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Multi-View Learning with Context-Guided Receptance for Image Denoising
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Abstract
Image denoising is essential in low-level vision ap-
plications such as photography and automated driv-
ing. Existing methods struggle with distinguish-
ing complex noise patterns in real-world scenes and
consume significant computational resources due
to reliance on Transformer-based models. In this
work, the Context-guided Receptance Weighted
Key-Value (CRWKV) model is proposed, combin-
ing enhanced multi-view feature integration with
efficient sequence modeling. The Context-guided
Token Shift (CTS) mechanism is introduced to ef-
fectively capture local spatial dependencies and en-
hance the model’s ability to model real-world noise
distributions. Also, the Frequency Mix (FMix)
module extracting frequency-domain features is de-
signed to isolate noise in high-frequency spec-
tra, and is integrated with spatial representations
through a multi-view learning process. To improve
computational efficiency, the Bidirectional WKV
(BiWKV) mechanism is adopted, enabling full
pixel-sequence interaction with linear complexity
while overcoming the causal selection constraints.
The model is validated on multiple real-world im-
age denoising datasets, outperforming the state-of-
the-art methods quantitatively and reducing infer-
ence time up to 40%. Qualitative results further
demonstrate the ability of our model to restore fine
details in various scenes. The code is publicly
available at https://github.com/Seeker98/CRWKV.

1 Introduction
Images captured in real-world scenes are commonly influ-
enced by noise from a mixture of sources, including optical
sensing limitations and electronic functional failures, mak-
ing image denoising an essential topic in low-level com-
puter vision. Failing to effectively remove noise can signifi-
cantly reduce the performance of subsequent high-level tasks
or scenes. For instance, this may affect content extracted
from a low-light, noisy document capture or identification
of pedestrians in adverse weather conditions for vision-based

∗Corresponding author.

Urban100: img013

Noisy ShuffleFormer
30.70/0.837

MambaIR
31.37/0.861

Uformer
30.49/0.834

SwinIR
31.79/0.831

Ours 
32.65/0.879

(a) Selected visual result (b) Model complexity comparison

Figure 1: Comparison of existing image denoising methods. (a) Vi-
sual results on Urban100 dataset: our method preserves fine details
under complex noise pattern, while others suffer from information
losses or artifacts. (b) Computational complexity across input scales
for Transformer- and state space-based models.

autonomous driving systems. Furthermore, recent advance-
ments in computational resources and specialized hardware
such as image signal processors (ISPs), combined with the
inherent limitations of optical systems, create a timely oppor-
tunity to advance denoising methods further.

Various foundational architectures have emerged, combin-
ing classical image processing principles with recent deep
learning advances, which include convolutional neural net-
works (CNNs) [Zhang et al., 2017], Transformers [Chen
et al., 2021], Mambas [Zhu et al., 2024], and Receptance
Weighted Key Values (RWKVs) [Peng et al., 2023]. CNNs,
often considered as an evolution of classical methods utilizing
hand-crafted priors [Zheng et al., 2019; Laghrib and Afraites,
2024; He et al., 2010], remain their core idea of local window
filtering. Despite advanced techniques such as non-local op-
erations [Wang et al., 2018], large kernels [Ding et al., 2022],
and architectures like U-Net [Ronneberger et al., 2015],
CNNs struggle with oversmoothing in complex scenes and
fail to handle distant information. Transformers and Mambas
introduce global modeling through self-attention (SA) mech-
anisms [Dosovitskiy et al., 2020] and state space models [Zhu
et al., 2024; Liu et al., 2024], respectively. While these ap-
proaches achieve the state-of-the-art (SOTA) performance,
they encounter challenges such as quadratic computational
complexity in Transformers and causal-style dependencies in
Mambas. Alternative approaches [Jin et al., 2024] tried to
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tackle these problems, but still lead to inconsistent modeling
in local regions.

Reviewing prior work reveals two main issues: feature-
level design and effective model architecture development.
Consider a scenario where a single convolution layer ef-
ficiently reduces noise in detailed regions but struggles in
flat areas, leaving residual noise. In such cases, the high-
frequency components, often dominated by noise in flat re-
gions, require attenuation rather than selective enhancement.
In addition, image information is spatially distributed across
all directions. However, causal-style token mixing, where in-
formation is derived only from past tokens, introduces asym-
metry in both weighting and positioning. While this lack of
symmetry may have minimal impact in natural language pro-
cessing (NLP), it poses a significant challenge in image fea-
ture representation, where spatial symmetry is essential for
accurate reconstruction and effective denoising.

In this study, we propose Context-guided Receptance
Weighted Key-Value (CRWKV), a novel model that ad-
dresses challenges in noise modeling and computational ef-
ficiency mentioned above. Our model provides superior real-
world image denoising performance within limited resources,
and the main contributions are as follows:

• We propose CRWKV, a novel model for image denois-
ing that integrates a multi-view learning approach. Our
design enhances the RWKV model by introducing the
BiWKV mechanism, enabling full pixel-sequence com-
putation superior to causal-style selection with linear
complexity relative to sequence length.

• We introduce CTS mechanism to effectively model local
noise correlations in image. Besides, we propose FMix
module to selectively process frequency-domain infor-
mation and attenuate noise. They together significantly
improve denoising performance.

• Comprehensive experiments on real-world image de-
noising datasets demonstrate that CRWKV consistently
outperforms SOTA methods. Its strong generalization
ability is validated through testing on multiple unseen
datasets, showcasing its efficiency and effectiveness for
practical denoising applications.

2 Related Works
2.1 Real-world Image Denoising
Image denoising is a fundamental problem in image pro-
cessing, with applications ranging from photography to med-
ical imaging. Classical methods, such as BM3D [Dabov
et al., 2007], rely on hand-crafted priors and assumptions
about noise characteristics, achieving good results in con-
trolled scenarios but struggle with complex noise patterns.
With advancements in deep learning, modern approaches like
DnCNN [Zhang et al., 2017] have emerged, focusing primar-
ily on removing Additive White Gaussian Noise (AWGN).
While effective for synthetic noise, these methods face sig-
nificant challenges when applied to real-world noise, which
is far more complex than AWGN due to spatial correlation,
intensity variation, and limited paired data.

To address these issues, various methods have been pro-
posed. Some rethink the imaging and noise generation pro-
cesses, as seen in CBDNet and SCUNet [Guo et al., 2019;
Zhang et al., 2023], while others adopt self-supervised pixel
reconstruction techniques using blind-spot networks [Krull et
al., 2019; Lee et al., 2022]. Additionally, Gaussian denois-
ers have been adapted for real-world denoising by performing
noise pattern corruption with shuffling techniques in advance
[Zhou et al., 2020; Xiao et al., 2023]. Recent works have also
explored novel image restoration architectures. For instance,
MambaIR [Guo et al., 2025] leverages state space modeling,
while Restormer [Zamir et al., 2022] incorporates windowed
self-attention, both demonstrating notable improvements in
real-world image denoising. Despite these advancements,
limited attention has been given to integrating noise-specific
priors into modern architectures while achieving a balance
between computational efficiency and restoration quality.

2.2 RWKV Models
RWKV [Peng et al., 2023] was proposed as an efficient al-
ternative to Transformers for NLP, particularly in Large Lan-
guage Models (LLMs). RWKV introduces two main inno-
vations: token shifting and WKV computation. By incor-
porating token shifts in the preceding direction and concate-
nating shifted and non-shifted channels, the model can sepa-
rate two tasks—predicting the next token, and accumulating
and passing information from previous tokens. The WKV
computation improves upon the Attention-Free Transformer
[Zhai et al., 2021] by employing trainable distance factors
and enhanced integration of the current token to model token
weights more precisely. Additionally, it adopts an equivalent
recurrent form for efficient inference. These features position
RWKV as a strong competitor to CNNs and Transformers.

Recent studies, such as Vision-RWKV [Duan et al., 2024],
have showed the potential of RWKV-based models as vision
backbones [Fei et al., 2024; Zhou and Chen, 2024]. Two
major improvements have been developed to adapt RWKV
for vision tasks: quad-shift, a token-shifting strategy on 2D
planes, and Bi-WKV, an attention mechanism with absolute
positional bias to align with the symmetric nature of im-
ages. While promising efforts like Restore-RWKV [Yang et
al., 2024] have emerged, targeting all-in-one medical image
restoration with Re-WKV and omni-shift, there remains lim-
ited exploration of how RWKV-based models can enhance
performance in low-level vision tasks, such as real-world im-
age denoising.

3 Methodology
In this section, the details of our proposed model CR-
WKV will be introduced. We will start with the model
overview and gradually analyze the structure of CRB and
FMix designed specifically for real-world noise modeling.

3.1 Overall Architecture
As illustrated in Figure 2, the proposed CRWKV model
adopts a U-shaped hierarchical structure with long-skip con-
nections to effectively capture both local and global features.
For a noisy input image x ∈ RH×W×3, a 3 × 3 convolution
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Figure 2: Architecture of the proposed CRWKV model, and (a) Frequency Mix Module (FMix), (b) Context Receptance Module (CRM) and
(c) Context-guided Token Shift (CTS).
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Figure 3: Illustration of different token shift mechanisms.

is first applied to extract low-level features. The resulting
feature map is then processed through four distinct stages of
encoders and decoders following the U-shaped structure. Af-
ter this process, the refined features are passed through a final
projection layer to reconstruct the denoised output image.

Each encoder and decoder stage contains Nk Context Re-
ceptance Blocks (CRBs). Each CRB consists of two types of
modules for multi-view learning: ak Frequency Mix (FMix)
Modules and bk Context Receptance Modules (CRMs), such
that ak + bk = Nk for k = 1, 2, 3, 4. The computation in a
single CRB can be expressed as:

z1 = Norm(FMix(x)) + α1x ,

z = Norm(CMix(z1)) + α2z1,
(1)

and
y1 = Norm(CRM(z)) + β1z ,

y = Norm(CMix(y1)) + β2y1 ,
(2)

where x and y denote the input and output features, respec-
tively. The Channel Mix (CMix) module is computed as fol-
lows:

rc, kc = CTS(z) ,

CMix(z) = σ(L(rc))⊙ Norm(max(0, k2c )) ,
(3)

where CTS(·) represents the Context-guided Token Shift
mechanism, further detailed in Section 3.2.

3.2 Context Receptance Module

Algorithm 1 Context-guided Token Shift
Input: input x, offset dictionary D, learnable weight ω
Parameter: channel C
Output: shifted output CTS(x)

1: Let psum = 0, c = 0, o = zeros(x.shape)
2: for offset p in D do
3: calculate p’s Manhattan distance dp = dm(p, 0)
4: calculate offset p’s weight wp = 1/dp
5: psum += wp

6: end for
7: calculate channel expansion factor k = C/psum
8: for offset p in D do
9: fill o w/ shifted x: o[c : c+k ·wp] = xp[c : c+k ·wp]

10: c = c+ k · wp

11: end for
12: return CTS(x) = ω · o+ (1− ω) · x

Context-guided Token Shift. The shifting operations in
the mixing processes enable selective accumulation of infor-
mation from previous tokens to the current token. Unlike
NLP problems, pixels in an image often exhibit correlations
with their neighbors in a centrosymmetric manner. Real-
world noise, in particular, correlate with a specific neighbor-
hood structure. Therefore, it is essential to identify this neigh-
borhood shape to ensure that all significant pixels are fully
considered while avoiding shifts over excessively large areas,
which may introduce extra complexity in the implementation
and reduce efficiency.

To address this issue, we propose a CTS mechanism, which
assigns predefined weights to the most correlated pixels, as
illustrated in Figure 2(c), and a visual comparison with exist-
ing token shift methods is provided in Figure 3. The colored
masks in the figure depict individual pixels rather than image
patches. Starting with the red central pixel, a context-guided
region is defined as the equivalent reception field. This region
aligns with the specific neighborhood identified in [Wang et
al., 2023] through Pearson’s correlation analysis, which high-
lights the most correlated pixels with the central noise. The
detailed algorithm of CTS is presented in Algorithm 1.
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Characteristics Vanilla Attention Window Attention Linear Attention State Space Model BiWKV
Operator Type SA SA Linearized SA Selective scan Attention-free
Inductive Bias - Locality Low-rank (LR) approx. Causality Spatial symmetry
Token Mixer Dense Blockwise sense Lower-triangle (LT) LT, blockwise LR Almost dense
Token Type Patch (typ.) Patch (typ.) Patch (typ.) Pixel (typ.) Pixel (typ.)
Local Interaction - Shifting window - Scan strategy Token shifting
Global Interaction Direct Arch-specific Kernel-dependent Hidden state Recurrent state
Complexity Quadratic Quadratic to win size Linear Linear Linear

Table 1: Comparison of different operators.

Bidirectional WKV operation. Unlike the self-attention
mechanism, BiWKV operation employs a token-shift oper-
ation to achieve a weighted fusion of the feature map with its
context-guided shifted version, generated using the CTS op-
eration. The fused feature map, denoted as CTS(x), is then
used to produce r1, k1, and v1 through three linear projection
layers:
r1 = CTS(x)Wr , k1 = CTS(x)Wk , v1 = CTS(x)Wv, (4)

where Wr, Wk, and Wv are the weight matrices of the re-
spective linear projection layers. Among these, k1 and v1 are
utilized for the BiWKV computation, while r1 serves as a
gating mechanism after passing through a sigmoid activation
function. The output of a single CRM block is computed as:

CRM(x) = σ(r1)⊙ Norm(BiWKV(k1, v1)) , (5)
where σ represents the sigmoid function and ⊙ is the
Hadamard element-wise product. Denote the relative posi-
tion bias between the t-th and i-th token as:

bt,i = −(|t− i| − 1)/T , (6)
the computation of the BiWKV operation is given as follows:

BiWKV(k1, v1)t

=

∑
i̸=t exp (bt,iw + k1,i) v1,i + exp (u+ k1,t) v1,t∑

i̸=t exp (bt,iw + k1,i) + exp (u+ k1,t)
,

(7)

where T represents the length of the processed sequence, k1,i
and v1,i correspond to the i-th token of k1 and v1, respec-
tively, and u is a learnable parameter representing bonus of
the current token. The absolute valued design in bt,i ensures
that tokens equidistant from the current token in both forward
and backward directions are weighted equally, preserving the
spatial symmetry of image planes. Overall, the BiWKV op-
eration computes a weighted sum of all tokens in v1 along the
token dimension. The weights are determined by a combina-
tion of symmetric relative position bias, the vector k1, and the
current token bonus controlled by the parameter u.

To justify the BiWKV operation for real-world image de-
noising, we compare it to several attention mechanisms and
sequence models relevant to low-level vision. These include
the vanilla attention [Dosovitskiy et al., 2020], window at-
tention [Liang et al., 2021], linear attention [Cai et al., 2023],
state space model [Guo et al., 2025], and BiWKV. Table 1
summarizes a detailed comparison of these operations, fo-
cusing on key characteristics. Specifically, the ‘Token Mixer’
row in the table reflects the shape of L in the following equa-
tion, based on the structured masked attention framework
[Dao and Gu, 2024]:

y = f(L ◦ (QK⊤)) · V . (8)

3.3 Frequency Mix Module
Real-world images often contain spatially correlated noise,
which complicates detail-rich areas. This noise spreads in-
formation across all frequencies, causing overlap in high-
frequency components and resulting in either over-smoothing
or incomplete noise removal.

To address this issue, we propose the FMix module, illus-
trated in Figure 2(a), designed to extract detailed frequency
representations from high-level features using FFT. Given a
feature map x ∈ Rh×w×c, a 2D FFT is applied:

xF
u,v,c =

h−1∑
m=0

w−1∑
n=0

xm,n,c exp
(
−2πi

(ux
h

+
vy

w

))
. (9)

The extracted frequencies are linearly weighted, followed by
activation with Leaky ReLU. The weighted frequencies are
then passed through an inverse FFT (iFFT) to return to the
spatial domain. The resulting feature map is combined with
the input via an element-wise product and normalized to pro-
duce the filtered feature map:

xF = FFT(x) ,

z = LReLU(Linear(xF )) ,

FMix(x) = Norm(iFFT(z) · x).
(10)

3.4 Loss Function
The proposed CRWKV model is trained by minimizing the
L1 loss, which can be written as follows:

L1(y, x
∗) = ∥y − x∗∥1 , (11)

where x∗ is the ground truth and y is the model output. The
L1 loss is capable of retaining fine details such as edges and
textures with its linear penalty that other losses such as L2

may smooth out, ensuring robustness to outliers and accurate
reconstruction of the denoised image.

4 Experiments
4.1 Experiment Setup
Datasets and metrics. We use the SIDD dataset [Abdel-
hamed et al., 2018], consisting of 320 real-world images, as
the primary training set. From each high-resolution image
(256× 256), we crop 300 non-overlapping slices, generating
a total of 96,000 training samples. For testing, we evaluate on
the SIDD, ccnoise [Nam et al., 2016], and PolyU [Xu et al.,
2018] datasets, all containing realistic noise. Additionally,
we create a synthetic dataset, Urban100GP, by introducing
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Methods Params (M) SIDD ccnoise PolyU Urban100GP
↑PSNR ↑SSIM ↑PSNR ↑SSIM ↑PSNR ↑SSIM ↑PSNR ↑SSIM

BM3D [Dabov et al., 2007] - 29.97 0.679 36.15 0.947 37.40 0.957 25.02 0.813
AP-BSN [Lee et al., 2022] 3.10 36.74 0.889 33.30 0.918 36.46 0.947 24.25 0.716
B2U [Wang et al., 2022a] 1.96 32.37 0.727 35.72 0.938 35.71 0.947 27.39 0.847
DnCNN [Zhang et al., 2017] 0.56 26.21 0.604 33.88 0.959 36.11 0.960 24.20 0.866
SwinIR [Liang et al., 2021] 11.75 33.70 0.864 35.26 0.978 37.14 0.977 28.21 0.896
Uformer [Wang et al., 2022b] 50.88 39.68 0.958 36.02 0.979 37.48 0.979 26.88 0.885
ShuffleFormer [Xiao et al., 2023] 50.53 39.60 0.958 35.88 0.978 37.50 0.979 27.89 0.900
Restormer [Zamir et al., 2022] 26.10 40.01 0.960 36.33 0.981 37.56 0.979 28.18 0.904
MambaIR [Guo et al., 2025] 26.78 39.88 0.960 36.20 0.981 37.58 0.980 27.42 0.898
CRWKV (Ours) 20.19 39.87 0.960 36.69 0.983 37.60 0.980 28.30 0.908

Table 2: Quantitative results of real-world image denoising on SIDD, ccnoise, PolyU and Urban100GP.
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Figure 4: Selected visual results on ccnoise and PolyU dataset.
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Figure 5: Selected visual results on SIDD dataset.

mixed Additive White Gaussian Noise (AWGN) with σ = 10
and Poisson noise to Urban100 [Huang et al., 2015] to simu-
late real-world noise. To quantify model performance, we use
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) as evaluation metrics.

Implementation details. During training, images are
cropped to 128×128, and data augmentation techniques such
as rotations (90◦, 180◦, 270◦) and random flipping are applied

ShuffleFormerUformer MambaIR SwinIR CRWKV Clean
26.87/0.913 28.03/0.880 28.45/0.919 29.27/0.93326.83/0.906 img056.png

img061.png

img085.png

img028.png

28.89/0.872 30.02/0.882 28.29/0.857 29.67/0.88827.55/0.843

31.34/0.916 29.89/0.879 30.92/0.901 32.04/0.92630.82/0.906

31.14/0.870 32.18/0.842 32.52/0.882 32.26/0.88831.82/0.873

Figure 6: Selected visual results on Urban100GP dataset.

to enhance model robustness. The training process is carried
out with a batch size of 4 for a total of 288, 000 iterations. We
use the AdamW optimizer with β1 = 0.9 and β2 = 0.999.
The learning rate starts at 3× 10−4 and is gradually reduced
to 1×10−6 after the 192, 000-th iteration. For model-specific
configurations, the output channel size of the input projection
is set to 48. The depths of the four stages are empirically cho-
sen as L1 = 3, L2 = L3 = 4, and L4 = 6. All experiments
are conducted on a single NVIDIA RTX 4090 GPU, running
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Figure 7: Power spectrum of feature maps at different depths of
MambaIR and CRWKV across various datasets. Lines with deeper
colors represent deeper layers.

Ubuntu 22.04 with PyTorch 2.5 as the software environment.

4.2 Comparison on Real-world Image Denoising
The proposed FRWKV method was evaluated on real-world
image denoising tasks against several SOTA methods, includ-
ing BM3D [Dabov et al., 2007], AP-BSN [Lee et al., 2022],
B2U [Wang et al., 2022a], DnCNN [Zhang et al., 2017],
Uformer [Wang et al., 2022b], SwinIR [Liang et al., 2021],
ShuffleFormer [Xiao et al., 2023], Restormer [Zamir et al.,
2022], and MambaIR [Guo et al., 2025]. The compared
methods cover backbones including CNNs, Transformers and
Mambas, functioning paradigms including supervised, self-
supervised, and non-learning based.

Quantitative comparison. Quantitative results on four
datasets—SIDD, ccnoise, PolyU, and Urban100GP—are
summarized in Table 2, along with the parameter count for
each model. Our model achieves superior performance across
nearly all datasets and metrics. The only exception is the
PSNR metric on the SIDD dataset, where Restormer slightly
surpasses our model by a margin of 0.1 dB. However, this
minor advantage comes at the cost of a significantly larger
model size, with Restormer requiring 30% more parameters
than CRWKV. On the ccnoise and PolyU datasets, the differ-
ences between the models’ metrics are less significant com-
pared to the SIDD dataset. This can be attributed to the
complex noise pattern in SIDD images, including noise intro-
duced from multiple stages of the image processing pipeline.

Figure 7 compares the power spectrum of feature maps be-
tween MambaIR and CRWKV. A significant amplitude drop
is observed in MambaIR between encoder layer.2 and latent,
which is essential in semantic-level feature reconstruction. In
contrast, CRWKV exhibits a much smaller amplitude reduc-
tion on PolyU and ccnoise while maintaining superior per-
formance on Urban100GP and SIDD. This indicates that CR-
WKV is able to retain amplitude stably across layers, pre-
serving and leveraging high-frequency information through-
out the denoising process effectively.

Qualitative comparison. On ccnoise and PolyU datasets
(Figure 4), our model excels in preserving both fine details
(leaf veins in ccnoise 3.png) and flat regions (ccnoise 2.png),
and maintaining high-quality text fidelity (PolyU door.png).
Other methods, such as B2U, struggle with edge preservation

Methods Params FLOPs Time SIDD
(M) (G) (ms) PSNR SSIM

SwinIR [Liang et al., 2021] 11.75 253.46 170.33 33.70 0.864
ShuffleFormer [Xiao et al., 2023] 50.53 120.67 98.96 39.60 0.958
Uformer [Wang et al., 2022b] 50.88 41.44 62.50 39.68 0.958
Restormer [Zamir et al., 2022] 26.10 35.24 47.40 40.01 0.960
MambaIR [Guo et al., 2025] 26.78 34.39 79.61 39.88 0.960
CRWKV (Ours) 20.19 28.78 62.74 39.87 0.960

Table 3: Efficiency comparison with the SOTA methods.

(PolyU classroom.png), while models like MambaIR leave
visible noise residuals in flat regions (ccnoise 2.png).

For SIDD dataset (Figure 5), visual comparisons showcase
CRWKV’s superior ability to restore text and textures. In the
first two examples, our model successfully reconstructs text
at varying scales, while competing methods struggle. In the
latter two examples, CRWKV recovers intricate textures such
as those in the 0036.png, where other models like SwinIR fail
to reproduce fine details. The PSNR and SSIM values dis-
played in the lower-right corners further confirm the model’s
effectiveness. For the Urban100GP dataset (Figure 6), CR-
WKV produces denoised images that strike a superior bal-
ance between preserving structural details and reducing noise
artifacts. For instance, the grid pattern and fine features in
img056.png can be jointly restored with CRWKV, outper-
forming other models. Additionally, CRWKV produces the
most realistic reconstruction of the reflective water surface,
showcasing its ability to handle challenging scenarios.

Compared to other methods, CRWKV demonstrates sig-
nificant improvements in restoring both flat regions and fine
details, achieving smoother textures and sharper edges. Fur-
thermore, evaluations on unseen datasets, such as ccnoise,
PolyU, and Urban100GP, suggest strong generalizability of
CRWKV, as they were excluded from the training process.

Computational complexity. The model efficiency compar-
ison results are summarized in Table 3. On the ccnoise
dataset, CRWKV outperforms Restormer by over 0.3 dB
PSNR and achieves competitive performance with MambaIR,
while utilizing only 83% of the FLOPs. Figure 1(b) illustrates
GPU memory usage during inference for varying input image
sizes, comparing CRWKV with state-space and full-attention
architectures. Notably, the Transformer-based Shuffleformer
encounters memory limitations when the input size reaches
1024, whereas CRWKV requires only 40% of the GPU mem-
ory. Even with a comparable parameter count, CRWKV uses
approximately 60% of the memory consumed by state-space-
based MambaIR. This demonstrates that CRWKV strikes an
optimal balance between denoising performance and com-
putational efficiency, offering a practical solution for high-
resolution and resource-constrained applications.

4.3 Ablation Study
Effectiveness of CRB module designs. To evaluate the ef-
fectiveness of the FMix module and CTS mechanism, we per-
form experiments on different configurations within the CRB.
In the first configuration, we remove FMix and replace it with
a basic spatial-mix while omitting the CTS in the CRM and
CMix modules. In the second configuration, FMix is retained,
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but CTS is excluded. Finally, we evaluate the model’s perfor-
mance with partial (CRM-only or CMix-only) and full inser-
tion of CTS. The results suggest that removing FMix leads
to a substantial performance degradation, with a PSNR drop
of at least 0.40 dB on the SIDD dataset compared to the sec-
ond configuration. Similarly, omitting CTS from CRM and
CMix results in suboptimal performance. Introducing CTS
yields consistent improvements, increasing PSNR by at least
0.15 dB on the ccnoise dataset and further boosting results on
the SIDD dataset. These findings validate the importance of
FMix and CTS in enhancing denoising performance.

Effectiveness of shifting mechanisms. As a guidance to
the model’s vast search space, shifting mechanisms include
Uni-shift, Bi-shift, and Quad-shift are adopted previously. To
further evaluate the effectiveness of shifting window in CTS,
we implement CTS(+), an extended version including pixels
at a Manhattan distance of 3 from the central pixel addition-
ally, covering a total of 16 neighboring pixels. Table 5 shows
CTS outperforms CTS(+), suggesting the additional context
introduces complexity without significant benefits. Although
learning a dynamic offset dictionary with deformable convo-
lution is feasible, we choose a fixed offset dictionary to avoid
overfitting to noise patterns in the training set and to reduce
computational costs. While the results show that a fixed off-
set dictionary achieves comparable performance, the need for
learnable offsets for optimal results remains an open question.

Effectiveness of parameter settings. To evaluate the roles
of FMix and CRM in the model, we analyze the impact of
parameters ak , bk (where each CRB contains a FMix mod-
ules and b CRM modules), as shown in Table 6. The findings
can be summarized as follows: (1) A small number of FMix
modules is optimal for low-level feature extraction and ex-
cessive usage disrupts early-stage modeling. (2) Applying
frequency domain analysis at the middle layers negatively
impacts performance. This may be attributed to the limited
ability of FMix to model mid-level features, which are less
semantically structured. (3) Incorporating frequency selec-
tion at deeper network layers significantly enhances perfor-
mance. Deeper layers deal with semantically rich features
that benefit more from frequency-domain processing. Based
on these findings, the optimal configuration for the CRB is
b1 = 3 , b2 = b3 = 4 and a4 = 6.

Effectiveness of loss functions. Table 7 presents a compar-
ison of different loss functions on SIDD and ccnoise datasets.
L1 loss achieves the best performance, offering a strong bal-
ance between pixel-level fidelity and perceptual quality. In
contrast, MSE loss, while converging faster, suffers from
over-smoothing, leading to unsatisfied results. Charbonnier
loss achieves comparable but slightly weaker results, likely
due to its more complex convergence dynamics. PSNR loss,
however, shows a significant performance drop on the ccnoise
dataset, suggesting its limitations in generalizability.

5 Conclusion
This work introduces the CRWKV model, a novel approach
designed to tackle the challenges of noise modeling and com-
putational inefficiency in real-world image denoising tasks.

FMix CTS SIDD ccnoise
CRM CMix PSNR SSIM PSNR SSIM

✘ 39.28 0.954 36.45 0.981
✔ 39.70 0.957 36.50 0.982
✔ ✔ 39.75 0.957 36.64 0.983
✔ ✔ 39.74 0.957 36.62 0.982
✔ ✔ ✔ 39.87 0.960 36.69 0.983

Table 4: The effectiveness of CRB module designs.

Shifting SIDD ccnoise
PSNR SSIM PSNR SSIM

Uni-Shift 39.57 0.957 36.46 0.982
Bi-Shift 39.58 0.958 36.54 0.982
Quad-Shift 39.74 0.958 36.50 0.982
CTS(+) 39.79 0.958 36.60 0.982
CTS 39.87 0.960 36.69 0.983

Table 5: The effectiveness of shifting mechanisms.

k Lk (ak, bk)
SIDD ccnoise

PSNR SSIM PSNR SSIM

1 3

(3, 0) 39.72 0.957 36.13 0.935
(2, 1) 39.82 0.958 36.60 0.980
(1, 2) 39.83 0.958 36.57 0.925
(0, 3) 39.87 0.960 36.69 0.983

2, 3 4

(4, 0) 32.77 0.779 22.91 0.727
(2, 1) 34.63 0.789 30.71 0.824
(1, 2) 38.56 0.908 34.90 0.884
(0, 4) 39.87 0.960 36.69 0.983

4 6
(6, 0) 39.87 0.960 36.69 0.983
(3, 3) 39.84 0.958 36.63 0.982
(2, 4) 39.85 0.957 36.59 0.982
(0, 6) 39.84 0.957 36.65 0.983

Table 6: The effectiveness of parameter settings.

Loss function SIDD ccnoise
PSNR SSIM PSNR SSIM

Charbonnier Loss 39.86 0.959 36.67 0.983
MSE Loss 39.66 0.957 36.53 0.983
PSNR Loss 39.82 0.958 36.31 0.982
L1 Loss 39.87 0.960 36.69 0.983

Table 7: The effectiveness of loss functions.

Key contributions include the CTS mechanism, which effec-
tively captures local spatial contexts affected by noise, and
the FMix module, which integrates semantic-level frequency-
domain information through a multi-view learning process.
By incorporating the BiWKV mechanism into the RWKV
backbone, CRWKV achieves efficient pixel-sequence com-
putation with linear complexity, overcoming the limitations
of causal-style computation. These advancements enable CR-
WKV to effectively differentiate noise from complex scenes
and separate high-frequency noise from structural details. Ex-
tensive experimental results demonstrate CRWKV’s superior
performance, both quantitatively and qualitatively, highlight-
ing its robustness and practicality for real-world image de-
noising applications.
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