
tially over time. To achieve it, we present LiBOG, a novel
approach with lifelong learning for black-box optimizer
generation. LiBOG takes the problems following the same
distribution as a task and learns from a sequence of different
tasks with lifelong RL. LiBOG features an inter-task consoli-
dation process to preserve the learned knowledge of previous
tasks. We further propose a novel intra-task consolidation
method, named elite behavior consolidation, to address for-
getting in one single task which could significantly impact
learning performance in the context of MetaBBO,

We verify the effectiveness of LiBOG in generating high-
performance optimizers for solving problems from all learned
distributions through extensive experimental studies. The re-
sults demonstrate that LiBOG not only significantly mitigates
catastrophic forgetting but also exhibits the capability to learn
general knowledge from sequentially arriving problem distri-
butions. Further sensitivity analysis and ablation study verify
the stability of LiBOG and the contribution of each compo-
nent to LiBOG’s overall performance.

Our main contributions are as follows. (i) We propose the
paradigm of lifelong learning for BBO optimizer generation,
which is the first study in this area, to the best of our knowl-
edge. (ii) We present elite behavior consolidation, a novel
intra-task consolidation approach to address catastrophic for-
getting and improve plasticity, and based on it, LiBOG, a
novel method of lifelong learning to BBO optimizer genera-
tion. (iii) We verify the effectiveness of the proposed methods
with extensive experimental studies, together with detailed
analysis and in-depth discussion.

2 Background
2.1 MetaBBO
Black-box optimization relies exclusively on the output of the
objective function to guide the optimization process [Audet
and Kokkolaras, 2016]. A typical BBO optimizer operates
iteratively, wherein incumbent solutions are evaluated based
on their objective values, and modified by solution updating
rules with the aim of achieving superior performance [Hus-
sain et al., 2018]. Examples of BBO optimizers include
evolution strategy [Beyer and Schwefel, 2002], differential
evolution (DE) [Storn and Price, 1997], Bayesian optimiza-
tion [Wang et al., 2023], and simulated annealing [Kirk-
patrick et al., 1983]. Typically, BBO optimizers are charac-
terized by a wide array of tunable parameters, which signif-
icantly influence their performance. The design and config-
uration of these parameters are often computationally expen-
sive and labor-intensive, requiring substantial expertise and
iterative experimentation.

Meta-Black-Box Optimization (MetaBBO) is an emerging
framework that leverages machine learning techniques to au-
tomate the design of black-box optimizers, significantly re-
ducing the reliance on manual expertise and effort [Chen
et al., 2017; Gomes et al., 2021; Ma et al., 2023]. Some
MetaBBO methods focus on training end-to-end models to
directly generate new solutions [Chen et al., 2017; TV et
al., 2020]. Despite their success, end-to-end methods of-
ten suffer from poor generalization and limited interpretabil-
ity [Liu et al., 2023]. Some other methods learn to config-
ure human-designed optimizers, including parameter tuning
and selecting solution updating rules [Sharma et al., 2019;
Yi et al., 2023; Lu et al., 2020; Chaybouti et al., 2022].
However, the corresponding methods are inherently limited
by the dependence of pre-existing human-crafted solution up-
dating rules. In contrast, the recent study [Chen et al., 2024]
leverages symbolic equation learning and deep reinforcement
learning to construct updating rules and outperforms SOTA
expert-designed methods with human-crafted rules. Follow-
ing the conventional machine learning paradigm, existing
MetaBBO methods are typically trained on problems sampled
from a pre-defined distribution, with the optimizer’s parame-
ters fixed upon completion of training. These trained models
are then evaluated on separate test sets to assess their perfor-
mance. To achieve good performance across a broader range
of problems, current MetaBBO approaches typically involve
a large number of diverse problems in the one-off training.

2.2 Lifelong Learning
Lifelong learning, also known as continual learning, requires
learners to learn a sequence of different tasks to progressively
enhance their capabilities on the tasks, just like the way that
humans learn in their whole life [Thrun, 1998]. In lifelong
learning, each task is represented by a distinct data distribu-
tion [Wang et al., 2024]. Lifelong learning primarily aims
to efficiently train on the data distribution of the current task
while minimizing reliance on data from the distributions of
previously encountered tasks. The key challenge in lifelong
learning is to balance plasticity, the ability to efficiently ac-
quire knowledge from new tasks, with stability, the capac-
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ity to preserve learned knowledge of previous tasks. The
degradation of performance on learned tasks after training on
new data with different distributions is known as catastrophic
forgetting. This phenomenon is predominantly observed be-
tween tasks due to significant differences in their data.

Lifelong learning in the RL context refers to the problem
of how an agent learns from a series of different environments
to make good decisions on each of them [Abel et al., 2018;
Khetarpal et al., 2022]. Each environment, commonly de-
fined by a Markov decision process (MDP), corresponds to
a task. Specifically in RL, catastrophic forgetting can occur
not only between tasks but also during the learning of a sin-
gle task [Igl et al., 2021]. Training data, i.e., experiences, are
typically generated iteratively through interactions between
the policy model and the given environment. These expe-
riences exhibit temporal correlations, and the distribution of
the collected experiences changes with the policy updating,
contributing to catastrophic forgetting [Igl et al., 2021]. Typ-
ically, it is addressed by extensive resampling and large expe-
rience memory, significantly increasing the storage require-
ments and computational costs [Lan et al., 2023].

3 LiBOG
A typical BBO optimizer improves the objective value by it-
eratively modifying incumbent solutions with solution updat-
ing rules, inherently forming a sequential decision-making
process [Handoko et al., 2014; Chaybouti et al., 2022]. So-
lution updating rules play a crucial role in BBO optimiz-
ers [Sharma et al., 2019; Yi et al., 2023; Pei et al., 2025].
Inspired by the success of recent work [Lu et al., 2020;
Chen et al., 2024], we focus on lifelong learning for con-
structing solution updating rules. Specifically, we take each
sequentially arrived problem distribution as a distinct learn-
ing task and train a MetaBBO model sequentially on those
tasks, with the aim of automatically constructing solution up-
dating rules by the model to effectively solve problems from
any learned distribution (i.e., tasks).

To achieve this, we propose LiBOG, which consists of
three levels of design. Firstly, LiBOG models the life-
long learning process of MetaBBO as a non-stationary
MDP [Khetarpal et al., 2022]. The non-stationary MDP is
formed by a sequence of stationary MDPs, each representing
a task to learn (c.f., Section 3.1). It facilitates the utilization
of advanced RL methods. Based on the formulation, the sec-
ond level (c.f., Section 3.2) focuses on learning to construct
solution updating rules within a single task, without address-
ing catastrophic forgetting. We construct this level following
SYMBOL [Chen et al., 2024], the SOTA MetaBBO method
for solution updating rule construction. Finally, at the high-
est level, LiBOG introduces two consolidation mechanisms
to address inter-task (c.f., Section 3.3) and intra-task (c.f.,
Section 3.4) catastrophic forgetting, respectively. Figure 2
demonstrates the overall lifelong learning process of LiBOG.
A detailed pseudocode of LiBOG’s learning process can be
found in the supplementary material.

3.1 Formulation of Lifelong Learning MetaBBO
A BBO problem distribution P , i.e., a task, is represented as
an MDP, represented by the tuple M = ⟨S,A,R,P,H, ρ⟩.

S,A,R,P are the optimization state space, solution updat-
ing rule space, reward function, and state transition function,
respectively. H represents the maximal number of optimiza-
tion iterations. ρ is the distribution of the initial state, defined
by the initial solutions. To solve a sampled problem of the
task, an optimizer first generates an initial solution set, form-
ing the initial state following ρ. Then the optimizer iteratively
observes the current state s ∈ S , and constructs an updating
rule a from A to update the incumbent solutions, which tran-
sits s to the next state s′ ∈ S following P , and provides a
reward value r based on R. The iteration will continue for H
times, and then the best-so-far solution will be output.

Specifically, LiBOG represents a state s by a vector of
fitness landscape analysis (FLA) metrics [Malan and En-
gelbrecht, 2013], including the distances of decision vari-
able values and objective values of incumbent solutions.
Each FLA metrics are normalized so that all tasks share the
same state space. Details about state representation can be
found in the supplementary material. RL-based MetaBBO
methods have demonstrated that those FLA metrics are ef-
fective in representing the characteristics of optimization
states [Sharma et al., 2019; Lu et al., 2020; Yi et al., 2023].
An action a is a solution updating rule, represented by a tree-
structure symbolic equation. Section 3.2 details the construc-
tion process of a solution updating rule, i.e., an action.

The reward function in [Chen et al., 2024] is used:

R(k) =
f(x∗,(k))− fopt

f(x∗,(0))− fopt
+

d(Xk, X
′
k)

xub − xlb
, (1)

where f(x∗,(k)) is the best-so-far objective value within op-
timization iterations [0, k], and fopt is the optimal objective
value, or the known best objective if the optimum is unknown,
of the problem. Xk and X ′

k are the solution population gener-
ated by the optimizer from the MetaBBO and by a given man-
ually designed optimizer, respectively, in kth iteration, based
on the same Xk−1. d(Xk, X

′
k) = maxx∈Xk

minx′∈X′
k
(∥x−

x′∥2) is the distance measure of two solution population. xub

and xlb are the upper and lower bounds of variable values.
Based on the above formulation, we further model

the lifelong learning process of MetaBBO as a discrete
non-stationary MDP with piecewise non-stationary func-
tion [Khetarpal et al., 2022], represented as M =
{M0,M1, . . . }. For a specific time point, only the Mi, cor-
responding to the current problem distribution Pi, is available
for the optimizer to interact. We assume the identities and
boundaries of tasks are known, which aligns with many real-
world situations. For example, managers of a manufacturing
company can identify the current season in scheduling prob-
lems, where seasonal changes in material prices and product
demands lead to changes in problem distribution.

Different tasks share the same state space S and action
space A. We assume all problems share the same optimiza-
tion iteration budget, therefore, H is also identical for all
tasks. Due to the different fitness landscapes of different
problem distributions, different tasks have different state tran-
sition functions and different distributions of initial states.
Besides, the reward values obtained from different tasks given
the same state and action will also be different, though the
formulation of the reward function is the same across tasks.
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Figure 2: Illustration of LiBOG, with different problem distributions Pi−1, Pi, . . . sequentially arrive.

3.2 Symbolic Updating Rule Construction
Solution updating rules can be formulated as equations that
calculate the variable values of the new solution(s) based on
the incumbent solutions (as real-value vectors). For exam-
ple, the DE/best/1 rule of DE, a classic human-designed BBO
optimizer, can be formulated as x′ = xbest + F (x1 − x2),
where x′ is the new solution, xbest is the best incumbent
solution, F is a pre-defined parameter, x1 and x2 are two
randomly selected incumbent solutions. Symbolic equation
learning facilitates the construction of rules as tree-structure
symbolic equations [Zheng et al., 2022; Chen et al., 2024;
Chen et al., 2023], where terminal nodes are operands like
xbest and internal nodes represent operators like +.

Following [Chen et al., 2024], we apply a long short-term
memory (LSTM) network as the policy model to generate so-
lution updating rules, i.e., actions. For each state, the LSTM
predicts multiple times sequentially to construct a tree. For
each prediction, the model takes FLA metrics, i,e., the state,
and the vectorized tree embedding of the current tree as in-
put, and outputs the next node to be added into the tree.
Detailed settings of the tree construction can be found in
the supplementary material. Proximal policy optimization
(PPO) [Schulman et al., 2017] is used in training, given its
success in training to generate BBO optimizers that outper-
form those crafted by human experts [Chen et al., 2024].

3.3 Inter-Task Consolidation
Preventing significant deviation from the parameters opti-
mized for earlier tasks has the potential to preserve learned
knowledge. It can be achieved by applying L2 regularization
on the model’s parameters. However, equally regularizing all
parameters leads to the loss of plasticity [Kirkpatrick et al.,
2017]. In contrast, LiBOG adaptively adjusts the regulariza-
tion strength for each parameter based on its importance to
previous tasks, based on elastic weight consolidation (EWC)
method [Kirkpatrick et al., 2017]. Parameters deemed more
critical for earlier tasks are preserved to a greater extent,
while less important parameters are allowed larger updates,
providing more flexibility for learning new tasks. The impor-
tance of parameters for the ith task is calculated as:

Ωθ
i =

1

|J |
∑
τ∈J

 1

|τ |

|τ |−1∑
k=0

∇θℓθ,k∇θℓ
⊤
θ,k

 , (2)

where J = {τ0, τ1, . . . } is a given set of experience trajecto-
ries, τ = {(sk, ak, rk)}Hk=0 is a trajectory obtained by model
πθ from ith task, i.e., records of all decisions in an optimiza-
tion process, and ℓθ,k = log πθ(ak|sk) corresponds the action
probability generated by model πθ given (sk, ak) ∈ τ .

Specifically, after completing training on each task, Li-
BOG records the parameter values θ∗ and calculates the im-
portance Ω to this task with the trajectories obtained for the
last training epoch. During training on a new task, an inter-
task consolidation term CLinter is incorporated into the loss
function, calculated as:

CLinter(θ) =
1

i

i−1∑
j=0

(θ − θ∗j )
⊤Ωj(θ − θ∗j ). (3)

A smaller CLinter indicates the parameters important to pre-
vious tasks are similar to the best value obtained on those
tasks. Consolidation in parameter level is relatively storage-
efficient, as it only requires saving the parameters and impor-
tance with the space complexity as O(|θ| · I) rather than re-
taining any task-specific experiences, where |θ| is the number
of model parameters and I is the total number of tasks.

3.4 Intra-Task Consolidation
Typically, the distribution of obtained experience in RL could
shift due to changes in policy caused by the model parame-
ter updating. This results in intra-task catastrophic forgetting,
which can hinder model convergence and reduce generaliz-
ability [Igl et al., 2021]. Common approaches in RL, such as
extensive resampling and large experience memory, address
this issue but significantly increase storage requirements and
computational costs [Lan et al., 2023]. Given the inherently
computationally expensive nature of BBO, such brute-force
methods become less practical.

Existing studies about intra-task forgetting focus on single-
task scenarios [Ghiassian et al., 2020; Pan et al., 2021;
Zhang et al., 2023], with limited attention to its effects in
multi-task settings. We focus on lifelong learning with mul-
tiple tasks. Inter-task and intra-task forgetting could inter-
act, leading to more pronounced effects on the training pro-
cess. Additionally, the substantial stochasticity inherent in the
BBO process introduces significant fluctuations in obtained
experiences, potentially exacerbating the impacts.
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To address the challenges, we propose the elite behavior
consolidation (EBC) method. EBC maintains an elite model,
parameterized by θe, as a reference and updates it as a copy
of the new model whenever the new model has better per-
formance than the elite model. In the context of MetaBBO,
the model that obtain a better average final objective value on
the current tasks is defined as better. During each model up-
date, EBC regularizes the current model’s behavior to align
with the elite model. Specifically, EBC introduces the KL di-
vergence between the action probability distributions of the
current model and the elite model for given states as a loss
term CLintra, calculated as:

CLintra(θ) =
1

|J |
∑
τ∈J

∑
s∈τ

∑
a∈A

πθ(a|s) log
πθ(a|s)
πθe(a|s)

. (4)

When training on one task is finished, the record of θe will
be discarded. Compared to regularizing model parameters,
EBC directly regularizes model behavior, effectively address-
ing catastrophic forgetting caused by changes in behavioral
patterns. It may also better accommodate exploration within
the model parameter space, as different sets of model parame-
ters can correspond to similar, near-optimal policy behaviors.

In summary, to maximize the overall reward R while ad-
dressing both inter-task and intra-task forgetting, LiBOG up-
dates a model on each task with the following loss function.

L(·) = LPPO(·) + α · CLinter(·) + β · CLintra(·), (5)

where LPPO is the loss function of PPO algorithm to maxi-
mize R, α and β are two pre-defined hyper-parameters bal-
ancing the two consolidation terms.

4 Experiments
We focus on the MetaBBO scenario where various problem
distributions sequentially arise. Through experimental stud-
ies1, we aim to answer the following research questions.

• Optimization effectiveness: Does LiBOG demon-
strate superior optimization ability on learned prob-
lems compared to SOTA human-designed optimizers
and MetaBBO methods without lifelong learning?

• Addressing catastrophic forgetting: What are the ef-
fects of catastrophic forgetting in such scenarios, and are
the two consolidation mechanisms in LiBOG effective in
mitigating this issue?

• Hyper-parameter sensitivity: How sensitive is LiBOG
to the weights of consolidation terms, i.e., α and β?

Problem Distributions. The training dataset is constructed
from the widely studied IEEE CEC Numerical Optimization
Competition Benchmark [Mohamed et al., 2021]. The bench-
mark is known for its extensive use in the optimization re-
search community, serving for comparative studies and fos-
tering advancements in BBO methods. Four function cate-
gories, namely, uni-modal, basic, hybrid, and composition,
are provided. Different categories own different properties
and landscape features, such as uni-modal and multi-modal

1Our code is available in https://github.com/PeiJY/LiBOG.

landscapes, (non-)separability, and (a)symmetry. Each func-
tion can be configured by the dimension, searching space
range, function offset, and function rotation, forming a spe-
cific problem. We set the dimension and searching space to
10 and [−100, 100]10 for all the functions. Then, we form
each category as a task by introducing a distribution of off-
set z ∼ U [−80, 80]10 and a distribution of rotation uniformly
distributed in R10×10 for each function of the category. When
sampling a problem from a task, all functions of the cor-
responding category are selected with the same probability.
In summary, four tasks {PU , PB , PH , PC} are constructed,
corresponding to uni-modal, basic, hybrid, and composition
categories, respectively. We randomly generated three dif-
ferent task orders aiming to eliminate the influence of spe-
cific task orders on the experimental results. Details about
the training dataset and the task orders can be found in the
supplementary material.

Baselines. To the best of our knowledge, there is no exist-
ing work on lifelong learning MetaBBO, as current MetaBBO
methods focus on learning for a single task. We com-
pare LiBOG with the SOTA human-designed BBO optimizer
MadDE [Biswas et al., 2021], which is one of the winners of
the CEC competition, and SYMBOL [Chen et al., 2024], a
SOTA MetaBBO method for single-task learning. For SYM-
BOL, we applied two strategies to learn across multiple con-
secutive tasks: (i) randomly generating a model each time
a new task appears and then training the model on the new
task, denoted as restart, and (ii) directly updating the obtained
model on a new task, denoted as fine-tuning. Additionally, we
compared with a baseline method assuming all functions are
available at once and sampling problems from all of them to
train SYMBOL in each epoch, denoted as all-task.

Hyper-parameter Setting and Performance Evaluation.
For LiBOG, restart and fine-tuning, the models are trained
on each task for 100 epochs equally. Following [Chen et
al., 2024], all-task trains the model on all functions simul-
taneously for 100 epochs. Both SYMBOL and LiBOG use
MadDE as the guide optimizer for reward calculation. For
LiBOG, the values of α and β are set to 1 based on the rule of
thumb. To test the optimization performance of an optimizer
on a task, we sample 32 problems with the corresponding dis-
tribution. We run the optimizer to solve each of the problems,
and take the average output objective value over the problems
as the test performance on the task. The objective values are
normalized between 0 and 1. A larger objective value in-
dicates better optimization performance. More settings about
hyper-parameters and the normalization method can be found
in the supplementary material.

4.1 Effectiveness Evaluation
To verify the effectiveness of LiBOG in generating high-
performance optimizers, we tested and compared the perfor-
mance of LiBOG and all baseline methods on each task. For
LiBOG and fine-tuning, the model obtained after training on
the final task was used for testing. For restart, the model
trained on a task is used for testing on that task. For all-
task, the model obtained after the one-off training was tested.
MadDE does not involve a learning process and is directly
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Method
Order 0 Order 1 Order 2

P0 P1 P2 P3 avg. P0 P1 P2 P3 avg. P0 P1 P2 P3 avg.
(PU ) (PB) (PH) (PC) (PC) (PU ) (PB) (PH) (PU ) (PC) (PH) (PB)

LiBOG 1 1 1 1 1 1 1 2 2 1.5 2 1 1 2 1.5
restart 4 4 2 2 3 4 4 1 1 2.5 4 5 2 1 3

fine-tuning 2 3 3 3 2.75 3 3 4 4 3.5 3 3 3 4 3.25
all-task 5 2 5 5 4.25 5 5 3 5 4.5 5 4 5 3 4.25
MadDE 3 5 4 4 4 2 2 5 3 3 1 2 4 5 3

Table 1: The rank of test results on each task. Smaller ranks indicate better performance.

tested on all functions. Each learning method underwent 10
independent learning runs for each task order. The model ob-
tained in each run is tested, and the average test results over
the 10 runs are compared. Table 1 presents the rank of each
method. More detailed results can be found in the supple-
mentary material.

LiBOG outperforms all baseline methods for each of the
three task orders. Specifically, LiBOG’s superior perfor-
mance compared to fine-tuning demonstrates the effective-
ness of LiBOG’s two consolidation methods in address-
ing catastrophic forgetting and maintaining good plasticity.
Restart achieved the best performance in some cases, as
expected due to its task-specific training and lack of influ-
ence from task distribution differences. However, LiBOG is
ranked in first place for eight of the twelve cases over the
three orders, indicating that, in general, LiBOG effectively
transfers knowledge of previously learned tasks to enhance
the learning of subsequent tasks without forgetting, though
the problem distributions are different.

The rank stability of LiBOG across different task orders
(average ranks of 1, 1.5, and 1.5) demonstrates its robustness
to changes in task orders.

4.2 Addressing Forgetting

0.997
0.998
0.999

PU

0.915
0.920
0.925

PB

6
7

PH

1e 5+9.999e 1

PU PB PH PC
Training Tasks 

0.985
0.990PC

fine-tuning LiBOG restart all-task MadDE

Figure 3: Test performance on each learned task during the lifelong
learning process of task order 0. In fine-tuning, catastrophic forget-
ting of previous tasks is significant, but is mild in LiBOG.

We analyzed the impact of catastrophic forgetting in the
studied lifelong learning MetaBBO scenarios, and the effec-
tiveness of LiBOG in addressing catastrophic forgetting. Fig-
ure 3 shows the test performance on previously learned tasks
after the training of each new task of one task order. Though
there is no lifelong learning process in MadDE, all-task and

restart, we add them for reference. Results of other orders
demonstrate a similar pattern, and can be found in the sup-
plementary material.

Fine-tuning shows a significant performance drop on the
first task P0 (i.e., uni-modal functions PU ) and the second
task P1 (i.e., basic functions PB) after training on the subse-
quent two and one tasks, respectively, performing worse than
all-task and MadDE, indicating a significant catastrophic for-
getting. In contrast, LiBOG experiences very small perfor-
mance degradation after learning new tasks, suggesting that
forgetting in LiBOG is mild. In some cases, training the
model on a task (e.g., P3 (PC) in Figure 3) was observed to
enhance its performance on previously learned tasks. This
is perhaps due to the inherent function similarity between
tasks. This explains why LiBOG outperforms others, as it
effectively utilizes similar tasks to better learn shared knowl-
edge while retaining knowledge from dissimilar tasks without
forgetting.

To further analyze the training process within each task,
we recorded the models obtained after each training epoch
throughout the lifelong learning process and tested them on
the current and previous tasks. Figure 4 shows the results in
task order 0. The results of the other two orders can be found
in the supplementary material.

0.996
0.998PU

0.91
0.92
0.93

PB

2.5
5.0
7.5

PH

1e 5+9.999e 1

0 100 200 300 400
Training Epoches

0.98

0.99

PC

fine-tuning LiBOG restart all-task MadDE

Figure 4: Test performance on each task of models obtained during
the lifelong learning process, under task order 0. Vertical gray lines
indicate the time of task changes.

The performance of both fine-tuning and LiBOG on P1

(PB), P2 (PH ), and P3 (PC) is significantly better than
restart on epochs 100, 200, and 300, respectively. It indicates
that using the model trained on previous tasks as the initial
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0.1

1.0
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0.9788 0.9792 0.9808
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0.977

0.978
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0.980
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Figure 5: Performance of LiBOG trained with different values of α
and β. Under all settings, LiBOG outperforms baselines.

model leads to better initial performance, compared to a ran-
domly initialized model used in restart. Helpful knowledge
is transferred with the trained model.

In some cases, during training on a new task (e.g, training
on P2 (PH ) during epochs 200-299 in Figure 4), fine-tuning
gradually loses performance on previous tasks (e.g., perfor-
mance reducing on P0 (PU ) and P1 (PB)), demonstrating
significant inter-task forgetting. Moreover, fine-tuning fails to
effectively learn and improve performance on the new task.
Significant shifts in experience distribution, combined with
the inherent stochasticity of the BBO process, could be the
reason, leading to intra-task forgetting and poor plasticity.

LiBOG obtained good performance during learning on the
earlier tasks (i.e., on P0 (PU ) and P1 (PB) during epochs 0-
199 in Figure 4). When subsequent tasks are introduced, Li-
BOG demonstrates promising performance on the new tasks
even before dedicated training (i.e., on P2 (PH ) and P3

(PC) at epochs 200 and 300, respectively), while maintaining
this performance stably without forgetting. It indicates that
the two consolidation mechanisms work together to facilitate
both the retention of old knowledge and the stable learning of
new knowledge.

4.3 Sensitivity Analysis and Ablation Study
We evaluated the performance of LiBOG under different
hyper-parameter settings, and conducted an ablation study to
provide a more comprehensive and reliable analysis.

Consolidation weights. To address catastrophic forgetting,
LiBOG incorporates two consolidation mechanisms, each
introducing a term to the loss function, controlled by two
weights α and β. Under task order 0, we trained LiBOG with
different weight settings and recorded its average test perfor-
mance across all tasks after learning all tasks. The tested can-
didate values are {0.1, 1, 10} for both α and β. Each setting
underwent five lifelong learning runs, and Figure 5 demon-
strates the average of the five runs. Although the weights af-
fect the performance, the performance of LiBOG is relatively
stable, and outperforms baselines for all settings.

Ablation study. We conducted an ablation study to eval-
uate the contribution of the two consolidation mechanisms.
By individually removing the inter-task consolidation and
intra-task consolidation mechanisms, we created two abla-
tion versions: LiBOG with only intra-task consolidation (de-

noted as only-intra) and LiBOG with only inter-task consol-
idation (denoted as only-inter). For each ablation version,
we performed lifelong learning five repeat runs on task order
0 and tested the final model’s performance across all tasks.
The best-performance weight values above are used. Table 2
shows the average of the five runs. LiBOG outperforms both
ablation versions, indicating that both consolidation mecha-
nisms are critical to LiBOG’s effectiveness, as removing ei-
ther significantly reduces its performance.

Method Performance Method Performance
LiBOG 0.982440 fine-tuning 0.978123

only-intra 0.982306 restart 0.977762
only-inter 0.975054 all-task 0.976833

MadDE 0.976669

Table 2: Ablation study results of inter-consolidation and intra-
consolidation mechanisms in LiBOG.

5 Conclusions
In real-world scenarios, diverse optimization problems of-
ten arise sequentially, with the problem distribution changing
over time. Focusing on these scenarios, this paper studies the
unexplored paradigm of lifelong learning for BBO optimizer
generation. We propose LiBOG, a novel lifelong learning-
based MetaBBO approach. In LiBOG, the optimization pro-
cess of MetaBBO is formulated as a non-stationary MDP,
where the state transition, reward distribution, and initial state
distribution vary across tasks. LiBOG employs elastic weight
consolidation (EWC) for inter-task consolidation, mitigating
catastrophic forgetting caused by differences in problem dis-
tributions between tasks. Additionally, we propose elite be-
havior consolidation (EBC), a novel method that aligns model
behavior with elite models obtained within a single task for
intra-task consolidation. Experiments on various task orders
and hyper-parameter settings demonstrate the effectiveness
and robustness of LiBOG in transferring knowledge for en-
hanced learning on new tasks and addressing catastrophic for-
getting. The ablation study verifies the contribution of each
consolidation mechanism.

Despite its promising performance, LiBOG has some po-
tential limitations. It cannot be directly applied to scenarios
with continuously changing problem distribution or the dis-
tribution changing time points are unknown (i.e., unknown
task boundaries), as EWC requires explicitly storing a model
and parameter importance matrix for each task. Further-
more, EBC relies on constraining model updates based on
elite models, which may limit performance when the perfor-
mance landscape is highly complex and requires extensive
exploration. Addressing these limitations will have the po-
tential to enhance LiBOG’s expertise in broader applications.
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