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Abstract
The success of vehicle electrification relies on effi-
cient and adaptable charging infrastructure. Fixed-
location charging stations often suffer from un-
derutilization or congestion due to fluctuating de-
mand, while mobile chargers offer flexibility by
relocating as needed. This paper studies the opti-
mal planning and operation of hybrid charging in-
frastructures that combine both fixed and mobile
chargers within urban road networks. We formu-
late the Hybrid Charging Station Planning and Op-
eration (HCSPO) problem, jointly optimizing the
placement of fixed stations and the scheduling of
mobile chargers. A charging demand prediction
model based on Model Predictive Control (MPC)
supports dynamic decision-making. To solve the
HCSPO problem, we propose a deep reinforcement
learning approach enhanced with heuristic schedul-
ing. Experiments on real-world urban scenarios
show that our method improves infrastructure avail-
ability—achieving up to 244.4% increase in cov-
erage—and reduces user inconvenience with up to
79.8% shorter waiting times, compared to existing
solutions.

1 Introduction
The transition towards vehicle electrification is rapidly ad-
vancing, driven by its substantial societal and environmental
benefits. However, the widespread adoption of electric vehi-
cles (EVs) hinges on the availability and efficiency of charg-
ing infrastructure [von Wahl et al., 2022], which requires a
comprehensive and adaptable planning approach to accom-
modate the increasing demand. A critical challenge in this
process is accounting for the dynamic nature of charging de-
mand, which is often overlooked in traditional station plan-
ning methods.

As shown in Figure 1, panel (a) presents a heat map
of charging demand across Nanshan District in Shenzhen,
China, highlighting how demand distribution varies through-
out the day, from 6:00 AM to 7:00 PM. Meanwhile, panel
(b) depicts the time series of charging demand for a specific

∗Corresponding author. Email: yuxliang@outlook.com

Figure 1: Dynamic attribute of charging demand

station in Shenzhen, further illustrating the fluctuations in de-
mand at a granular level. These spatio-temporal patterns col-
lectively emphasize the dynamic nature of charging demand
in urban areas.

While traditional charging stations with fixed-location
chargers offer cost and grid stability benefits, their spa-
tial rigidity leads to inefficiencies, especially in addressing
demand-supply mismatches from fluctuating demand. For
example, sizing infrastructure for peak demand causes under-
utilization during off-peak hours, while sizing for off-peak
leads to congestion during peaks. These limitations highlight
the need for adaptive infrastructure that can reconfigure in re-
sponse to changing demand.

Emerging mobile chargers (MCs) have recently gained at-
tention as a flexible supplement to urban charging networks
[Afshar et al., 2021]. Unlike fixed chargers, mobile chargers
can be dynamically scheduled to align with changing demand
patterns, offering a promising solution to the limitations of
traditional charging infrastructure. In addition to addressing
the limitations of fixed charging stations, the integration of
MCs can also benefit the configuration of fixed charging sta-
tions. For example, in areas with demand surges, MCs can
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be scheduled for temporary service, eliminating the need for
installing fixed stations in these locations. This approach en-
sures that fixed stations are deployed where demand is more
consistent, improving overall system efficiency.

Considering optimization for both fixed and mobile charg-
ing infrastructures, this paper introduces a novel hybrid
charging station planning and operation (HCSPO) problem,
which aims to integrate the optimal planning of fixed charging
stations with dynamic operation of mobile chargers. Specif-
ically, we formulate the HCSPO problem within urban road
networks to optimize the locations and configurations of fixed
charging stations and to dynamically schedule mobile charg-
ers to support real-time charging needs.

To enhance decision-making, we incorporate a charging
demand prediction model based on Model Predictive Control
(MPC) to provide foresight into demand fluctuations. Our so-
lution leverages a reinforcement learning (RL) method, aug-
mented with heuristic techniques, to adaptively optimize the
planning and operation of the HCSPO problem. This inte-
grated approach effectively bridges the strategic planning of
fixed charging stations with the operational dynamics of mo-
bile chargers, contributing to the sustainability and accessi-
bility of urban transportation networks.

In summary, the contributions of this paper are as follows:

• We formulate the HCSPO problem into a rolling horizon
framework within road networks, integrating the planning
of fixed stations with mobile charging operations. Our ap-
proach incorporates a demand prediction model based on
an MPC policy to enhance decision-making.

• We propose an adaptive RL algorithm, enhanced with
heuristic scheduling techniques, to efficiently tackle the
HCSPO problem, ensuring optimal planning and operation
of both fixed and mobile infrastructures.

• We conduct extensive experiments on real-world dataset,
which demonstrates our approach outperforms other base-
lines, offering superior societal benefits, including im-
proved sustainability and user satisfaction.

2 Related Work
This section reviews related work on charging station plan-
ning and mobile charging infrastructure operations.

EV charging station planning is often modeled as a vari-
ant of the Facility Location Problem. However, many ap-
proaches rely on simplified assumptions about charging de-
mand [Kchaou-Boujelben, 2021], which may not reflect ac-
tual spatio-temporal distributions. Some studies simulate
EV recharging behavior using real-world datasets like GPS
records [Cai et al., 2014; Li et al., 2017; Shahraki et al., 2015;
Yang et al., 2017; Hwang et al., 2015], while others, such as
[Li et al., 2017; Tu et al., 2016], use taxi trajectories. Recent
research also explores dynamic and stochastic environments
[Wang et al., 2023; Kchaou Boujelben and Gicquel, 2019;
Kchaou-Boujelben and Gicquel, 2020; Lee and Han, 2017;
Kong et al., 2019; Yin et al., 2023; Xiang et al., 2019].

Mobile charging station placement is gaining traction. For
example, [Tang et al., 2020] proposes a two-phase framework
to determine MCS placement, scheduling, and relocation,

which is widely adopted in MCS placement and scheduling
studies, including depot and fleet locations [Ting et al., 2024;
Liu et al., 2024; Li et al., 2024; Beyazıt and Taşcıkaraoğlu,
2023; von Wahl et al., 2023]. Some studies validate ap-
proaches with real-world data, including GPS trajectories
[Ting et al., 2024; Liu et al., 2024]. [Liu et al., 2024] uses
a Markov Decision Process (MDP) to reduce delays and in-
crease the proportion of charged EVs, while [Ting et al.,
2024] extends the two-phase method with a multi-agent RL
algorithm for dynamic MCS operation.

While substantial research exists on both fixed-location
and mobile charging infrastructures, to our best knowledge,
no study has integrated these within a single framework. This
paper proposes an adaptive RL approach that simultaneously
determines fixed station locations and configurations while
dynamically scheduling mobile chargers.

3 Problem Statement
In this section, we formally define the HCSPO problem and
provide the following key definitions:
Definition 1 (Road Network). Let G = (V,E) be a directed
weighted graph with V the set of vertices and E the set of
edges. The vertices are the road network junctions, while the
edges represent the roads direction-wise.
Definition 2 (Dynamic Charging Demand). Considering the
time-varied nature of charging demand, Let the recording
dem1,...,|T |(v) =

[
dem1(v), dem2(v), · · · , dem|T |(v)

]
de-

note the charging demand of vertex v over the operation hori-
zon divided into |T | time slots.
Definition 3 (Charging Station). A charging station (CS) s
within the road network G is defined as a tuple s = (v, x),
where v ∈ V is the location node, x = (x1, . . . , xn) is a
vector of length n ∈ N with xi ∈ N being the number of fixed
chargers of type i at s. We denote the set of all possible CSs
as S. We set a limit on the number of fixed chargers of each s
by

∑
i xi ≤ K.

Definition 4 (Mobile Charger and Depot). A mobile charger
(MC) m can be defined as m = (l

1,··· ,|T |
m , τ

1,··· ,|T |
m , q

1,··· ,|T |
m ),

which denotes the current location, accessible time (arrival
time after scheduling decision) and remaining electricity of
m at different time slots t ∈ T . Each schedule for MCs is
batched with size of kMC as a fleet. In addition, we define
mobile depots j ∈ J as the initial locations of MCs before
scheduling and where they return to recharge when their bat-
teries deplete, i.e., l1m = j ∈ J .
Definition 5 (Charging Plan). A charging plan P = (S,M)
on G includes an assignment of vertices to stations s ∈ S in-
cluding the configuration of fixed chargers and the scheduling
of each mobile charger among all time slots.

We use a utility function (see Eq. (16)) to evaluate the
effectiveness of a charging plan. We set a limit on the budget
to install fixed stations via Eq. 1.∑

s∈S

xi · feei +
∑
m∈M

iMC(m) · feeMC ≤ Budget. (1)

Here, feei represents the installation cost of the i-th type of
fixed charger, iMC(m) is a binary variable where iMC(m) =
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Figure 2: Overview of HCSPO

1 indicates that mobile charger m is employed; otherwise, it
remains idle throughout the entire horizon. feeMC denotes
the operational cost of each mobile charger, and Budget
refers to the total budget allocated for the system.

We formalize HCSPO as follows. Given a road network
G = (V,E), time slots T = 1, . . . , |T |, historical node-level
demand, and perfect foresight of future demand, we seek a
charging plan that satisfies all demand and maximizes a util-
ity that balances social benefit against installation cost and
queuing loss.

Figure 2 summarizes the workflow: before operation, the
provider forecasts demand from historical data, selects station
locations/configurations, and schedules mobile chargers to
flexibly serve areas beyond fixed stations and ease peak-hour
congestion.

4 System Framework
This section outlines the HCSPO system framework (Fig-
ure 3). We begin with a multi-step charging demand predic-
tion model based on historical data. Next, we adapt the utility
model from [von Wahl et al., 2022] into a rolling horizon
framework that incorporates current and future demand for
MPC-based decision-making. Finally, we propose two mo-
bile charger scheduling strategies integrated with fixed station
planning.

4.1 Multi-step Charging Demand Prediction
To anticipate future charging needs, we formulate a multi-
step demand prediction problem as:

ˆdem
t+1:t+ωpred

= f(demt−ωhist+1:t, F t−ωhist+1:t), (2)
where dem denotes historical node-level demand and F in-
cludes exogenous features (e.g., weather, day type). We
adopt a spatiotemporal forecasting model inspired by [Qu et
al., 2024], which integrates a Graph Embedding Module
and a Multivariate Decoder. The embedding module cap-
tures temporal trends via CNN and spatial correlations via

Figure 3: System framework

GAT [Veličković et al., 2018], enhanced by residual connec-
tions. The decoder uses TPA-LSTM [Shih et al., 2019] to ex-
tract long-term temporal dependencies with multi-hop atten-
tion, enabling accurate multi-step forecasting over the graph.
This predicted demand guides downstream optimization of
CS and MC operations.

4.2 Utility Function
This section introduces a utility model to evaluate the effec-
tiveness of a charging plan. Building on the utility model
designed by [von Wahl et al., 2022], we extend this model
into a rolling horizon framework to assess the performance of
a charging plan under time-varying demand. We also intro-
duce a queuing loss metric that measures the number of EVs
leaving the queue due to excessive wait times for recharging.

Benefit
The benefit function measures the coverage of the road net-
work by charging infrastructures. Intuitively, nodes sup-
ported by a greater number of charging infrastructures sug-
gest higher benefits. To quantify this, we define the influen-
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tial radius of a charging station (CS) s as the distance within
which it attracts EVs from nearby nodes, influenced by its
charging supply capacity.

We first define the charging supply capacity as the total
power provided by both fixed chargers and mobile chargers
(if any) at time slot t, which can be calculated as follows:

Ct(s) =
n∑

i=1

xici +
∑
m∈M

iMC(m, s, t)cMCkMCδ, (3)

where ci denotes the charging power provided by each fixed
charger of type i, cMC is the charging power provided by
each mobile charger (MC), and iMC(m, s, t) : M×V ×T 7→
{0, 1} is an indicator function that equals 1 if m is scheduled
to s at time slot t, and 0 otherwise. δ ∈ [0, 1] is the invalid
time discount factor since MCs could not offer charging ca-
pacity while scheduling, which will be described in Section
4.3. Once the capacity of a CS s is determined, the influen-
tial radius of s at time slot t is: Rt(s) = Rmax

1

1+exp(−C̃t(s))
,

where Rmax denotes the maximum influential radius (a model
parameter), and −C̃t(s) represents the scaled capacity of s at
t.

Next, we define the coverage of node v at t, covt(v),
as the set of stations whose influential radius can cover v:
covt(v) = {s ∈ P | dist(v, s) < Rt(s)}, where dist(v, s)
is the distance between v and s. The benefit of the charging
plan P is then formulated as follows:

benefit(P ) =
1

|V ||T |
∑
t∈T

∑
v∈V

|covt(v)|∑
i=1

1

i

 . (4)

Cost
We evaluate the cost of a charging plan P in terms of
travel time, charging time and waiting time. How-
ever, since the presence of dynamic charging demand and
MCs scheduling, EVs from the same node may visit differ-
ent CSs at different time slots. Thus we also need to ex-
tend cost function into a rolling horizon context. In order
to estimate travel time, we first define an indicator function
iCS(v, s) : V ×S 7→ {0, 1} to be 1 if s is the CS assigned to v
according to Station Seeking Algorithm in [Liu et al., 2019],
and 0 otherwise. Then the travel time of P is:

travel(P ) =
1

|T |
∑
t∈T

∑
v∈V

∑
s∈S

iCS(v, s)
dist(v, s)

vel
demt(v),

(5)
where vel = const is the average vehicle speed.

Next, we estimate the charging time and waiting time
using the Pollaczek-Khintchine formula, as in [von Wahl et
al., 2022]. However, this approach assumes no limits on
queue length, considering only the stability of the queuing
system. In real-world applications, charging demand can
vary over time, and demand may occasionally exceed sta-
tion capacity. To address this, instead of enforcing stability
constraints, we set a maximum average waiting time, Wmax.
Specifically, if the waiting time for a queue with length s ex-
ceeds Wmax, no new EV will join the queue. Let

µt(s) = Ct(s)/B (6)

be the service rate of s at t (where B = const is
the electricity required for recharging each EV). According
to Pollaczek-Khintchine formula, estimated number of ap-
proaching EVs at t Dt(s) is:

Dt(s) =
∑
v∈V

iCS(v, s)

dist(v, s)
demt(v). (7)

Then the average waiting time of station s with no stability
constraints is:

W t(s) =
ρt(s)

2µt(s) (1− ρt(s))
, (8)

where
ρt(s) = Dt(s)/µt(s) < 1 (9)

is the stability constraints for queuing system in [von Wahl et
al., 2022; Liu et al., 2019]. When we set maximum W (s) to
Wmax, and replace it with W (s) into Eq. (6), (8) and (9), we
can obtain the maximum Dt

max through:

Dt
max =

2Wmax (C
t(s))

2

(2WmaxCt(s) +B)B
. (10)

Therefore, we estimate the corrected number of EVs ap-
proaching CS s at t as follows:

D̃t(s) =

{
Dt

max, Dt(s) ≥ Dt
max

Dt(s), Dt(s) < Dt
max

, (11)

and corrected W̃ t(s) can be obtained by:

W̃ t(s) =

{
Wmax, Dt(s) ≥ Dt

max
ρt(s)

2µt(s)(1−ρt(s)) , Dt(s) < Dt
max

, (12)

And we estimate charging time of charging plan P through

charging(P ) =
1

|T |
∑
t∈T

∑
s∈S

Dt(s)

µt(s)
. (13)

Finally, we aggregate the travel time, charging time, and
waiting time for a charging plan (P ) into a single cost func-
tion:
cost(P ) = α · travel(P )

+ (1− α) · [waiting(P ) + charging(P )] ,
(14)

where α ∈ [0, 1] is a weighting parameter.

Queuing Loss
Since we have introduced the maximum waiting time Wmax

and corrected estimated number of EVs D̃t(s) in Section 4.2,
a metric so-called queuing loss is introduced to measure the
loss of those demand for avoiding long waiting time, i.e.,

queuing loss(P ) =
∑
t∈T

∑
s∈S

max{Dt(s)− D̃t(s), 0}. (15)

Finally, we model utility function by combining three eval-
uation metrics through:

utility(P ) = λb · benefit(P ) + λc · cost(P )

+ λq · queuing loss(P ),
(16)

where λb, λc and λq are trade-off weights.
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4.3 Mobile Chargers Scheduling
We propose two heuristic strategies for scheduling mobile
chargers (MCs): supporting overloaded charging stations and
establishing flexible charging areas. Additionally, we intro-
duce policies for MC adjustment and recall to adapt to dy-
namic demand.

Supporting Charging Stations
To support overloaded charging stations, we employ a heuris-
tic strategy: (1) identify the station s with the highest loss,
calculated as λc · (waiting+charging)+λq ·queuing loss;
(2) sort all idle MCs by their distance to s; (3) select the near-
est idle MC with sufficient energy (> cMC) and not currently
scheduled; (4) assign it to s and update the station’s service
capacity and related metrics accordingly.

Establishing Flexible Charging Areas
To supplement fixed charging stations, we employ a heuristic
strategy: (1) identify the non-CS node v with the highest cu-
mulative demand demt:|T |(v); (2) sort all idle MCs by their
distance to v; (3) select the nearest idle MC with sufficient
energy (> cMC) and not currently scheduled; (4) dispatch it
to v to establish a temporary charging site without fixed in-
frastructure; (5) update system metrics such as capacity C,
service rate µ, and adjusted demand D̃ accordingly.

Adjustment and Recall Policy for MCs
Relocating a MC m incurs a scheduling delay during which it
cannot provide service. The next arrival time after scheduling
is given by τ t+1

m = dist(ltm, lt+1
m )/vel. To account for the

service loss during this period, we define a discount factor:

δt+1
m = 1−min

{
τ t+1
m − (t+ 1)H

H
, 1

}
, (17)

where H is the duration of a time slot.
Since MCs have limited battery capacity, their remaining

energy is updated as:

qt+1
m = qtm −

∑
s∈S

iMC(m, s, t) ·max{cMCδ
t
m, 0}. (18)

If qtm < cMC , the MC is recalled to a depot j for recharg-
ing. The required energy is q = BMC − qtm, and the updated
arrival time becomes τ t+1

m = dist(ltm, j)/vel + C ′/q, where
C ′ is the charging power.

5 Reinforcement Learning Framework
We propose an adaptive reinforcement learning framework
(ARL-HCSPO) to jointly optimize station placement, fixed
charger setup, and mobile charger scheduling, using demand
prediction (Section 4.1) and utility modeling (Section 4.2) to
shape the reward in dynamic environments.
Observation. The observation Oi at episode step i con-
sists of two components: planning observation for CSs,
denoted as Oi

CS and operation observation for MCs, de-
noted as Oi

MC. The planning observation is defined as

follows Oi
CS =

{(
lonv, latv, dem

1,··· ,|T |
v , x

)
v
|∀v ∈ V

}
,

where lonv and latv are the coordinate of node v, and x =

(x1, · · · , xn) is the configuration of fixed chargers, which is
only applicable when v is a CS.

Then we define the operation observation using equa-
tion Oi

MC =
{(

l
1,··· ,|T |
m , q

1,··· ,|T |
m , τ

1,··· ,|T |
m

)
m
|∀m ∈ M

}
,

which captures the location, arrival time after scheduling and
remaining electricity of all time slots t ∈ T .
Action. We adopt a five-action space inspired by [von Wahl
et al., 2022], serving as neighborhood operations to modify
the charging plan:

• Create by Demand: Add a CS at the node with highest de-
mand using a precomputed capacity-cost lookup table over
n charger types.

• Create by Benefit: Add a CS at the node with lowest cover-
age; configuration follows the same lookup rule.

• Increase by Demand: Add one charger to the node with
highest demand.

• Increase by Benefit: Add one charger to a CS near the
lowest-benefit node.

• Relocate: Move a charger from the lowest-benefit CS to the
one with the highest unmet demand (e.g., waiting time or
queuing loss).

To balance planning and real-time operation, after each ac-
tion step i, we schedule mobile chargers (MCs) based on the
updated plan. This coordination ensures flexibility for de-
mand surges via MCs, while CSs provide stable long-term
coverage.
Reward. Given the utility function described in Section 4.2,
we define the reward function between transition as the dif-
ference between P i+1 and P i, i.e., ri = utility(P i+1) −
utility(P i).

6 Experiments
In this section, we will introduce how we perform our ARL-
HCSPO method on a real-world application.

6.1 Datasets
We evaluate our approach on the road network of Nanshan
District, Shenzhen, China, comprising 1663 nodes and 2964
edges, similar to [von Wahl et al., 2022]. Existing charging
station locations are collected from [Qu et al., 2024] and used
as a baseline. Due to the lack of precise charging demand data
at the road level, we use charging session data from [Qu et
al., 2024] for charging demand estimation, allocating node-
level demand via inverse distance weighting from each node
to the nearest CS.

6.2 Evaluation Metric and Implementation
Based on the utility function in Section 4.2, we evaluate the
effectiveness of the charging plan generated by our approach
using several metrics: benefit, cost, queuing loss, travel,
charging, and waiting.

In the utility model, we use the following parameters as
default setting: α = 0.4, λb = 0.4, λc = 0.4, λq = 0.2, n =
3, k = 25, Budget = 5.4e7 CNY, E = 35 kwh, rmax = 2.5
km, H = 60 min, T=3, Wmax = 30 min, |M | = 30, kMC =
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10, cMC = 42 kw, BMC = 105 kwh. The rated charging
power of fixed chargers, c1, c2 and c3 are set to 7kw, 22kw
and 50kw, respectively, with corresponding installation fees
of 2700 CNY, 6750 CNY and 252000 CNY. The operation
cost for each MC is 59400 CNY.

RL in this paper is applied on Stable Baselines 3 [Raffin et
al., 2021], implemented using DQN as basic model to train
an optimal policy. We set learning rate to 0.01, buffer size to
10000, batch size to 128. The maximum number of training
steps is set to 30000.

6.3 Baselines
To evaluate the effectiveness of our method (ARL-HCSPO),
we compare it with several state-of-the-art baselines under
the same budget constraint (Eq. 1). Since baselines do not
utilize mobile chargers, they are allowed to deploy more fixed
chargers for fairness.

• EXISTING PLAN: Uses the real-world deployment of
location-fixed charging stations as a reference to quantify
improvement.

• HIGHEST DEMAND: A greedy strategy that selects nodes
with the highest cumulative demand until the budget is
depleted; charger configurations follow our action space
setup.

• BOUNDING&OPTIMIZING+: Based on [von Wahl et al.,
2022], this method enhances [Liu et al., 2019] by integrat-
ing a configuration lookup table for greedy allocation.

• PCRL: A reinforcement learning-based approach from
[von Wahl et al., 2022] for optimizing fixed CS placement
in real-world scenarios.

6.4 Experimental Results
In this experiment we apply our approach as well as other
baselines to solve HCSPO problem on Nanshan district,
Shenzhen datasets.

Evaluation
Table 1 presents the performance metrics of our approach
compared to other baselines, where ARL-HCSPO consis-
tently outperforms across all metrics. Notably, the benefit
metric sees a significant improvement at 205.1%, vastly ex-
ceeding other methods, indicating that our approach can sub-
stantially enhance the availability of charging infrastructure
across the road network. Additionally, a 40.5% reduction
in the cost metric demonstrates our approach’s ability to im-
prove EV owners’ charging satisfaction, especially reflected
in waiting metric with a 79.8% reduction.

For RL-based approach, i.e., PCRL and ARL-HCSPO,
we initialize charging plan as empty before training. Figure 4
illustrates the training evolution of our approach compared to
PCRL. As shown, our method (in blue) outperforms PCRL
(in orange) by achieving higher episode rewards with more
stable convergence.

Figure 5 depicts the distribution of charging stations gen-
erated by various methods. On this dataset, both the BOUND-
ING$OPTIMIZING+ and HIGH DEMAND approaches fail to
show significant improvement over the EXISTING PLAN. In
contrast, both PCRL and ARL-HCSPO exhibit noticeable

Figure 4: Training progression of ARL-HCSPO and PCRL, with
mean rewards evaluated every 400 training steps.

Figure 5: Charging plan comparison on Nanshan district, Shenzhen.

enhancements, with ARL-HCSPO achieving the most ex-
tensive CS coverage, due to the integration of mobile charger
scheduling. Moreover, ARL-HCSPO results in a more
evenly distributed network of CSs across the road system.

Ablation Study
To evaluate the effectiveness of each module within ARL-
HCSPO, we compare our approach against three variants:
(1) ARL-HCSPO (W/O MPC), which excludes the MPC
policy; (2) ARL-HCSPO (W/O MCS1), which removes
the supporting charging station scheduling strategy; and (3)
ARL-HCSPO (W/O MCS2), which omits the flexible charg-
ing areas scheduling strategy.

The results in Table 2 indicate that all variants improve
upon the EXISTING PLAN. Comparing our approach with
ARL-HCSPO (W/O MPC), we observe a significant 82.3%
increase in the benefit metric, alongside modest gains in
other metrics, underscoring the value of incorporating the
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Approach benefit ↑ cost ↓ travel ↓ charging ↓ waiting ↓ queuing loss ↓
EXISTING PLAN 100% 100% 100% 100% 100% 100%
HIGHEST DEMAND 93% 90% 91.9% 90.4% 72.7% 98.2%
BOUNDING&OPTIMIZING+ 78% 97.3% 98.5% 123.2% 73.2% 95.7%
PCRL 126% 63.8% 71.1% 44.9% 21% 94.2%
ARL-HCSPO (ours) 205.1% 59.5% 52.8% 43.3% 20.2% 86.7%

Table 1: Results on Nanshan, Shenzhen dataset compared to baselines. Evaluation metrics where higher value are better are marked with ↑,
otherwise are marked with ↓. Best results are marked bold.

Approach benefit ↑ cost ↓ travel ↓ charging ↓ waiting ↓ queuing loss ↓
EXISTING PLAN 100% 100% 100% 100% 100% 100%
ARL-HCSPO (W/O MPC) 122.8% 62.7% 68.6% 45.4% 20.2% 91.9%
ARL-HCSPO (W/O MCS1) 205.7% 63.9% 70.2% 42.6% 26.2% 93%
ARL-HCSPO (W/O MCS2) 141.3% 48.5% 29.1% 45.3% 11.9% 67.8%
ARL-HCSPO 205.1% 59.5% 52.8% 43.3% 20.2% 86.7%

Table 2: Ablation study on Nanshan, Shenzhen dataset. Evaluation metrics where higher value are better are marked with ↑, otherwise are
marked with ↓. Best results are marked bold.

demand prediction model and MPC policy. Additionally,
the analysis of the two MC scheduling strategies reveals
different focal points: ARL-HCSPO (W/O MCS1) em-
phasizes maximizing benefit, achieving a peak benefit
of 205.7%, slightly exceeding ARL-HCSPO (205.1%).
Conversely, ARL-HCSPO (W/O MCS2) prioritizes cost-
efficiency, recording the lowest cost at 48.5%, with signifi-
cant reductions in travel (29.1%) and waiting (11.9%).

The results from ARL-HCSPO demonstrate that a bal-
anced approach, combining both strategies, can deliver a sub-
stantial benefit increase of 63.8% with only an 11% increase
in cost compared to ARL-HCSPO (W/O MCS2).

Effect of K
The maximum number of fixed chargers, K, is a critical fac-
tor in determining the effectiveness of our approach. Figure
6 illustrates the impact of varying K values on different per-
formance metrics when applying ARL-HCSPO. The results
for all metrics are normalized by the scaled-down value of the
EXISTING PLAN, as shown in Table 1.

For the benefit metric, increasing K from 4 to 36 results
in an optimal value of 244.4% at K = 8, after which there is
a moderate decline. In contrast, metrics such as cost, travel,
and waiting continue to improve as K increases, reaching
their optimal values of 51.6%, 38.3%, and 75.2%, respec-
tively, at K = 32. The queuing loss metric exhibits some
fluctuation but generally trends downward.

In summary, while increasing K improves performance in
terms of cost and queuing loss, it is important to strike a
balance by keeping K within a smaller range to optimize
benefit. This balance is crucial for improving the overall
supply of charging infrastructure.

Further sensitivity analysis could provide valuable man-
agerial insights for future applications.

7 Conclusion
In conclusion, this paper presents a comprehensive solution
to the HCSPO problem by integrating fixed charging station

Figure 6: Impact of various metrics compared to EXISTING PLAN
as percentages, evaluated against different values of K.

planning with dynamic mobile charger operation. We pro-
pose a demand prediction model and two heuristic schedul-
ing strategies for mobile chargers, solved using an adaptive
reinforcement learning algorithm. Extensive experiments on
real-world datasets show that our method outperforms exist-
ing approaches across multiple metrics, offering an efficient
solution to dynamic EV charging demand challenges.
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