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A Weighting-Based Fast Local Search for α-Neighbor p-Center Problem
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Abstract
The α-neighbor p-center problem (α-pCP) is an ex-
tension of the classical p-center problem. It aims
to select p centers from a set of candidate centers
to minimize the maximum distance between any
client and its α service centers. In this paper, we
propose a weighting-based fast local search algo-
rithm called WFLS for solving α-pCP. First, WFLS
converts the complex α-pCP into a series of de-
cision subproblems by specifying the service ra-
dius, effectively mitigating the gradient vanishing
issue during the search process, and introduces a
new MIP model. Then, it addresses the simplified
subproblems using a fast local search procedure
with a swap-based neighborhood structure. WFLS
adopts an efficient weighting strategy, an incremen-
tal evaluation technique, a refined-grained penalty-
based neighborhood evaluation, and two scoring
functions of neighborhood evaluation to accelerate
and guide the search process. Computational ex-
periments on 154 widely used public benchmark
instances demonstrate that WFLS outperforms the
state-of-the-art methods in the literature. Specifi-
cally, WFLS improves 69 previous best known re-
sults and matches the best know results for all the
remaining ones in less time than other competitors.

1 Introduction
The p-center problem is a well-known problem in the field
of combinatorial optimization, which has been proven to be
NP-hard [Kariv and Hakimi, 1979]. It involves finding p cen-
ters in a given set of candidate centers, such that the maxi-
mum distance from any demand client to its nearest center is
minimized. The p-center problem has a wide range of appli-
cations, such as the problems of determining the locations of
emergency centers [Toregas et al., 1971], hospitals [Hakimi,
1964], and fire stations [Drezner, 1987] to serve the commu-
nities. In the last 50 years, the p-center problem has been
wide studied in academic society. There are mainly three
kinds of methodologies, including exact algorithms [Minieka,
1970; Ilhan et al., 2002; Elloumi et al., 2004; Calik and

∗Corresponding Author

Tansel, 2013; Liu et al., 2020], approximation algorithms
[Hochbaum and Shmoys, 1985; Martinich, 1988], and meta-
heuristic algorithms [Mladenović et al., 2003; Pullan, 2008;
Irawan et al., 2016; Yin et al., 2017; Zhang et al., 2020].

However, a center may be forced to close due to an un-
predictable incident, such as natural disasters, sudden system
failures. In this case, the clients served by the reference cen-
ter have to turn to other backup centers as quickly as pos-
sible. This issue has been classified into two cases based
on whether the client can obtain information about center
faults in advance. In the first case, the client cannot know
the fault information and must first arrive at the closest cen-
ter and then to the next one. This scenario is described as
the p-next center problem [Albareda-Sambola et al., 2015;
Zhang et al., 2022]. In the second case, the client can know
the fault information in advance. At this time, the client can
directly move to the nearest available backup center, which
is the α-neighbor p-center problem (α-pCP) that this paper
focuses on studying. With the increasing convenience of in-
formation sharing, the importance of the α-pCP is growing.

Krumke [1995] first introduced the α-pCP, which occurs in
many industrial applications and has been proven to be NP-
hard [Kariv and Hakimi, 1979]. Its aim is to locate p centers
from a set of candidate centers and assign up to α centers to
each client, such that the maximum distance of each client to
its assigned centers is minimized. The closest center serves
as the primary reference center, while the second to the α-
th nearest centers act as backup centers. For the α-pCP, the
given vertices not only are the clients but also the candidate
centers. Figure 1 shows an illustrative diagram of the α-pCP,
where Figure 1(a) is the original graph and Figure 1(b) is a
solution of p = 3, α = 2.

In previous years, the study of the α-pCP focused
on the theoretical study of approximation algorithms.
Krumke [1995] introduced different formulations for α-pCP
and proposed an algorithm with an approximation factor of
4. Khuller et al. [2000] presented two approximation algo-
rithms. The first achieves an approximation factor of 3 for
any α, and the second with an approximation factor of 2 for
α < 4. Based on [Krumke, 1995] and [Khuller et al., 2000],
López-Sánchez et al. [2019] proposed a 2-approximation al-
gorithm to further improve the quality of the solution.

In addition to theoretical studies, some practical studies of
exact and heuristic algorithms have been introduced in recent
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Figure 1: There are 6 vertices in the graph, the function f(i) gives
the distance from i to its α-th closest center.

years. Sánchez-Oro et al. [2022a] introduced a metaheuris-
tic algorithm, which combines a greedy randomized adaptive
search procedure with tabu search, and a strategic oscillation
(SO) post-processing procedure to ensure high solution qual-
ity to the α-pCP. Cura [2023] proposed a competitive algo-
rithm that combines the mayfly optimization algorithm (MA)
with a local search procedure for the α-pCP. Gaar and Sinn
[2023] presented two integer programming formulations and
developed a branch-and-cut algorithms for the α-pCP. To the
best of our knowledge, it is the most recent and best perform-
ing method currently to solve the α-pCP.

In this paper, we present a weighting-based fast local
search (WFLS) algorithm to solve the α-pCP. Unlike previous
metaheuristics that directly optimize the original problem,
WFLS transforms the original α-pCP into a series of deci-
sion subproblems by specifying a serving radius. These sub-
problems are then efficiently solved using a weighting-based
fast local search procedure that adopts a swap-based neigh-
borhood structure and an incremental neighborhood evalua-
tion technique based on a refined-grained penalty strategy.

The main contributions of our work are as follows:
• We propose a novel approach that transforms the α-

neighbor p-center optimization problem into a series
of decision subproblems, introducing a new decision-
based MIP model. We obtain the solution to the orig-
inal problem by sequentially solving these subproblems.
It smooths the solution space and prevents gradient van-
ishing, enhancing the effectiveness of local search-based
algorithms to solve the α-pCP.

• We introduce a weighting technique for local search,
resulting in an effective search procedure called
weighting-based fast local search (WFLS), which in-
creases search diversity and allows the algorithm to es-
cape from the local optimal trap.

• WFLS algorithm employs a new neighborhood structure
based on a dedicated swap move comprising a closing
operation and an opening operation. In addition, we use
a new refined-grained penalty strategy for neighborhood
evaluation, two scoring functions to guide the neighbor-
ing search, and an incremental evaluation strategy to im-
prove the efficiency of the search.

• Tested on 154 classical instances of the α-pCP, WFLS
algorithm improves the best known results for 69 in-
stances and matches on all the remaining ones in the

literature, respectively. In addition, the computational
time of WFLS is much shorter than that of the state-of-
the-art algorithms in the literature.

2 Problem Description and Transformation
Given an undirected complete graph G = (V,E), where V =
{1, 2, ..., n} is the vertex set and E = {(i, j)|i, j ∈ V } is
the edge set. dij denotes the distance between each pair of
vertices i and j. The α-pCP aims to select a center subset C
(|C| = p) from the set V to minimize the maximum distance
between each client i ∈ (V \ C) and its α serving centers.

Based on the above notations, the classical mixed-integer
programming (MIP) model [Gaar and Sinnl, 2023] for the α-
pCP can be formulated as follows.

(α-pCP) min r, (1)

s.t.
∑
j∈V

xj ≤ p, (2)

∑
j∈V \{i}

yij = α(1− xi), ∀i ∈ V, (3)

yij ≤ xj , ∀i, j ∈ V, (4)
dijyij ≤ r, ∀i, j ∈ V, (5)
xj , yij ∈ {0, 1}, ∀i, j ∈ V, (6)

r ∈ R+. (7)

x and y are decision variables, where xj = 1 iff a candidate
center j ∈ V is opened, yij = 1 iff client i ∈ V is served by
candidate center j, and r ∈ R+ denotes the upper bound of
the serving radius. Objective (1) is intended to minimize the
service radius. Constraint (2) restricts the number of opened
centers to be no more than p. Constraints (3) ensure that each
vertex is either assigned to exactly α centers or opened to be
a center. Constraints (4) restrict that only those centers that
are in an open state can serve the client vertices. Constraints
(5) ensure that the radius r is not less than the length of any
arc from each client to its all α serving centers.

Obviously, to obtain the optimal serving radius, there is at
least one equality in Constraints (5), i.e., the optimal serving
radius of a specific α-neighbor p-center instance must be the
same as the length of a certain edge dij . Let R = {dij |i, j ∈
V } = {r1, r2, . . . , rm} be the ordered list containing all dis-
tinct values of dij , where r1 < r2 < ... < rm. The α-pCP is
to find the rank q of the smallest radius on R such that the
model is still feasible after adding a constraint r ≤ rq , but it
becomes infeasible if we add constraint r ≤ rq−1.

Problem Transformation. Based on the above analysis,
the α-pCP can be solved by finding feasible solutions to a
series of subproblems with the given radius. Specifically, it
is transformed into decision subproblems where serving arcs
are bounded by r, and centers need to be located under the
constraint that the actual radius does not exceed r. Therefore,
the focus is limited to center-client pairs with distances not
exceeding the current radius r. In detail, we employ a vertex
set Sq

j = {i ∈ V |dij ≤ rq, i ̸= j} to represent the set of
clients that candidate center j ∈ V can serve within covering
radius rq , or the set of candidate centers that can serve the
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Algorithm 1 The main framework of the WFLS algorithm
Input A graph G, the center number p, the value of α
Output The best solution found so far X∗

1: iter ← 1, vertex weights wi ← 1, ∀i ∈ V
2: The age aj ← 0, ∀j ∈ V
3: Current solution X , initial radius rq ← Initialize(G, p)
4: Previous solution X ′ ← X , X∗ ← X
5: The radius order list R = {r1, r2, ..., rq}
6: while Termination condition is not met do
7: q ← q − 1, update the set of illegal vertices I(X)
8: while The time limit is not reached and |I(X)| > 0

do
9: (i, j)← find the best swap move /* Algorithm 2 */

10: X ← X ∪ {i} \ {j}
11: if |I(X)| = 0 then
12: X∗ ← X
13: else if (|I(X)| > |I(X ′)| then
14: wk ← wk + 1, ∀k ∈ I(X) 3.3
15: end if
16: X ′ ← X , iter ← iter + 1
17: end while
18: end while
19: return X∗

client j. Therefore, with the optimal edge length rank q spec-
ified, the new reformulated model (α-pCPq) can be defined
by Eqs. (8)-(11), where ui is a binary variable that equals 1
if client i is not covered by at least α centers, and xj is the
same decision variable as in the model (α-pCP).

(α-pCPq) min
∑
i∈V

ui, (8)

s.t.
∑
j∈Sq

i

xj ≥ α(1− ui − xi), ∀i ∈ V, (9)

∑
j∈V

xj ≤ p, (10)

xj , ui ∈ {0, 1}, ∀i, j ∈ V. (11)

Model (α-pCPq) minimizes the number of uncovered ver-
tices by exactly opening p centers as shown in objective func-
tion (8). Constraints (9) ensure that for each vertex, there are
at least α centers within the covering radius rq or it is opened
to be a center. We need to traverse the distinct edge length list
R to examine each possible covering radius.

3 Vertex Weighting-Based Local Search
3.1 General Framework
To address the α-pCP, we transform it into a series of decision
subproblems for a given radius and solve these subproblems
using the weighting-based fast local search (WFLS). Firstly,
it adopts a greedy constructive heuristic algorithm to obtain
an initial feasible solution and the upper bound of the ra-
dius. Subsequently, WFLS converts α-pCP into a series of
rq-radius α-pCP decision subproblems and solves them by a
fast local search procedure combining with a weighting tech-
nique. As soon as the rq-radius α-pCP is solved, we decrease

rq by setting rq to rq−1 and solve the resulting subproblem
once again. In practical applications, these subproblems can
actually be solved in parallel.

Specifically, Algorithm 1 outlines the main framework of
WFLS. It starts by generating an initial solution X with an
initial radius rq using a greedy construction algorithm under
the principle of minimizing the objective (1) (line 3). Using
the initial radius rq , we initialize the ordered radius list R
with all distance lengths (line 5). Then, the model (α-pCPq)
is solved by decreasing q to q − 1 in turn until it fails to find
any feasible solution for model (α-pCPq−1) within the given
time limit. For each subproblem, we record the set of client
vertices that are not fully covered by α centers, and define it
as the illegal vertices set I(X). This set is iteratively opti-
mized by fast local search until |I(X)| = 0 or the time limit
is reached (lines 8-17).

3.2 Reduction Rule
To simplify the original graph and reduce the scale of the
search space, we develop a reduction rule to simplify the
graph. Specifically, we fix some centers that must be included
in the optimal solution. Since each vertex can be both a client
and a center, if there exists vertex k whose number of candi-
date centers that can cover it within the given radius is less
than α, i.e., |Sk| < α, then vertex k must be a center in order
to find a feasible solution.

3.3 Reformulation and Weighting Technique
The weighting technique helps the search to escape from lo-
cal optimum by introducing an adaptive objective function.
The weighting strategy has been successfully applied to many
problems, such as the single-cost set cover problem [Gao et
al., 2015], the classical p-center problem [Zhang et al., 2020],
and the optimal camera placement problem [Su et al., 2021].
We transform the α-pCP into a series of decision subprob-
lems to determine whether all client vertices can be assigned
to α centers within a specific r-radius. To effectively solve
each subproblem, the constraint requiring each vertex to be
assigned to α centers within the radius r or opened to be a
center is relaxed, and a penalty is imposed for each illegal
vertex in the objective function.

Specifically, let wi be the weight of vertex i, the objective
function f(X) can be defined as Eq. (12), which is the sum
of the weights of each illegal vertex.

min f(X) =
∑

k∈I(X)⊂V

wkuk (12)

The initial weight assigned to each vertex is set to 1. Dur-
ing subsequent searches, if WFLS fails to reduce the number
of illegal vertices, it indicates that the search is trapped in a
local optimum. To address this issue, WFLS increases the
weight wk of each illegal vertex k ∈ I(X) ⊂ V by one unit
when the search falls into local optimum (Algorithm 1, lines
13-15).

In the later stage of the search, once stagnation is encoun-
tered, the weight of the corresponding illegal vertices is in-
creased, and the more times a vertex appears in I(X), the
greater its weight will be. The weighting strategy changes
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Algorithm 2 Find the best swap move
Input Current solution X , the set of illegal vertices I(X), the
number of iteration iter, the age a of candidate centers
Output The best swap move (i∗, j∗)

1: Best swap move (i∗, j∗)← ∅, ∆f∗
1 ← +∞

2: k ← a random vertex in I(X)
3: for all i ∈ Sk \X ∪ {k} do
4: Virtually update Scorej , {j ∈ Sv ∩ X|v ∈ Si, cv =

α+ 1}, which affects the calculation of ∆f1(i, j)
5: for all j ∈ X do
6: j is not the recently-opened center
7: if (∆f1(i, j) < ∆f∗

1 ) or ((∆f1(i, j) = ∆f∗
1 ) ∩

(ai > a∗i )) then
8: ∆f∗

1 ← ∆f1(i, j), (i
∗, j∗)← (i, j)

9: end if
10: end for
11: end for
12: Return (i∗, j∗)

the landscape of the solution space, thus effectively prevent-
ing vertices from remaining illegal for following periods.

3.4 Neighborhood Structure and Evaluation
The neighborhood structure defines the set of solutions adja-
cent to a given solution in the solution space. For the cur-
rent solution X , a neighborhood move move generates a new
solution X ⊕ move. To tackle each rq-radius α-pCP sub-
problem, WFLS adopts a swap-based neighborhood struc-
ture. Specifically, a swap move consists of opening a cen-
ter i ∈ V \ X and closing a center j ∈ X , denoted as
move(i, j). At each iteration, based on the incumbent so-
lution X , WFLS tries to improve X by selecting the best-
improvement move to produce a new neighborhood solution
X ⊕move(i, j) = X ∪ {i} \ {j}.

The neighborhood evaluation is an essential and the most
time-consuming part of trajectory-based metaheuristic algo-
rithms. To improve the incumbent solution X and optimize
the objective value, the local search procedure follows a best-
improvement policy, evaluating all neighborhood moves and
selecting the one that leads to the best neighboring solu-
tion. Evaluating a neighborhood move involves calculating
the weighted sum of illegal vertices, as specified by Eq. (12).
If the weighted sum is naively calculated, the time complex-
ity is O(p · (n − p)). Since there are totally O(p · (n − p))
neighborhood moves, the neighborhood evaluation complex-
ity of a round of local search is O((p · (n − p))2), making
the process quite time-consuming, especially for large scale
instances. To enhance efficiency without sacrificing the so-
lution quality, WFLS adopts three acceleration and guiding
strategies, which include a refined-grained penalty strategy
for neighborhood evaluation, an incremental evaluation tech-
nique, and two scoring functions.

Refined-grained penalty strategy. WFLS uses a refined-
grained penalty strategy to reformulate the neighborhood
evaluation function, providing a more nuanced evaluation ap-
proach. Instead of classifying the client status directly as le-
gal or illegal, we assign penalties to illegal clients based on

the number of centers currently covering them. The more
centers there are that can cover a client, the easier it is to be
fully covered by α centers, and thus the smaller the penalty
factor will be. Conversely, fewer covering centers result in
a larger penalty factor. To capture this distinction, we use
varying penalty factors for illegal vertices. Specifically, the
distance to legal covering is used as the penalty factor, i.e.,
α − ck. The new neighborhood evaluation function is pre-
sented in Eq. (13),

min f(X) = (α− ck)
∑

k∈I(X)⊂V

wkuk, (13)

where ck denotes the number of centers currently covering
client k, i.e., ck = |Sk ∩X|. This penalty strategy provides a
finer-grained neighborhood evaluation and prioritizes the full
covering of more difficult illegal clients, leading to improved
solutions by directing the search more efficiently.
Incremental evaluation technique. To accelerate the
neighborhood evaluation procedure, WFLS adopts an incre-
mental evaluation mechanism to efficiently evaluate neigh-
borhood moves instead of naively calculating the reformu-
lated objective by Eq. (13). Specifically, since there are only
small changes from the current solution to a neighboring solu-
tion, the objective of a neighboring solution can be calculated
incrementally by the variation of closing a center i and open-
ing a center j, i.e., f(X ⊕move(i, j)) = f(X) + ∆f(i, j),
where ∆f represents the increment of the objective value af-
ter performing a swap move. WFLS uses Score to record
the (potential) contribution of each (candidate) center to the
current solution, enabling rapid incremental evaluation of the
objective value based on Score. Score is defined and calcu-
lated according to Eq. (14).

Scorej =


∑

k∈Sj∪{j}\X,ck≤α

wk, ∀j ∈ X,

∑
k∈Sj∪{j}\X,ck<α

wk, ∀j /∈ X.
(14)

For an opening center j ∈ X , Scorej is the sum of the
weights of clients that j can cover, which is either not fully
covered or exactly covered by α centers, i.e., ck ≤ α; For a
closing center j /∈ X , Scorej is the sum of the weights of no-
fully covered clients that j can cover. When ck > α, center j
does not contribute to the current client k that can be covered,
as closing it leaves k still legally covered. It is worth noting
that since the vertices are both convertible between the center
and the client, the calculation of the contribution values needs
to take themselves into account. To facilitate the calculation
of Score, we categorize the clients into three states, ck < α,
ck = α, and ck > α. According to the definition of Score,
its value needs to be updated only when the state of the client
changes. Obviously, opening a center i causes clients with
ck = α − 1 to transfer to ck = α, and clients with ck = α
to transfer to ck > α. Conversely, closing a center j causes
clients with ck = α + 1 to transfer to ck = α, and clients
with ck = α to transfer to ck < α. Thus, when trying to
open i and close j, the increment of the neighborhood move
is calculated as Eq. (15).

∆f1(i, j) = −(Scorei − Scorej) (15)
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Alg.
Instances with α = 2 (77) Instances with α = 3 (77)

#best #B/#E/#W Gap (%) p-value CPU (s) #best #B/#E/#W Gap (%) p-value CPU (s)

SO (2022) 5 72/5/0 9.68 1.79E-13 841.46 2 75/2/0 8.56 5.74E-14 975.58
MA (2023) 13 64/13/0 7.56 3.75E-12 821.06 13 64/13/0 5.85 3.75E-12 938.86
1HSVL (2023) 28 49/28/0 19.46 1.15E-09 1178.08 25 52/25/0 20.80 3.65E-10 1329.72
2HVSL (2023) 42 35/42/0 3.08 2.52E-07 872.89 46 36/41/0 4.20 1.71E-07 1083.39
Gurobi (α-pCPq) 63 14/63/0 0.10 1.48E-03 664.18 54 23/54/0 0.16 2.72E-05 690.19
WFLS 77 - 0 - 16.98 77 - 0 - 20.11

Table 1: Overall comparison of WFLS with other four reference algorithms on all benchmark instances.

Two scoring functions. During neighborhood evaluation,
using only the objective function often results in multiple best
neighboring solutions. To address this issue, WFLS employs
two scoring functions. The primary scoring function mini-
mizes the refined-grained weighted sum of illegal vertices, as
this aligns with the redefined optimization objective as de-
fined in Eq. (13). To further distinguish multiple best swap
moves with the same primary score and effectively mitigate
the gradient vanishing issue, WFLS uses a secondary scor-
ing function. The age ai of center i refers to the number of
iterations since it has been last closed. For two solutions hav-
ing the same weighted sum of illegal vertices, preferring the
opening of older candidate centers helps the search to explore
new configurations and enhances the search diversification,
which is usually more promising to improve the current so-
lution. Therefore, WFLS introduces the age as the secondary
scoring function. Specifically, for a move move(i, j) produc-
ing a neighboring solution X , it is calculated as follows:

∆f2(i, j) = ai − ai∗ (16)

where i∗ denotes the open center of the best swap move
(i∗, j∗). At each iteration, WFLS selects the best swap move
with the smallest ∆f1 value, and breaks ties by choosing the
move with the largest ∆f2 value.

In addition, to prevent immediately re-closing the recently-
opened center, the recently-opened center will not be evalu-
ated and selected at the next iteration.

Algorithm 2 presents the neighborhood evaluation proce-
dure for the α-pCP, where each vertex can be legalized as ei-
ther a client (requiring α assigned centers) or as a center. Our
WFLS considers both these two cases in the neighborhood
evaluation (line 3).

3.5 Neighborhood Reduction
To accelerate the neighborhood search, WFLS proposes one
neighborhood reduction strategy.

WFLS restricts to choose the candidate centers by focus-
ing on a single illegal client at a time. As we know, the ob-
jective value can only be improved by covering the vertices
in I(X) or opening them as centers, so WFLS evaluates a
swap move move(i, j) only if i ∈ I(X) or can cover some
vertices in I(X). For the rq-radius α-pCP subproblem, since
each client must be eventually fully covered by at least α cen-
ters, WFLS randomly selects a vertex k ∈ I(X), and evalu-
ates only neighborhood moves move(i, j) where i ∈ Sk and
j ∈ X . The approach significantly reduces the neighborhood

size from O(p · (n− p)) to O(p · |Sk|), with the side effect of
enhancing the search diversification.

4 Experiments and Analysis
To evaluate the performance of WFLS, we conduct extensive
experiments on 154 public benchmark instances and compare
WFLS with the state-of-the-art algorithms in the literature,
such as SO [Sánchez-Oro et al., 2022b], MA [Cura, 2023],
and 1HSVL and 2HVSL [Gaar and Sinnl, 2023].

4.1 Experimental Benchmarks and Protocol
There are 154 instances with α = 2, 3 for the α-pCP gener-
ated from TSP-Library [Reinelt, 1991]. The vertex number
n varies from 48 to 1323, and the center number p ranges
from 10 to 140. In these instances, location is given in two-
dimensional coordinates, and distances between any two ver-
tices i, j are calculated using the Euclidean metric.

Our WFLS is coded in C++ and all our experiments are
carried out on Windows Server 2019 x64 with an Intel Xeon
Gold 6133 2.50GHz CPU. For each instance, we carried out
20 independent runs under 180 seconds time limit. The com-
putational platform for the reference algorithms 1HSVL and
2HVSL is an Intel Xeon E5-2670v2 machine with 2.5GHz
and 6GB of RAM, and the time limit for each instance is 1800
seconds. The reference algorithms MA and SO are tested on
an Apple M2 Pro 12-core 3480 MHz computer with 16GB
RAM running MacOS Ventura and the time limit is 1800 sec-
onds. Compared to the reference algorithms, the maximum
runtime of our algorithm is reduced by a factor of 10. More-
over, our algorithm has converged within this time limit, and
extending the running time has almost no impact on the re-
sults. It shows the high efficiency of our algorithm. Notably,
there are no parameters that need to be tuned in our WFLS.

4.2 Computational Results
To test the performance of WFLS, we report the detailed per-
formance metrics and results in Tables 1 and 2.

“Instances with α = 2 (77)” and “Instances with α = 3
(77)” represent the group of instances whose neighbor α = 2
and α = 3, respectively, with a total of 77 instances in each
group. Column Instance gives the instance names. Columns
n and p report the numbers of vertices and centers, respec-
tively. Column Gap indicates the average gap between the
results obtained by the corresponding algorithm and the best
results on the current set of instances. Column CPU shows
the average CPU execution time in seconds. For our WFLS,
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Instance n p
α = 2 α = 3

MA 1HSVL/2HVSL WFLS MA 1HSVL/2HVSL WFLS
UB CPU (s) UB CPU (s) UB CPU (s) UB CPU (s) UB CPU (s) UB CPU (s)

pr439 439 70 806.23 650.64 726.72 1050.05 726.72* 0.75 1027.74 837.88 1006.23 TL 1005.61 0.86
pr439 439 80 781.55 784.97 637.38 TL 637.38* 0.86 975 881.52 915.49 TL 905.88 1.29
pr439 439 90 721.11 826.21 583.1 24.75 583.1* 0.57 901.39 958.18 813.94 TL 797.26 1.04
rat575 575 10 116.1 151.27 116.1 24.75 116.1* 0.85 138.85 437.17 138.85 19.41 138.85* 1.59
rat575 575 20 73 290.76 72.62 265.55 72.4* 2.14 94.41 840.29 93.43 705.69 93.43* 2.20
rat575 575 30 59.91 806.14 59.14 TL 57.57 8.22 73.24 TL 72.09 TL 72.01 4.04
rat575 575 40 51 1061.96 50.25 TL 48.75 8.49 64.07 TL 66.61 TL 61.98 15.12
rat575 575 50 46.52 1350.20 45.88 TL 42.72 12.23 57.45 TL 57.25 TL 53.46 19.21
rat575 575 60 41.59 1535.83 41.15 TL 38.47 22.49 51.92 TL 53.74 TL 48.27 26.19
rat575 575 70 39.12 1733.20 37.48 TL 35.47 12.89 49.04 TL 47.42 TL 44.38 5.74
rat575 575 80 35.9 TL 34.99 TL 32.76 76.25 45.28 TL 45.28 TL 40.72 29.70
rat575 575 90 35.06 TL 32.45 TL 30.41 73.42 42.95 TL 44.69 TL 38.01 20.14
rat575 575 100 33.6 TL 30 TL 28.79 39.83 39.96 TL 40.79 TL 35.85 56.37
rat783 783 10 136.01 251.14 135.25 34.92 135.25* 1.22 163.68 511.48 163.68 54.58 163.68* 0.19
rat783 783 20 84.08 427.90 83.1 25.68 83.1* 1.79 110.54 983.14 109.57 841.93 109.57* 5.40
rat783 783 30 69.64 1178.00 67.88 TL 67.12* 2.43 87.09 TL 83.55 TL 83.55* 4.59
rat783 783 40 59.36 1600.20 57.43 TL 55.95* 24.73 74.71 TL 76.9 TL 71.85 31.71
rat783 783 50 54.23 TL 55.04 TL 50.54 28.50 67.23 TL 68.66 TL 62.68 30.04
rat783 783 60 51.35 TL 49.04 TL 45.22 57.42 60.67 TL 61.4 TL 55.97 90.83
rat783 783 70 45.8 TL 44.2 TL 41.34 106.36 57.08 TL 59.03 TL 51.92 24.78
rat783 783 80 43.14 TL 41.68 TL 38.29 26.90 54.04 TL 56.14 TL 48.37 117.71
rat783 783 90 41.01 TL 40.36 TL 36.06 17.41 49.58 TL 50.49 TL 44.94 71.11
rat783 783 100 39.12 TL 37.64 TL 33.97 43.00 47.51 TL 47.76 TL 42.2 87.14
pr1002 1002 10 3853.89 684.83 3853.89 48.07 3853.89* 0.73 5254.05 1547.96 5202.16 107.49 5202.16* 17.82
pr1002 1002 20 2630.59 970.62 2593.26 TL 2583.12* 5.05 3203.9 1283.98 3170.57 135.59 3170.57* 1.91
pr1002 1002 30 2110.09 1219.19 2059.73 TL 2040.22 27.01 2651.89 1650.35 2631.54 TL 2580.7 13.52
pr1002 1002 40 1839.84 1491.82 1746.42 TL 1711.72 26.73 2304.89 TL 2210.2 TL 2170.83 12.10
pr1002 1002 50 1662.08 1721.68 1523.15 TL 1503.8 10.31 2018.04 TL 2015.56 TL 1882.82 8.57
pr1002 1002 60 1498.33 TL 1403.57 TL 1346.29 17.37 1892.75 TL 1874.17 TL 1729.29 56.05
pr1002 1002 70 1389.24 TL 1372.95 TL 1237.94 45.27 1750 TL 1732.77 TL 1565.25 65.55
pr1002 1002 80 1346.29 TL 1253.99 TL 1131.37 23.75 1656.05 TL 1565.25 TL 1424.59 65.20
pr1002 1002 90 1264.91 TL 1131.37 TL 1053 17.85 1517.93 TL 1431.36 TL 1334.17 54.19
pr1002 1002 100 1202.08 TL 1070.05 TL 999.64 43.22 1450.86 TL 1414.21 TL 1251 63.12
rl1323 1323 10 4554.09 691.75 4554.09 660.59 4554.09* 2.39 6229.6 765.02 6229.6 TL 6229.6* 3.37
rl1323 1323 20 3079.56 979.50 3055.56 TL 3036* 7.70 3852.82 1415.16 3845.66 TL 3845.66* 5.44
rl1323 1323 30 2520.7 1361.84 2913.42 TL 2399.02* 20.70 3102 1777.78 3906.16 TL 3036.61 46.69
rl1323 1323 40 2090.87 TL 2039.56 TL 2011.46 27.12 2661.54 TL 2652.14 TL 2562.35 80.34
rl1323 1323 50 1927.09 TL 1958.61 TL 1762.56 47.96 2430.27 TL 2308.32 TL 2226.88 76.73
rl1323 1323 60 1760 TL 1710.6 TL 1597.72 136.55 2115.13 TL 2495.02 TL 2000.23 40.09
rl1323 1323 70 1587.15 TL 1647.07 TL 1449.41 73.71 2021.87 TL 1918.35 TL 1812.9 97.90
rl1323 1323 80 1511.32 TL 1536 TL 1328 55.87 1870.03 TL 1973.72 TL 1699.89 71.72
rl1323 1323 90 1423.38 TL 1329.66 TL 1235.74 100.85 1745.58 TL 1751.21 TL 1587.15 49.95
rl1323 1323 100 1330.32 TL 1278.1 TL 1159.54 41.56 1655.13 TL 1624.22 TL 1475.21 44.32
Gap 9.53% 5.52% 0 7.2% 7.52% 0

Table 2: Computational results on the large and challenging instances. TL indicates that the reference algorithms have reached the time limit
of 1800 seconds.

the CPU time includes the total time for computing the initial
solution and solving all the decisions. Column UB represents
the best upper bound obtained by these algorithms, and the
numbers in bold stand for the best known results. Column
#best shows the number of instances where the corresponding
algorithms match the best known results. Columns #B, #E,
and #W indicate the number of instances where our WFLS
obtains better, equal, and worse results compared to the cor-
responding algorithms, respectively. To verify the statistical
significance of the comparison between WFLS and the refer-
ence algorithms, we give the p-values by the non-parametric
Wilcoxon test in column p-value, where a p-value less than

0.05 indicates a significant difference In addition, based on
model (α-pCPq), we find the optimal objective value for some
instances using the Gurobi 11.0.3 solver with 1800 seconds
time limit per instance, which matches the time limit used
in the 1HSVL/2HVSL exact algorithm. The proven optimal
objective values are marked with ‘*’.

Table 1 summarizes the overall results on all the instances
obtained by SO, MA, 1HSVL, 2HVSL, and our WFLS and
Gurobi (α-pCPq). It is evident that WFLS achieves the best
known results on all the 154 instances (Gap = 0). Specif-
ically, compared to the best-performing algorithm 2HVSL,
WFLS obtains 35 better, 42 equal, and no worse solutions for
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Figure 2: Evolution of the objective value gaps by WFLS, WFLSNW, WFLSf2 , WFLSw, and WFLSRP on four largest instances.

Alg.
Instances with α = 2 (40) Instances with α = 3 (40)

#B/#E/#W UB CPU (s) #B/#E/#W UB CPU (s)

WFLSNW 28/12/0 1066.01 155.01 32/8/0 1364.59 159.93
WFLSf2 14/26/0 998.68 52.65 21/18/1 1286.51 48.26
WFLSw 30/10/0 1097.96 131.33 35/5/0 1414.36 136.64
WFLSRP 34/6/0 992.31 57.14 30/10/0 1278.31 74.35
WFLS - 977.12 32.44 - 1253.74 38.28

Table 3: Comparison results of WFLS and other four versions on 80
representative instances.

“α = 2” group, and 31 better, 46 equal and no worse solu-
tions for “α = 3” group. The maximum p-value is much less
than 0.05, further indicating the superiority of WFLS in terms
of the quality of solution. Moreover, WFLS has the shortest
average CPU time, with 16.98 (20.11) seconds for α = 2 (3),
while the average CPU times of all the reference algorithms
exceed 500 seconds. It shows that WFLS outperforms all ref-
erence algorithms in terms of both solution quality and com-
putational efficiency across all instances.

Table 2 summarizes detailed experimental results for im-
proved instances and large-scale challenging instances with
more than 500 vertices, comparing our algorithm with the top
performers (MA, 1HSVL, and 2HVSL)1. From Table 2, we
can observe that the proposed WFLS improves the previous
best known results and outperforms all reference algorithms
on these large instances in terms of computing time. For the
remaining 68 instances, WFLS matches the optimal or the
best known solutions. On large instances, the average gap
between the best results obtained by WFLS and the best re-
sults found by all the algorithms (including ours) is 0, while
for other competitors, the average gap is larger than 5%. It
is important to note that even a 1% gap is considered to be
significant due to the large value of UB for large graphs. Fur-
thermore, compared to the best 1HSVL and 2HVSL exact al-
gorithms, our model (α-pCPq) can prove the optimality for 11
more instances and find better upper bounds for the remain-
ing ones. In summary, these statistics indicate that WFLS is
highly effective and efficient to solve the α-pCP.

4.3 Analysis and Discussion
To evaluate the effectiveness of the weighting technique, the
incremental evaluation technique, the two scoring functions,

1The complete results are available in https://github.com/Zhang-
qingyun/alphaPCP-WFLS.

and the refined-grained penalty strategy for neighborhood
evaluation, we compare WFLS with four alternative versions.

• WFLSNW: Evaluate neighborhood evaluation in the
naive way.

• WFLSf2 : Disable the secondary scoring function, using
a random strategy to break ties.

• WFLSw: Deactivate the weighting technique.
• WFLSRP: Disable the refined-grained penalty strategy,

i.e., the objective function uses Eq. (12).
We conduct experiments on large instances with vertex

numbers greater than 500 with α = 2, 3. These versions have
the same settings as WFLS. Table 3 presents the compari-
son of each alternative version with WFLS. Columns UB and
CPU give the average best upper bound and CPU time for
these versions on the corresponding set of instances.

From Table 3, one can observe that WFLS outperforms the
other four variants. Specifically, WFLS obtains better results
on nearly all the 80 tested instances. The average CPU execu-
tion time and the best upper bound of WFLS are significantly
better than other four variants.

To further compare each variant, Figure 2 gives the trend
of the objective value on four representative instances (rl1323
with p = 40, 100, and α = 2, 3). Each point (x, y) on
the curve represents a gap of y between the objective value
of the current solution and the best known solution at the x
microsecond. We can observe that WFLS obtains the best
known solutions for all these instances with faster conver-
gence, while other versions fail to do so.

These observations indicate that the proposed strategies are
essential to the effectiveness and efficiency of WFLS.

5 Conclusion
In this paper, we study a variant of the p-center problem, re-
ferred to as α-neighbor p-center problem (α-pCP), and pro-
pose a weighting-based fast local search (WFLS) algorithm
to solve this challenging NP-hard problem. The original op-
timization problem is decomposed into a series of decision
subproblems for a given radius, which are then solved se-
quentially. Tested on 154 commonly used benchmark in-
stances and compared with several state-of-the-art algorithms
in the literature, our WFLS improves the previous best known
results on 69 instances, while matching the best records in
the literature for all the remaining ones in much shorter time.
This demonstrates that WFLS is highly competitive in terms
of both effectiveness and efficiency for solving the α-pCP.
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López-Sánchez, Alfredo Garcı́a Hernández-Dı́az, and
Abraham Duarte. Grasp with strategic oscillation for
the α-neighbor p-center problem. European Journal of
Operational Research, 303(1):143–158, 2022.

[Sánchez-Oro et al., 2022b] Jesús Sánchez-Oro, AD López-
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Lü, and Lingxiao Yang. A weighting-based tabu search
algorithm for the p-next center problem. In Proceedings
of the Thirty-First International Joint Conference on Arti-
ficial Intelligence, IJCAI 2022, pages 4828–4834, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


