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Abstract
Time-of-Flight (ToF) imaging systems are suscep-
tible to various noise and degradation, which can
severely affect image quality. Traditional sequen-
tial imaging pipelines often suffer from error ac-
cumulation due to separate multi-stage process-
ing. Existing end-to-end methods typically rely
on noisy-clean depth image pairs for supervised
learning. However, acquiring ground-truth is chal-
lenging in real-world scenarios due to factors such
as Multi-Path Interference (MPI), phase wrapping,
and complex noise patterns. In this paper, we pro-
pose a self-supervised learning framework for end-
to-end ToF imaging, which does not require any
noisy-clean pairs yet generalizes well across var-
ious off-the-shelf cameras. Our framework lever-
ages the cross-modal dependencies between RGB
and depth data as implicit supervision to effectively
suppress noise and maintain image fidelity. Addi-
tionally, the loss function integrates the statistical
characteristics of raw measurement data, enhanc-
ing robustness against noise and artifacts. Exten-
sive experiments on both synthetic and real-world
data demonstrate that our approach achieves perfor-
mance comparable to supervised methods, without
requiring paired noisy-clean data for training. Fur-
thermore, our method consistently delivers strong
performance across all evaluated cameras, high-
lighting its generalization capabilities. The code
is available at https://github.com/WeihangWANG/
RGBD imaging.

1 Introduction
Depth sensing techniques are playing an increasingly im-
portant role in many fields, such as 3D reconstruction, un-
derstanding, and interaction. Over the past decade, various
depth sensing techniques have emerged, including stereo vi-
sion, structured light and Time-of-Flight (ToF). Due to low
cost, high accuracy, and lightweight design, ToF cameras
have attracted increasing attention in commercial applica-
tions. However, ToF cameras typically suffer from a variety

∗Corresponding author

of noise, including phase wrapping, multi-path interference,
motion artifact, and shot noise. Therefore, the ToF imaging
method for producing high-quality depth images is of signif-
icant value.

To improve the ToF imaging quality, some methods use
a multi-stage pipeline and solve these problems in isola-
tion, e.g., phase unwrapping [Järemo Lawin et al., 2016;
Wang et al., 2021], multi-path removal [Marco et al., 2017;
Agresti and Zanuttigh, 2018], and motion artifact suppres-
sion [Chen et al., 2020]. However, the cascaded imaging
method suffers from error accumulation. Moreover, most of
these methods rely on prior assumptions or pre-trained mod-
els, which usually deviate from real-world data. The domain
gap between prior assumptions and real-world data results in
limited performance.

To mitigate these issues, end-to-end learning frameworks
have been proposed to recover the depth from raw correlation
measurements directly in [Su et al., 2018; Zheng et al., 2021;
Wang et al., 2023a; Wang et al., 2023b], which jointly real-
ize multi-path interference removal, phase unwrapping, and
de-noising. However, such frameworks also encounters the
problem that the collection of real-world raw data paired with
ground-truth depth images is difficult and even impractical.
Supervision signals containing reconstruction error and mis-
alignment also lead to poor imaging performance.

To address these challenges, this paper proposes a self-
supervised end-to-end learning method which does not re-
quire any noisy-clean depth image pairs for training. We
exploit the cross-modal dependency between the RGB and
depth modalities as supervision information, which is in-
spired by the nature that RGB images also contain rich ge-
ometric information of the scene.

In summary, the contributions are as follows:

• We propose a self-supervised learning framework for
end-to-end ToF imaging without the requirement of any
noisy-clean depth image pairs. It exploits the cross-
modal dependency between the RGB and depth modal-
ities as implicit supervision to suppress noise and pre-
serve fidelity.

• We design a hybrid loss function incorporating the sta-
tistical characteristics of raw measurement data, which
enhances robustness against noise and artifacts.

• We conduct extensive real-world end-to-end ToF imag-
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ing experiments on four different off-the-shelf ToF cam-
eras. The results demonstrate that the proposed method
achieves competitive performance compared to super-
vised methods. Furthermore, our method consistently
delivers strong performance across all evaluated cam-
eras, highlighting its generalization capabilities.

2 Related Work
2.1 Cascaded ToF Imaging Processing Methods
Phase Unwrapping. Phase wrapping is a fundamental prob-
lem in many applications, such as synthetic aperture radar
(SAR) [Pritt, 1996; Chen and Zebker, 2002], as well as in ToF
imaging. Classical phase unwrapping methods estimate the
phase wrap numbers with only a single depth image. These
methods follow man-made assumptions, including the rela-
tionship between amplitude and depth [McClure et al., 2010;
Cho et al., 2012], and the phase jump between adjacent pixels
[Frey et al., 2001; Droeschel et al., 2010b].

Multi-shot methods take two depth images at two different
frequencies to solve depth ambiguity. The common one is
Chinese remainder theorem, that is effective in the easy cases
with the absence of other errors. To address the hard cases
with the presence of MPI or noise, multiple image priors
are proposed, such as amplitude constraints [Järemo Lawin
et al., 2016; Wang et al., 2021], and frequency constraints
[Droeschel et al., 2010a].

Multi-path Interference Removal. Due to the complexity
of multi-path effect, traditional methods usually take multi-
ple measurements at different modulation frequencies. These
methods recast the multi-path as a sparse estimation problem
and solve from different perspectives, including optimization
[Bhandari et al., 2014; Freedman et al., 2014], spectral esti-
mation [Feigin et al., 2015; Kirmani et al., 2013], and com-
pressive sensing (CS) [Xuan et al., 2016]. Hardware-based
methods introduce an extra projector [Naik et al., 2015] or
custom coding [Kadambi et al., 2013].

Recently, learning based methods for MPI removal have
been proposed [Son et al., 2016; Marco et al., 2017; Agresti
and Zanuttigh, 2018; Qiu et al., 2019; Gutierrez-Barragan et
al., 2021]. However, these learning based methods have an
unsatisfactory performance in real-world data.

2.2 End-to-end ToF Imaging Processing Methods
The multi-stage pipeline often suffers from cumulative errors
and information loss. To address these issues, the end-to-
end framework is widely adopted, leveraging noisy-clean im-
age pairs for ToF imaging processing in [Su et al., 2018;
Yan et al., 2020; Zheng et al., 2021; Gao et al., 2021;
Jung et al., 2021; Li et al., 2022; Meng et al., 2024; Tang et
al., 2024]. Su et al. [Su et al., 2018] firstly propose a GAN-
based architecture for ToF imaging from dual-frequency, raw
correlation measurements. Zheng et al. [Zheng et al., 2021]
design a multi-stage iterative CNN for I-ToF depth error re-
moval. Jung et al. [Jung et al., 2021] take an fusion of RGB
and raw correlation data as input and focus on real-world sce-
narios with strong ambient light and far distances.

However, existing methods rely on either 3D reconstruc-
tion or other commercial depth cameras as ground truth,

Figure 1: The illustration of ToF imaging principles. C0−3 are four
sampling points.

which is not sufficiently reliable. Zheng et al. [Zheng et al.,
2021] propose to use 3D reconstruction results as clean depth
image, but this method suffers from reconstruction errors and
misalignment. Su et al. [Su et al., 2018] propose to gener-
ate noisy data by adding synthesized noise and degradation
to clean data. However, real-world noise and degradation are
complicated and difficult to simulate accurately. Therefore,
the performance of these methods is limited due to the do-
main gap between real-world data and generated noisy-clean
pairs.

2.3 Unsupervised Learning Methods for Image
Enhancement

To address the challenges in collecting clean image for su-
pervision, unsupervised and self-supervised learning meth-
ods without noisy-clean pairs have recently gained increas-
ing popularity in image enhancement. For example, re-
cent methods use noisy-noisy pairs [Lehtinen et al., 2018],
noisier-noisy pairs [Moran et al., 2020; Krull et al., 2019],
noisy images only [Batson and Royer, 2019; Xu et al., 2020;
Wang et al., 2023a] instead of noisy-clean pairs for image
denoising. Most of these methods present a specific prior
model on the noise signal, which may lead to unsatisfactory
in real-world scenarios. Wang et al. [Wang et al., 2023b] pro-
pose an optimal transport based method that shows remark-
able superiority in raw depth image denoising without any
prior models, but it cannot handle other error sources. Sim-
ilarly, Agresti et al. [Agresti et al., 2019] propose an unsu-
pervised method for multipath interference removal based on
pixel-level domain adaptation, while it still needs clean-noisy
pairs for training.

3 Background
Typical ToF imaging systems consist of two main compo-
nents, namely an active illumination module (emitter) and an
image sensor (receiver), as shown in Figure 1. The distance
d is derived from the phase shift ∆ϕ between emitted signal
g(t) and reflected signal s(t), which can be written as

d =
∆ϕ · λ
4π

=
∆ϕ · c
4πfm

. (1)

where ∆ϕ is the phase shift, λ is the wavelength, fm is the
modulation frequency, and c is the speed of light. The prob-
lem is to solve for the phase shift.
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The image sensor cannot measure the phase shift ∆ϕ di-
rectly, but measures the integral of the raw correlation func-
tion instead as

h(τ) = s(t)⊗ r(t), (2)

with
g(t) = cos(fm · t), (3)

s(t) = α · g (t−∆ϕ) + β. (4)

where r(t) is the reference signal usually equal to the emitted
signal g(t), α is the amplitude attenuation coefficient, and β
represents the intensity of the ambient light. Then, the raw
correlation measurement in (2) can be written as

h(τ) =
1

T
lim

T→∞

∫ T
2

−T
2

s(t)r(t+ τ)dt,

=
α

2
cos(fmτ −∆ϕ) + β.

(5)

In practice, with four sampling points of iπ/2 for i ∈
{0, 1, 2, 3} in a period, we can obtain four raw correlation
measurements h0 to h3 and calculate the phase shift ∆ϕ with
these four raw correlation measurements, further the depth d
and amplitude value α as

∆ϕ = arctan

(
h1 − h3

h0 − h2

)
, (6)

d = arctan

(
h1 − h3

h0 − h2

)
· c

4πfm
, (7)

α =

√(
h1 − h3

2

)2

+

(
h0 − h2

2

)2

. (8)

The above method is most commonly used in ToF cam-
eras. However, due to the imperfection of ToF measurements,
some geometric information would be lost, while undesired
noise may be introduced, resulting in inaccurate depth estima-
tion, such as those caused by multi-path interference, phase
wrapping, etc.

4 Methodology
Grounded in information theory, we derive a self-supervised
formulation and implement it using WGAN-based adver-
sarial learning, combined with MAE fidelity and smooth-
ness losses, to guide training without the need for clean GT
pairs. By maximizing the cross-modal mutual information,
the model learns to generate high-quality depth from raw-data
input.

4.1 Theoretical Analysis
Taking raw correlation measurements C as input, the ToF
imaging model can be denoted as

X̂ := f(C), (9)

where X̂ is the estimated depth image of the model.
It is relatively easy to train an imaging model with the

ground truth depth image X as supervision. However, the
challenge lies in collecting noisy-clean pairs (X̂,X). To

overcome this challenge, we use the mutual information be-
tween the RGB image R and the depth image X , i.e. I(X;R)
to supervise the learning of an imaging model. To achieve
this, we consider the following formulation

min
f

D
(
pX̂,R∥pX,R

)
, (10)

where d(·, ·) measures the distance between distributions,
such as the KL divergence or Wasserstein distance. pX̂,R and
pX,R are the joint distributions of (X̂, R) and (X,R), respec-
tively.

According to information theory, mutual infor-
mation I(X̂;R) is equivalent to the KL divergence
DKL(pX̂,R∥pX̂pR), represented as

I(X̂;R) =

∫
X̂×R

pX̂,R log
pX̂,R

pX̂pR
dX̂dR,

= DKL

(
pX̂,R∥pX̂pR

)
.

(11)

Generally, transition from an actual joint distribution to a
joint distribution under the assumption of independence will
either remain or increase the KL divergence. In other words,
the KL divergence between pX̂,R and pX̂pR is no less than
that between pX̂,R and pX,R, which can be written as

DKL

(
pX̂,R∥pX,R

)
≤ DKL

(
pX̂,R∥pX̂pR

)
= I(X̂;R).

(12)
The mutual information I(X̂;R) is upper bounded by

I(X;R) based on information theory, denoted as

I(X̂;R) ≤ I(X;R). (13)

Therefore, minimizing the divergence between the two
joint distributions pX̂,R and pX,R in (10) would maximize the
mutual information I(X̂;R). The above analysis motivates
us to design a self-supervised end-to-end framework leverag-
ing RGB-D cross-modal dependency as supervision for train-
ing a ToF imaging model.

4.2 Network Architecture
The proposed formulation (10) is implemented based on a
WGAN architecture, as shown in Figure 2. The generator G
estimates the de-noised depth image while preserving the ge-
ometry information of raw measurements. The discriminator
D forces the model to learn the common RGB-D cross-modal
dependency between X̂ and R, which can further suppress
noise and improve fidelity.

The proposed generator consists of a multi-branch feature
extraction module and a U-Net module. The feature ex-
traction module includes a raw correlation branch, a depth
branch, and a depth-amplitude branch. We use the Resid-
ual Channel Attention Block (RCAB) [Zhang et al., 2018] as
backbone, which can focus on more informative features. The
features from the three branches are concatenated as input to
the U-Net architecture for depth image generation.

The discriminator is designed to determine whether the
generated depth image and the paired RGB image (X̂, R)
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Figure 2: Overview of the proposed self-supervised end-to-end ToF imaging framework. The network architecture is based on WGAN. In
particular, the discriminator leverages the RGB-D cross-modal dependency as implicit supervision, guiding the generator to suppress noise
and maintain geometric fidelity. Additionally, the loss function integrates the statistical characteristics of raw measurement data, enhancing
robustness against noise and artifacts.

maintain consistent cross-modal dependencies with the syn-
thesized RGB-D image pair (Xs, Rs), which guides the
model to generate a depth image with correct geometry and
high fidelity relative to the paired RGB image. Note that the
generated depth image X̂ and the synthesized depth image
Xs in the discriminator are not paired, which relaxes the re-
quirement for paired noise-clean depth images in supervision.

4.3 Loss Functions
As shown in Figure 2, the proposed framework is imple-
mented based on WGAN and we propose a hybrid loss to
train the end-to-end ToF imaging model as

LG = E[−D(G(C), R)] + λ1Ldep + λ2Lcorr + λ3Lsmooth,
(14)

LD = E[D(G(C), R)]− E[D(Xs, Rs)], (15)

where λ1, λ2, and λ3 are hyperparameters.
In (14), the first term represents cross-modal adversarial

learning, which guides the model to suppress noise and im-
prove fidelity based on the geometric information implied in
the RGB image. Besides, the loss function takes into account
the statistical characteristics of both depth data and raw corre-
lation data. The last three terms correspond to three branches
of the generator. The details are given as follows.

Ldep minimizes the mean absolute error between the out-
put generated depth image X̂ and the original depth image
X0 calculated from raw correlation measurements C as

Ldep = ∥G(C)−X0∥1. (16)

Lcorr minimizes the mean absolute error between the re-
constructed correlation measurements Ĉ and input raw corre-
lation measurements C as

Lcorr = ∥Ĉ − C∥1, (17)

where Ĉ is reconstructed based on X̂ and amplitude Z at two

modulation frequencies f1 and f2 in the following form as

Ĉ = Z∗[
sin(

X̂

c/4πf1
), cos(

X̂

c/4πf1
), sin(

X̂

c/4πf2
), cos(

X̂

c/4πf2
)

]
.

(18)
Lsmooth is used to ensure the local smoothness of gener-

ated depth image. Especially, we use a total variation loss [Su
et al., 2018] can be written as

Lsmooth = |∂xX̂|e−|∂xZ| + |∂yX̂|e−|∂yZ|. (19)

5 Experimental Results
In this section, we evaluate the proposed method on both syn-
thetic and real-world ToF raw data captured with four differ-
ent off-the-shelf ToF cameras to evaluated the performance
and generalization capabilities.

5.1 Experimental Settings
In our method, the discriminator is trained by paired RGB-D
data {(x̂i, ri)} and {(xs

i , r
s
i )}, while the generator takes raw

correlation data ci, directly calculated noisy depth data x̂i and
amplitude data zi as input. The U-Net module of generator
consists of two down-sampling CNN layers in the encoder
and two up-sampling CNN layers in the decoder. The syn-
thesized RGB-D pairs {(xs

i , r
s
i )} for discriminator are from

the synthetic dataset [Zheng et al., 2021], which is generated
based on simulating the imaging system of the LUCID Helios
camera. Table 1 shows the hyperparameter tuning procedure
for the loss function. Using PSNR as the evaluation metric,
we set λ1 = 10 and λ3 = 20. λ2 is empirically set to 5. The
initial learning rate is 0.1, and the optimizer is RMSprop. The
maximum number of epochs is set to 200. The code is imple-
mented in PyTorch and run on Nvidia 3090Ti. The compari-
son of computational complexity is shown in Table 2, which
shows that our method has medium parameter amount and
computation cost.
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RGB scene Raw depth
(14.81/6.52/27.31)

Zheng et al.
(1.94/0.77/49.43)

Ours
(2.26/0.84/49.79)

Ground Truth

RGB scene Raw depth
(7.28/10.55/33.17)

Zheng et al.
(3.17/3.06/41.87)

Ours
(2.74/2.04/43.67)

Ground Truth

Figure 3: Visual quality and quantitative score comparison on the synthetic data. The quantitative scores are mean absolute error (MAE),
relative error (Rela.), and PSNR respectively.

λ1/λ3 1 10 20 30

1 34.57 35.25 34.37 35.93
10 39.76 40.24 42.87 39.64
20 37.96 40.14 41.10 40.67
30 39.94 40.82 40.01 41.80

Table 1: Tuning procedure for hyperparameters in the loss function.

Method Parameter Amount FLOPs

[Su et al., 2018] 16.6M 40.3G
[Zheng et al., 2021] 2.1M 5.3G

Ours 4.8M 12.7G

Table 2: The comparison of computational complexity.

MAE
(cm)

Rela.
(%)

PSNR
(dB)

Raw measurement 9.73 3.47 30.26
[Su et al., 2018] 4.23 1.78 -

[Zheng et al., 2021] 2.03 0.85 44.19
Ours 2.56 1.12 42.53

Table 3: Quantitative comparison on the synthetic dataset.

5.2 Experiments on Synthetic Datasets
In this experiment, we evaluate the proposed method on a
synthetic dataset [Zheng et al., 2021] under the scenario with
combined corruptions. Table 3 shows the quantitative re-
sults of the compared methods in terms of mean absolute er-
ror (MAE), relative error (Rela.), and PSNR. Without using
noisy-clean pairs as supervision, our self-supervised method
achieves competitive performance compared to the super-
vised method [Zheng et al., 2021] which is trained using
noisy-clean pairs.

ToF
camera

Modulation
Frequency (MHz) Resolution Sensor

Lucid 75 & 100 640×480 Sony
TI 40 & 70 320×240 TI

TCS 80 & 100 640×480 Sony
TCE 12 & 24 320×240 EPC660

Table 4: Parameters of the evaluated ToF cameras.

Moreover, Figure 3 compares the visual quality along with
quantitative scores on samples from the synthetic dataset. The
depth images are shown in pseudo-color, with a red-to-blue
color scheme representing distances from near to far. The
first one is a bathroom case with high reflectivity mirror and
a corner. In the second case, the main degradation is low-
intensity noise caused by a black curtain. It can be observed
that generated depth images of ours can suppress noise while
preserving geometry information, which achieve competitive
performance with supervised method [Zheng et al., 2021].

5.3 Experiments on Real-world Datasets
In this experiment, we evaluate the proposed method on real-
world data captured by four off-the-shelf ToF depth cameras,
respectively LUCID, TI, TCS, and TCE. The basic param-
eters of four cameras are listed in Table 4. The first two
datasets are captured by [Zheng et al., 2021] and [Su et al.,
2018]. We test on the data of two additional cameras to fur-
ther prove the generalization of our proposed method.

Comparison on real-world data captured with TI. Fig-
ure 4 illustrates two cases of the daily scenes from the real-
world dataset [Su et al., 2018]. The raw measurements are
captured by a TI OPT8241-CDK-EVM camera, including
noise, invalid pixels, and complex reflectance. It can be ob-
served that the supervised method [Zheng et al., 2021] does
not generalize well to the real-world data captured by a dif-
ferent depth sensor. Compared with [Su et al., 2018], our
proposed method can preserve detail information while ef-
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Figure 4: Visual quality comparison on the imaging outputs from the raw data captured by the TI camera.

RGB scene Raw depth Su et al. Zheng et al. Ours

RGB scene Raw depth Su et al. Zheng et al. Ours

Figure 5: Visual quality comparison on the imaging outputs from the raw data captured by the LUCID camera.

Amplitude scene Raw depth Su et al. Zheng et al. Ours

Amplitude scene Raw depth Su et al. Zheng et al. Ours

Figure 6: Visual quality comparison on the imaging outputs from the raw data captured by the TCS camera.
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Figure 7: Visual quality comparison on the imaging outputs from the raw data captured by the TCE camera.

fectively removing noise. For example, in the first sample,
the potted leaves are blended into the background in [Su et
al., 2018], but our method retains the details.

Comparison on real-world data captured with LUCID.
Figure 5 compares the visual quality on two samples from
the real-world dataset captured by Lucid. It can be observed
that the method [Su et al., 2018] does not perform well in
this dataset, due to the difference of the noise model. The su-
pervised method [Zheng et al., 2021] recovers smooth depth
image, but it is trained using data captured by the LUCID
camera. However, the method [Zheng et al., 2021] changes
the shape of the object, such as the distorted edges in the sec-
ond scene. In comparison, our proposed method can recover
a cleaner depth image with more reasonable 3D geometry.

Comparison on real-world data captured with TCS.
Figure 6 illustrates two cases of the daily scenes in the of-
fice, captured with TCS. The first scene is a far-distance scene
with a maximum range of 7 meters, while the second one is
a close-range scene with complex reflectance and shape. The
raw ToF measurements are captured at two high frequencies,
respectively 80M and 100M . Therefore, the depth images
suffer from phase unwrapping and the pseudo-color visual-
ization of the raw depth image exhibits periodic repetition. As
shown in Figure 6, the complex noise leads to failure of [Su et
al., 2018] and [Zheng et al., 2021]. Compared with these two
methods, the proposed method can restore the depth image
with explicit edges and less noise.

Comparison on real-world data captured with TCE.
Figure 7 illustrates two cases of the daily scenes in the room.
The first case is a full-view of room. The second one is a
corner case. Both of the methods can remove random noise,
but the restored depth image by [Zheng et al., 2021] is over-
smoothed, and errors occur at the boundary of the image. For
an intuitive comparison of multi-path removal, we randomly
select a scanline (blue line in Amplitude). As shown in Figure
7, the scanline of the raw depth and restored depth by [Zheng
et al., 2021] is far from the ideal structure of the corner, as
the scanline is curved and messy. Note that Su et al. requires
dual-frequency raw ToF correlation measurements as input
to recover depth. However, the TCE camera provides only

Ldep Lcorr Lsmooth
MAE
(cm)

Rela.
(%)

PSNR
(dB)

✓ - - 4.8 1.60 39.52
✓ ✓ - 2.92 1.35 41.75
✓ - ✓ 3.13 1.46 40.65
✓ ✓ ✓ 2.62 1.14 42.41

Table 5: Ablation study on the synthetic dataset.

single-frequency measurements. Therefore, the results of Su
et al. are not included in Fig. 7.

5.4 Ablation Experiments
In this section, we provide ablation study to evaluate the com-
ponents of the proposed loss functions. The ablation exper-
iments are conduct on a small dataset which contains only a
quarter of the full synthetic dataset [Zheng et al., 2021].

As shown in Table 5, the model performs best when all the
components are used as the loss function, which demonstrate
that the hybrid loss function incorporating statistic character-
istics of raw measurements can improve the performance of
the imaging model.

6 Conclusion
In this paper, we propose a self-supervised learning frame-
work for end-to-end ToF imaging, which does not require any
noisy-clean pairs yet generalizes well across various off-the-
shelf cameras. The proposed self-supervised framework uti-
lizes the cross-modal dependency between RGB and depth
data as implicit supervision to suppress noise and preserve fi-
delity. The loss function incorporates the statistical character-
istics of raw measurement data, improving robustness against
noise and artifacts. Experimental results on both synthetic
and real-world data demonstrate that our proposed method
can suppress noise and preserve fidelity, which achieves com-
petitive performance with supervised methods. Furthermore,
our method consistently delivers strong performance across
all evaluated cameras, highlighting its generalization capabil-
ities across various scenarios.
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