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Abstract

Graph contrastive learning (GCL) often suffers
from false negatives, which degrades the perfor-
mance on downstream tasks. The existing meth-
ods addressing the false negative issue usually rely
on human prior knowledge, still leading GCL to
suboptimal results. In this paper, we propose a
novel Negative Metric Learning (NML) enhanced
GCL (NML-GCL). NML-GCL employs a learn-
able Negative Metric Network (NMN) to build a
negative metric space, in which false negatives can
be distinguished better from true negatives based
on their distance to anchor node. To overcome the
lack of explicit supervision signals for NML, we
propose a joint training scheme with bi-level op-
timization objective, which implicitly utilizes the
self-supervision signals to iteratively optimize the
encoder and the negative metric network. The solid
theoretical analysis and the extensive experiments
conducted on widely used benchmarks verify the
superiority of the proposed method.

1 Introduction

Graph contrastive learning (GCL) has emerged as a solution
to the problem of data scarcity in the graph domain [Liu ez al.,
2022]. GCL employs an augmentation-encoding-contrasting
pipeline [You er al., 2020] to obtain node- or graph-level rep-
resentations without requiring labeled data. The goal of GCL
is to find a well-trained encoder (e.g., a two-layer GCN[Kipf
and Welling, 2017]) capable of generating informative rep-
resentations capturing the underlying structure and features
of an input graph, which can then be applied to downstream
tasks.

The prevailing approach in GCL aims to maximize mu-
tual information (MI) between different views, bringing pos-
itive sample embeddings closer together while pushing nega-
tive sample embeddings further apart [Veli¢kovié et al., 2018;
Zhu et al., 2020]. For this purpose, InfoNCE, a lower bound
of MI, is widely applied as the contrastive loss [Poole et al.,
2019]. InfoNCE-based approaches often treat different views
of the same node as positives, while those of different nodes
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Figure 1: Illustration of GCL with false negatives and NML en-
hanced GCL.

as negatives. Such arbitrary and overly simplistic strategy
makes the existing methods suffer from false negatives, i.c.,
the positive samples incorrectly treated as negatives. For ex-
ample, in Fig. 1a, the GCL with false negatives will result in
that the embeddings of false negatives (blue squares) and true
negatives (grey squares) are pushed away together from the
anchor node (red triangle), which undermines the discrimina-
tive power of the learned embeddings, thereby reducing the
performance on downstream tasks [Chuang et al., 2020].
The existing methods usually address the issue of false neg-
atives by weighting negative samples, which fall into two
categories, hard-weight based [Zhang et al., 2022; Wang et
al., 2024; Hu et al., 2021; Liu et al., 2023; Wu et al., 2020;
Huynh et al., 2022; Fan et al., 2023; Han et al., 2023;
Sun et al., 2023; Yang et al., 2022; Li et al., 2023; Liu et
al., 2024] and soft-weight based [Xia er al., 2022; Lin et al.,
2022; Hao et al., 2024; Liu et al., 2024; Niu et al., 2024;
Zhuo et al., 2024b; Wan et al., 2023; Chi and Ma, 2024,
Zhuo et al., 2024a]. In particular, hard-weight based methods
often assign binary weights to negative samples based on pre-
defined criteria such as similarity threshold [Wu et al., 2020;
Huynh et al., 2022] or neighborhood distance [Li er al., 2023;
Liu ef al., 2024; Zhang et al., 2022]. For instance, in [Zhang
et al., 2022], the first-order neighbors of an anchor node are
considered false negatives. In contrast, soft-weight based
methods relax the weight to [0, 1], of which one typical ap-
proach is first cluster the nodes, then determine the weight of
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negative samples based on the distance between the anchor
node and the cluster where the negative sample resides [Lin
et al., 2022]. However, both methods rely on simple prior
knowledge to identify false negatives, which cannot guaran-
tee precision or recall, still leading GCL to suboptimal results.

To overcome the above challenges, in this paper, we pro-
pose a novel Negative Metric Learning (NML) enhanced
GCL (NML-GCL). The main idea of NML-GCL is to extend
an InfoNCE-based GCL with a Negative Metric Network
(NMN) to build a negative metric space where the less likely
two nodes are true negatives of each other (and equivalently,
the more likely two nodes are false negatives of each other),
the closer their distance. As shown in Fig. 1b, compared
with the true negatives, the false negatives’ embeddings will
be pulled closer to the anchor node under the guidance of the
negative metric network. Essentially, this distance in the neg-
ative metric space can be considered a soft label indicating
the node’s status as a negative or positive sample with respect
to the anchor. However, in the situation of self-supervised
learning, the training of the negative metric network is dif-
ficult because there is a lack of explicit supervision signals
regarding on negative/positive samples. To address this issue,
inspired by the idea of self-training [Wei et al., 2020], we pro-
pose a joint training scheme that can iteratively update the
graph encoder (GCN) and the negative metric network with a
bi-level optimization objective. During the bi-level optimiza-
tion, the negative metric network is responsible for assigning
soft labels to samples based on the embeddings output by the
encoder, while the encoder adjusts itself in the next iteration
based on these soft labels. It is noteworthy that the insight
here is the self-supervision signals (i.e., the different views of
an anchor node) not only explicitly supervise the training of
the encoder, but also implicitly supervise the training of the
negative metric network, which makes them able to help each
other.

We further provide a solid theoretical analysis of our pro-
posed NML-GCL, revealing the connection between the neg-
ative metric network and the graph encoder. Specifically, we
prove that: (1) our NML can enhance the GCL with a tighter
lower bound of mutual information (MI) compared to tradi-
tional InfoNCE loss, and (2) by maximizing the tighter lower
bound of MI, the joint training of the encoder and the negative
metric network can mutually reinforce each other, leading to
simultaneous improvements. Our contributions are summa-
rized as follows:

(1) We propose a novel GCL framework NML-GCL. NML-
GCL employs a learnable negative metric network to
build a negative metric space, in which false negatives
can be distinguished better from true negatives based on
their distance to anchor node.

(2) To overcome the lack of explicit supervision signals for
NML, we propose a joint training scheme with bi-level
optimization objective, which implicitly utilizes the self-
supervision signals to iteratively optimize the encoder
and the negative metric network.

(3) Furthermore, we provide a solid theoretical justification
of NML-GCL, by proving that due to NML, NML-GCL
can approximate the MI between contrastive views with

a tighter lower bound than traditional InfoNCE loss,
which leads to the superiority of NML-GCL to the ex-
isting GCL methods.

(4) The extensive experiments conducted on real-world
datasets demonstrate the superiority of NML-GCL, in
terms of the performance of the downstream tasks and
the identifying of false negatives.

Due to space limitations, related work is presented in Ap-
pendix A.

2 Preliminaries

A graph is denoted by G = (V,€), where V = {i}}¥,
€ CV x V represent the set of N nodes and the set of edges
respectively. Let A € {0, 1}¥*¥ denote the adjacency ma-
trix and X € RV *¥ pe the node attribute matrix, where cell
a;; at i-th row and j-th column of A is 1 if (¢, j) € &, other-
wise 0, x; € R is the i-th row of X representing the attribute
vector of node 7, and F' is the dimensionality.

2.1 Graph Contrastive Learning

GCL follows an augmentation-encoding-contrasting mecha-
nism basically. In the augmentation stage, GCL creates con-
trastive views preserving invariant structural information and
feature information, by perturbing original graphs, e.g., edge
masking [Rong et al., 2020; You et al., 2020], node feature
perturbation [You er al., 20201, or graph diffusion [Hassani
and Khasahmadi, 2020]. In the encoding stage, GCL em-
ploys a GCN as encoder to generate the node embeddings,
which is usually defined as

H® — O’(AH(k_l)W(k)), (1)

where H(*) is the node embedding matrix at layer k&, A is the
normalized adjacency matrix, and W¥ is the trainable weight
matrix of layer k.

In the contrasting stage, the encoder is optimized by max-
imizing the agreement between the contrastive views, which
is usually implemented with the InfoNCE loss [Poole et al.,
2019] defined as:

Oluivi)/r
g N ’
O(u;,v;)/T O(u;,vj)/T
ef(ui,vi)/T 4 S :j:Lj#e ( )/
(2)

where u; and v; are the embeddings of node ¢ in contrastive
views Gy and Gy, respectively, 6(-, ) is a similarity function
(e.g., cosine), T is a temperature parameter.

Lintonce = Eiey |—lo

2.2 False Negatives

Let S; be the negative sample set of an anchor node 7 gen-
erated by a sampling strategy. Then the false negatives of
anchor node ¢ with respect to S; can be defined as

Definition 1 (False Negatives). Node j is a false negative of
anchor node i if j € S; and Y (j) = Y (i), where Y (-) be the
oracle label function unknown in advance.

The idea of the above definition is that a false negative j is
apositive (Y (j) = Y (¢)), but is treated as a negative (j € S;),
since the node labels are unobserved (i.e., Y(-) is unknown).
In contrast, the true negatives are the nodes with labels differ-
ent to the label of the anchor node.
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Figure 2: Overview of NML-GCL. First, NML-GCL generates two contrastive views Gy and Gy based on the initial graph G. Then NML-
GCL employs a bi-level optimization to iteratively training GCN E and NMN M. In (¢ + 1)-th iteration, NML-GCL first updates M to

MY under the guidance of GCN E® in previous iteration, then uses M **%) to obtain the new negative metric matrix M**%) based on
the node embeddings U® and V® in contrastive views, and finally, updates GCN E to E®+D ynder the guidance of M+,

3 Methodology

3.1 Overview

Fig. 2 presents an overview of our proposed NML-GCL.
From Fig. 2 we can see that in the augmentation stage, NML-
GCL first generates two contrastive views Gy and Gy, each
of which perturbs both the graph topology and the attributes
of nodes of the original graph G. And then, the two augmen-
tations Gy and Gy are sent to the GCN encoder E defined
in Equation (1) to obtain the two node embedding matrices
U = E(Gy) € RY*4 and V = E(Gy) € RV*? for con-
trastive learning, where d is the embedding dimensionality.
In the contrastive learning stage, for an anchor node ¢ € V),
(u;, v;), which are i-th rows of U and V representing the em-
beddings of ¢ in views Gy and Gy respectively, is selected as
the positive pair, while {(u;,v;)},ep as the negative pairs.
Note that here in our NML-GCL, (u;,Vv;) is considered as
both positive and negative pair, so that their embedding dis-
tance can be adjusted by negative metric network (NMN) to-
gether with other negative pairs in a unified way.

NML-GCL employs a bi-level optimization to jointly train
GCN E and negative metric network M in an iterative fash-
ion. In (¢t + 1)-th iteration, NML-GCL first updates M to
M@+ with respective to the contrastive node embeddings
U® and V®) € RN*? generated by GCN E®) in previous
iteration. Then NML-GCL uses M (1 to obtain the new
negative metric matrix M(+1) € RVN*N - At last, GCN F
is updated to E(**1) with respective to M(+1)_ In the neg-
ative metric matrix M, the cell at ¢-th row and j-th column
m;; measures how likely node j is a negative of node ¢. As
mentioned before, m;; can be regarded as a soft label of j in-
dicating its status as a negative sample with respective to the
anchor node .

3.2 Negative Metric Learning

To deal with the false negatives in GCL, we introduce Neg-
ative Metric Learning (NML) to learn a negative metric net-
work M. The negative metric network M captures the dis-
tance between two nodes from different views in the negative
metric space, which reflects the probability they are negatives
of each other. In particular, M consists of an MLP and a
normalizing layer, which is defined as

m;j = MLP(u;,v;),

e

2 kev emin

3)

mij =

where m,; ; 18 the distance between u; and v; in the nega-
tive sample space and m;; € [0, 1] is the normalized distance
w.r.t. u; satisfying Zj m;; = 1. Therefore, m;; can be re-
garded as the probability (soft label) that j is a negative of
i.

We expect M outputs smaller m;; for a false negative j
of an anchor node 7. As mentioned before, however, there
are no explicit supervision signals telling us false negatives.
To overcome this issue, we introduce the similarity 6(u;, v;)
induced by the GCN E as the surrogate supervision signals
for the training of M, by which the self-supervision signals
(i.e., the supervision offered by the fact (u;,v;) is positive
pair) are transferred to the training of M. 6 can be any quali-
fied similarity measures, e.g., cosine. Based on this idea, the
optimization objective of M can be formulated as

“4)

m]\}ln E;cv ENML,
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where

ee(ui V)T

1) 37 ey migelivil/m
®)]

is a contrastive loss of anchor node ¢ with the temperature

(4)
ﬁNML = —log ef(uivi)/T (N —

parameter 7. It is obvious that when minimizing ﬁl(\IML W.IL.L.
M, the bigger 6(u;, v;), the smaller m,;. Note that, com-
pared with traditional InfoNCE loss defined by Equation (2)
where each j # i is treated as negatives of ¢ with constant
weight 1, in Equation (5) all nodes j € V), even 1 itself, are
treated as potential negatives of 7, and the weight of a nega-
tive becomes a learnable metric m;; induced by the negative
metric network M.

To further clarify how the self-supervised signals implicitly
supervise the training of M, we transform the loss defined by
Equation (5) to an approximate hinge loss via the following
derivation:

L’f\“\),lL =log (1 +(N-1) Zmijeg(“i’vf)_(’(“i’vi))
jEV
~log (eo + 3 PO v Hog ((N—l)mu))
JEV
~max {0, {(ui,v;) — 0(ui, vi) +log (N — 1)my;) }
=max {0,log ((N — 1)mai),
{6(ui, v;) — O(ui, vi) + log (N

where the third line holds because log(e™ + e*2 + ... 4+ ™)
~ max {T1, T2, ..., Tn} [Zhang er al., 2024].

As we will demonstrate later, under the guidance of the
self-supervised signal that (u;, v;) is positive pair, we can
train a GCN FE capable of generating node embeddings that
satisfy 6(u;,v;) > 6(u;,v;) for j # i. Therefore, Equa-
tion (6) indicates that once F is trained, the minimization of
El(\flz,[L w.r.t. M implicitly requires smaller m,; due to the big-
ger 6(u;, v;), which leads to a higher probability, via smaller
my;, to the event that v; is a false negative of u;. In other
words, via bigger 0(u;, v;), the self-supervision signals can
strengthen M ’s ability to recognize false negatives by enforc-
ing a smaller m;;.

— D)mij) Yiev.izi )
(6)

3.3 Bi-level Optimization
We have seen that the training of M depends on a reliable
6(u;, v;) induced by F, and however, the training of E is
guided by the negative metric matrix output by M. Our idea
to break this dilemma is to iteratively optimize them with fol-
lowing bi-level optimization:
min (@ (@)
min min Eicv [ENML +al{l)], @)

reg

where Er(ég is the regularization loss and « controls the weight
of the regularization. Ereg is defined as

LY = (N

reg

— DKL(FRl|P;), (8

where KL(+||-) is KL-divergence, P; is the distribution over
{m;j};jev given i, ie., P;(j) = m”, and Py is a uniformly

distribution, i.e., Py(j) = 1/N. Lreg constrains the feasible

jEV}

region of the i-th row m; of the negative metric matrix M to
prevent m; from becoming a one-hot vector.

During the (¢ + 1)-th iteration of the bi-level optimization
defined in Equation (7), the inner minimization will result
in optimal M**1), which is supervised by (U®, V®)) in-
duced by the node embeddings offered by E(*), as described
in Section 3.2. Now we want to answer two questions for the
outer minimization.

(1) How does M(*+1) supervise the training of E(+1)

through ENK,[L" Again according to Equation (6), the

minimization of EI(\IML w.rt. I requires to minimize
max {0, 6(u (e41) vj(tﬂ)) O(ul" v ) 4 log (N -

1)m(tJrl ) }. For this purpose, E has to be adjusted to make
sure that 6(u EtH), v§t+1)) is smaller than f(u (H_l),vgt“))
by at least log ((N — 1)m§;+1)).
(t+1) (1) (1)
» Vg

m;; . the smaller 0(u;
m{“) supervises the training of E(+1) by telling it how far

ij
it should push v(t'|r ) away from v(t'|r )

(2) What is the relation between E(¢11) and E()? As the
training of E**1 is supervised by M(+1) | to answer this
question, we need to take a lose look at M+ Obviously,

Obviously, the bigger

. In other words, here

for an anchor node 7 € V, the optimal m (t+1) (k € V) satis-
fies:

Voo (L, + L)

0 Vi) o«
T o v ® N 1) _pu® vy (1
66(”’)+Zjlm( ) ( ) Ek)
€))
and )
S omi =1, (10)
kev
which together lead to the optimal
0 v® N (D) g(ul) v
@41) o( ’1)+Zg 1m e, v;™)
m,, =0l o D
ef(u; f"k )
(11

; (t+1)
From Equation (11), we can see that m,,

proportional to the similarity 9( vl(f)) This means that

is inversely

if E® pushes vy, from v; (i.e., smaller Q(ugt), v,(f))), which
leads to bigger m(ffl) then E(**1 will push vy, even farther

from v; under the supervision of mfkﬂ) (see the answer of
Question (1)). This result shows that the training of £ can be
regarded as a form of self-training [Wei et al., 2020], where
the supervision signal is provided by E via M.

Finally, the above analysis also shows that due to the it-
erative updating, the negative metric network M, which cap-
tures the distance in negative metric space, and the encoder F,
which generates discriminative embeddings, would reinforce
each other during the bi-level optimization. As we will the-
oretically justify in the later, the bi-level optimization accu-
rately maximizes the mutual information between contrastive
views, which leads to £ and M capable of distinguishing
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false negatives from true negatives. The complete training
process is presented in Algorithm 1, and its time complexity
analysis is shown in Appendix D.

Algorithm 1 Training process of our proposed NML-GCL

Input: A graph G, an encoder F, a negative metric network
M , the number of training epochs T for outer minimiza-
tion, the number of iterations 7Ty for inner minimization;

Output: The optimal encoder F;

1: Initialize parameters of £ and M;
2: fori=1,2,--- ,Tg do
3:  Randomly generate contrastive views Gy and Gy from

Generate node embeddings U and V by E;
// Training negative metric network
Freeze parameters of E;

forj =1,2,--- ,T\ydo

Update M according to Equation (7);

9: end for
10:  // Training Encoder
11:  Freeze parameters of M;
12:  Update E according to Equation (7);
13: end for

AN A

4 Theoretical Analysis

In this section, we first prove that compared with traditional
InfoNCE-based GCL, our NML-GCL maximizes a tighter
lower bound of the mutual information (MI) between con-
trastive views. Then we demonstrate that the maximization
of the MI endows the encoder E and the negative metric net-
work M with the ability to distinguish false negatives from
true negatives.

4.1 Tighter Lower Bound of MI

Let U and V be random variables representing node em-
beddings in contrastive views Gy and Gy, respectively, and
I(U; V) be their MI. Let Inu(U; V) and Incg(U; V) de-
note the MI estimated by EI(\&L defined in Equation (5) and
traditional InfoNCE loss Lytnce defined in Equation (2), re-
spectively. The following theorem shows that Invp (U; V) is
a tighter lower bound of I(U; V') than Incg(U; V).

Theorem 1. I(U;V) > Iy (U; V) > Ince(U; V), where

INML (U7 V) = —minM ]EiEV[‘Cj(\;A)lL] + C, INCE(U§ V) =
Lipponce + C and C = log N.

The detailed proof of Theorem 1 can be seen in Appendix
B.1. Basically, Theorem 1 offers the rationality of NML-
GCL’s bi-level optimization by which NML-GCL achieves
better generalizability on downstream tasks than traditional
InfoNCE based GCL methods.

4.2 MI Maximization Facilitates NML

Theorem 1 shows that the minimization of EI(\&L in each it-
eration of the bi-level optimization defined in Equation (7)
approximately maximizes I(U; V') by maximizing its tighter
lower bound Inmr(U; V). Now we further demonstrate that

the maximization of I(U;V) facilitates NML, enabling the
encoder and the negative metric network to ultimately acquire
the ability to distinguish between false negatives and true neg-
atives in the negative metric space learned by NML. At first,
the following theorem shows that an optimal E can simulate
the oracle label function Y by appropriately ranking the dis-
tance of samples to a given anchor node in the negative metric
space.

Theorem 2. If E* = maxg Eg, g, I(U; V), then
]Eiev,jesj [d(2z;,25)] < Eiev,jes,; [d(zi,2;)],

where d(-,-) is a distance metric, S; is the true negative set
of i, Si+ is the false negative set of i, and z; represents the em-
bedding of node i in original graph G generated by encoder
E*

The proof of Theorem 2 can be found in Appendix B.2.
Theorem 2 tells us that after maximizing I(U;V), in the
embedding space defined by E*, the expected distance from
false negatives to an anchor node is shorter than the expected
distance from true negatives to the anchor node. In other
words, E* can simulate the behavior of the oracle label func-
tion Y, since d(z;, z;) approaches to 0if Y'(j) = Y (), which
explains why our NML-GCL is able to obtain node embed-
dings that are more discriminative in terms of class distinc-
tion.

Theorem 2 together with Theorem 1 and Equation (11) jus-
tifies that F and M can iteratively reinforce each other via the
bi-level optimization. Specifically, in one iteration, the inner
minimization results in better M that offers better supervision
for the training of E; the outer minimization results in better
E that can induce more reliable {f(u;,v;)} as the supervi-
sion for the training of M in next iteration. Such positive
feedback loop ensures the effectiveness of our NML-GCL.

S Experiments

In this section, we conduct experiments to answer the follow-
ing research questions (RQs):

* RQ1: Does NML-GCL outperform existing GCL meth-
ods on downstream tasks?

* RQ2: How Negative Metric Network M contributes to
the performance of NML-GCL?

* RQ3: How do the hyper-parameters affect the perfor-
mance of NML-GCL?

We conduct additional experiments, including experimental
verification of theoretical analysis and the identification of
false negatives, as detailed in Appendix C.

5.1 Experiment Settings

Datasets. We conduct experiments on six publicly available
and widely used benchmark datasets, including three citation
networks Cora, CiteSeer, PubMed [Yang et al., 2016], two
Amazon co-purchase networks (Photo, Computers) [Shchur
et al., 2018], and one Wikipedia-based network Wiki-CS
[Mernyei and Cangea, 2020]. The statistics of datasets are
summarized in Table 4 in Appendix E.
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Method Cora CiteSeer PubMed Photo Computers Wiki-CS
BGRL 82.22+0.51  72.274£0.26  79.414+0.23  93.01+0.27  88.25+0.30  77.81+£0.42
GRACE 81.52+0.24  70.12+0.17  78.32+0.45  91.88+0.18  87.15+£0.21  77.95+0.23
MVGRL 81.15+0.16  70.46+0.23  78.63£0.27  92.59+£0.34  87.66+£0.25  78.52+0.15
LOCAL-GCL 83.86+£0.21  71.7840.48  80.95+0.41  92.83+0.28  88.694+0.50  78.98+0.52
PHASES 82.19+0.37  70.49+0.40  81.08+0.62  92.74+0.37  87.80+0.44  79.61£0.29
HomoGCL 83.19+£1.03  70.11£0.79  81.02+0.68  92.31+0.36  87.82+0.48  78.18+0.45
GRACE+ 82.84+0.18  70.57+£0.53  81.13+0.31  92.73+0.35  88.56+0.31  79.33+0.27
ProGCL 82.04+0.27  70.63+£0.22  78.14+0.43  92.71+£0.29  87.90+0.27  78.21£0.41
GRAPE 83.88+0.04  72.34+0.22 OOM 92.76+0.30  87.97+0.33  79.91+0.16
NML-GCL 84.93+0.14  73.37+0.13  82.10+0.30  93.36+0.21  89.43+0.25  80.32+0.18
(p-value) (9.88e-15) (1.89¢-10) (1.25¢-6) (4.58e-3) (5.55¢-4) (4.07e-5)
wlo M 82.82£0.07 70.31+0.17 80.144+0.14 92.12+0.16 87.76+0.19 77.91+0.24
repl. cosine sim. 83.87 £0.22 71.18 £0.24 81.31+£0.24 92.80+0.22 88.35+0.21 79.13+0.14

Table 1: Node classification accuracy (%) with standard deviation. ’OOM’ means out of memory on a 24GB GPU. The best result is in bold,

and the second best is underlined.

Baselines. To validate the effectiveness of our NML-GCL,
we compare it with state-of-the-art GCL methods including:

* three methods without considering false negatives,
BGRL [Thakoor et al., 2021], GRACE [Zhu et al.,
2020], and MVGRL [Hassani and Khasahmadi, 20201,

* three methods dealing with false negatives with hard
weight, LOCAL-GCL [Zhang et al., 2022], PHASES
[Sun et al., 2023], HomoGCL [Li et al., 2023],

¢ three methods dealing with false negatives with soft
weight, GRACE+ [Chi and Ma, 2024], ProGCL [Xia
et al., 2022], and GRAPE [Hao et al., 2024], where
ProGCL and GRAPE determine the weights based on
clustering.

Evaluation Protocols. We follow a two-stage evaluation
protocol widely used by existing works [Zhang et al., 2021;
Zhu et al., 2020]. For each method, in the first stage, we gen-
erate node embeddings, while in the second stage, we evalu-
ate the node embeddings in terms of the performance of node
classification and node clustering. Specifically, for node clas-
sification, the classifier is implemented as a logistic regres-
sion. The node embeddings generated by a baseline method
or NML-GCL is split into a training set, a validation set, and a
testing set. The training set and validation set are used for the
training and hyper-parameter tuning of the classifier, while
testing set for evaluation in terms of accuracy. For node clus-
tering, we use k-means algorithm to partition the node em-
beddings where £ is set to the number of classes in a dataset,
and evaluate the clustering results by two widely used met-
rics, Fowlkes-Mallows Index (FMI) [Campello, 2007] and
Adjusted Rand Index (ARI) [Steinley, 2004].

Configurations. In NML-GCL, the encoder E is imple-
mented as a two-layer GCN with embedding dimensionality
d = 512, and the NMN is implemented as an MLP with two
hidden layers each of which consists 512 neurons. We ap-
ply Adam optimizer for all the GCL methods and the classi-
fier. Following the approach of [Zhu et al., 2020], we adopt
DropEdge [Rong et al., 2020] and FeatureMasking [You et
al., 2020] to generate contrastive views. The detailed hyper-
parameter settings are shown in Table 4 in Appendix E.

5.2 Performance on Downstream Tasks (RQ1)

Results of Node Classification. To train the classifier, we
follow the public splits on Cora, CiteSeer, and PubMed, and
a 1:1:8 training/validation/testing splits on the other datasets.
The reported results are averaged over 10 runs with random
seeds, and the average classification accuracies with stan-
dard deviation are reported in Table 1. We see that NML-
GCL consistently outperforms all the baseline methods, es-
pecially the soft-weight based ones (GRACE+, ProGCL, and
GRAPE) and the hard-weight based ones (LOCAL-GCL,
PHASES, and HomoGCL). Moreover, we conduct the paired
t-test on NML-GCL and the best baseline. The p-value in
the third-to-last line shows that all the p-values are smaller
than 0.01, indicating that the improvement achieved by NML-
GCL is statistically significant. This improvement is because
via the bi-level optimization, NML learns a negative metric
space where false negatives are closer to anchor than true
negatives. Due to NML, NML-GCL is able to suppress the
impact of false negatives according to the learned distance
to anchor nodes, which makes the optimization orientation
of the encoder be rectified towards better distinguishing false
negatives from true negatives, resulting in node embeddings
with stronger discriminability. In addition, methods address-
ing false negatives are generally superior to those that do not
consider them, highlighting that suppressing the disturbance
of false negatives enhances GCL’s ability to generate more
robust and generalizable node embeddings.

Results of Node Clustering. Table 2 shows FMI and ARI
of clustering conducted with k-means algorithm over the
node embeddings generated by baseline methods and NML-
GCL. At first, NML-GCL consistently outperforms the base-
line methods in terms of both metrics, indicating that the clus-
tering based on NML-GCL can result in purer clusters, i.e., a
cluster contains only nodes of the same label, and the nodes
of the same class are grouped into the same cluster.

As a study, we visualize the clustering results of NML-
GCL and GRACE on the Computers dataset by t-SNE in Figs.
3a and 3b, respectively. We can see that compared with the
traditional InfoNCE based method GRACE, NML-GCL can
produce clustering results with higher intra-cluster cohesion
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Method | Cora | CiteSeer | PubMed | Photo | Computers | Wiki-CS

| FMI ARI | FMI ARI | FMI ARI | FMI ARI | FMI ARI | FMI  ARI
BGRL 52.74 4282 | 4637 3427 | 5440 2844 | 62.59 50.34 | 4537 31.68 | 36.16 27.96
GRACE 53.24 43.68 | 4536 33.71 | 51.47 24.63 | 57.27 4742 | 46.83 35.22 | 37.61 28.24
MVGRL 55.49 46.68 | 47.43 37.82 | 51.52 2497 | 57.67 48.04 | 45.74 33.75 | 35.16 25.53
LOCAL-GCL | 51.33 40.53 | 4798 36.34 | 54.08 27.15 | 61.78 48.02 | 46.15 33.16 | 38.25 29.14
PHASES 53.77 4422 | 4938 38.50 | 50.88 23.35 | 56.45 4851 | 4571 3597 | 4043 30.74
HomoGCL 56.71 47.13 | 49.06 38.28 | 58.05 33.54 | 62.37 53.26 | 48.50 37.14 | 40.25 31.33
GRACE+ 5536 4592 | 4991 39.62 | 5420 28.36 | 61.88 53.94 | 48.08 36.66 | 43.59 35.02
ProGCL 56.00 46.52 | 4990 38.98 | 52.14 25.60 | 62.14 50.32 | 48.27 36.44 | 39.12 29.21
GRAPE 56.50 47.45 | 50.87 40.39 | OOM OOM | 62.24 53.73 | 48.84 38.67 | 40.85 32.03
NML-GCL | 5823 4950 | 52.46 42.19 | 59.81 3582 | 6313 5556 | 5052 39.42 | 4546 37.74

Table 2: Node clustering results evaluated by FMI (%) and ARI (%). ’OOM’ means out of memory. The best result is in bold, and the second

best is underlined.

(a) GRACE

(b) NML-GCL

Figure 3: Visualization of node clustering on Computers.

and clearer inter-cluster boundaries. This is because NML-
GCL, aided by negative metric learning, brings positive ex-
amples (including false negatives) closer together and pushes
positive and true negative examples farther apart more effec-
tively.

5.3 Ablation Study (RQ2)

In this section, we demonstrate the necessity of NMN M in
NML-GCL. Specifically, we compare NML-GCL with the
following variants: (1) w/o M: We remove the negative met-
ric network, and m;; is a constant (i.e., %); (2) repl. cosine
sim.: m;; is calculated as exp(—cosine_similarity(u;, v;)).

As shown in the last two rows of Table 1, we see the NMN
component contributes to the performance improvement of
NML-GCL, especially with a 3% gain on CiteSeer. More-
over, although the use of cosine similarity can alleviate the
problem of false negatives to some extent, NML-GCL uses
the NMN M to capture the nonlinearity in the distance mea-
surement, so that false negatives can be better distinguish
from true negatives in the negative metric space. Overall,
the results highlight that the inclusion of M in NML-GCL
is essential for refining the negative sample learning process,
enabling a more nuanced and effective representation of neg-
ative pairwise distances. This demonstrates the critical role
of NMN in achieving superior performance compared to sim-
pler, predefined negative sample weighting strategies like co-
sine similarity.

93.6 93.6
93.4 93.4
8932 Lo3.2
> >
g93.0 Zo3.0
592.8 5
] goz2.8
<926 P 92.6
92.4 :
92.2 92.4
o 0.05 0.1 0.2 0.4 0.8 1 5 10 15 20 25
Weighting coefficient a The number of inner iterations Ty

(a) a (b) Tm

Figure 4: Hyper-parameter analysis.

5.4 Hyper-parameter Analysis (RQ3)

Now we investigate the effectiveness of the two most im-
portant hyper-parameters « in Equation (7) and the iteration
number Tjy; of inner minimization in Algorithm 1. We take
the Photo dataset as an example. Fig. 4a shows that as « in-
creases, the classification accuracy first rises and then falls.
Since « is the weight of the regularization term in Equation
(7), this result indicates that when « is small, NML-GCL
suffers from overfitting. In contrast, when « becomes large,
the weight distribution of negatives tends to become uniform,
causing the learned embeddings to lose their discriminability.
From Fig. 4b, we see that too few iterations of the inner min-
imization can lead to underfitting, while too many iterations
can cause overfitting and unnecessary wasting of time.

6 Conclusion

In this paper, we introduce a novel approach called NML-
GCL. NML-GCL utilizes a learnable negative metric network
to construct a negative metric space, allowing for better dif-
ferentiation between false negatives and true negatives based
on their distances to the anchor node. To address the chal-
lenge of the lack of explicit supervision signals for NML,
we present a joint training scheme with a bi-level optimiza-
tion objective that implicitly leverages self-supervision sig-
nals to iteratively refine both the encoder and the negative
metric network. Comprehensive theoretical analysis and ex-
tensive experiments conducted on widely used benchmarks
demonstrate the superiority of our proposed method to base-
line methods on downstream tasks.
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