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Abstract

Optimization problems are ubiquitous across vari-
ous domains, such as resource scheduling, produc-
tion planning, and sales management. Tradition-
ally, they are modeled manually, leading to ineffi-
ciencies due to difficulties in communication and
collaboration between modeling and domain ex-
perts. The emergence of Large Language Mod-
els (LLMs) has made automated modeling possi-
ble. However, real-world applications are often
large-scale and have numerous variables and con-
straints, limiting the applicability of existing meth-
ods. To address this, we propose PaMOP, a novel
modeling framework based on LLMs, to model op-
timization problems automatically, given only nat-
ural language descriptions. Specifically, we ex-
tract and partition the problems using a tree struc-
ture, guiding the LLMs to model each set of con-
straints with self-augmented prompts, thus reduc-
ing the demands on the LLM’s capabilities of large
contents. The mathematical model is then itera-
tively corrected and validated through our correc-
tion procedures. The experiments demonstrate that
our method improves performance on the common
benchmark dataset NLP4LP, achieving an accuracy
of 62.3% and a code executability rate of 86.8%
when tested on GPT-4. Additionally, we demon-
strate the effectiveness of our PAMOP in handling
large real-world problems.

1 Introduction

Optimization problems have extensive and important appli-
cations across various fields, such as water resource schedul-
ing [Britz et al., 2013], production and marketing [Sitek and
Wikarek, 2018], electric vehicle travel planning [Cuchy et
al., 2024], large neighborhood search for bus driver schedul-
ing [Mazzoli et al., 2024], water quality assessment [Burn
and McBean, 1985], and chemical product capture and stor-
age [Middleton et al., 2012]. These problems are typically
solved using optimization solvers like Gurobi [Gurobi Opti-
mization, 20211, SCIP [Achterberg, 2009], and Xpress [Min
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et al., 2003], which find the optimal solution by maximizing
or minimizing the specified objective function. However, be-
fore solving the problem, real-world challenges often arise in
the process of modeling. Formulating optimization problems
as mathematical expressions from natural language descrip-
tions requires substantial effort, and traditionally, this model-
ing is done manually by experts. This process demands sig-
nificant time and effort, as the communication challenges be-
tween frontline staff, algorithm developers, and domain ex-
perts often hinder the efficiency of accurately “translating”
real-world problems into solvable mathematical models.

Large language models (LLMs) have emerged, enabling
new ways to optimize problems because of their advanced
natural language processing capabilities and strong logical
reasoning skills. Currently, LLMs have been applied to op-
timize the modeling, verification, and validation of optimiza-
tion problems, building on methods like Chain-of-Thought
(CoT) [Wei et al., 2022], Tree of Thoughts [Yao et al.,
2024], and Reflexion [Shinn et al., 2024], achieving notable
progress [Xiao et al., 2023; AhmadiTeshnizi et al., 2024].

However, guiding LLMs to model optimization prob-
lems through prompts still faces several challenges. LLM-
generated models often fail to meet expected formatting or
content standards, leading to unstable outputs. For instance,
LLMs may generate only a textual analysis of the problem or
output a mathematical model in markdown instead of a proper
code format. This raises our first challenge: (C1) how to get
the output that meets the requirements.

Another significant challenge arises in practical applica-
tions, where the scale of the problem limits the LLM’s abil-
ity to generate accurate models. This results in issues like
omitted constraints or confusion between variables and pa-
rameters. The length of the input text impacts the LLM’s
capacity to handle complex logical conditions [Liu et al.,
2024]. Current methodologies aimed at augmenting the rea-
soning capabilities of large models when dealing with ex-
tensive texts have proven inadequate in substantially en-
hancing tasks demanding high precision [Li et al., 2023;
Li ef al., 2024]. Modeling is among the tasks that are par-
ticularly affected by these limitations. As shown in Figure 1,
when we directly instruct the LLMs to model a small prob-
lem with fewer than 10 parameters and constraints, it demon-
strates a significant limitation by omitting some of the con-
straints. This raises our second challenge: (C2) how fo deal
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with large-scale problems.

Given the precision required to generate an optimization
problem model, even minor discrepancies can render the
problem unsolvable. While existing correction methods focus
on improving the execution success of mathematical models
on solvers, they do not address the logical errors within the
model, which directly affect the model’s accuracy and qual-
ity. This leads to our third challenge: (C3) how to improve
the accuracy of modeling output.

All the challenges mentioned above can be attributed to the
fact that existing prompts do not fully leverage the modeling
capabilities of LLMs. To address these challenges, we pro-
pose PaMOP, an automated optimization problem modeling
framework (see Figure 2), based on LLMs. We first analyze
and partition the problem using a tree structure. Leveraging
this partition tree, we guide the LLMs in modeling each con-
straint set with self-augmented prompts. Finally, aided by
insights from the problem analysis, the mathematical model
undergoes iterative correction and validation in depth through
our correction procedures.

Our key contributions are as follows:

* PaMOP Framework Design. We design an automatic
optimization problem modeling framework, PaAMOP. By
providing self-augmented prompts tailored to different
problems and constraint categories during modeling, we
stabilize and enhance the modeling capabilities of the
LLMs, addressing the challenge of incorrect output for-
mats (C1).

Problem Partitioning and Tree Structure. By parti-
tioning problems into independent subproblems using
a tree structure, we reduce the LLM’s processing bur-
den for long texts and provide auxiliary information for
model generation and improvement. This approach also
helps mitigate the challenge of problem scale limitations
(C2), ensuring more manageable inputs and improving
the accuracy of model generation. We develop test cases
for large-scale scenarios to demonstrate the efficacy of
the proposed method.

Experimental Results and Ablation Studies. Experi-
ments on the NLP4LP dataset demonstrate that PAMOP
achieves an accuracy of 62.3% and a code executabil-
ity rate of 86.8%, both outperforming existing methods.
Ablation studies further confirm the importance of us-
ing the partition tree in enhancing model performance.
These results showcase PaMOP’s efficiency and scala-
bility in handling complex optimization problems, par-
ticularly in overcoming low-accurate output (C3).

2 Background

An optimization problem is typically characterized by a
unique objective function and several constraints. Our goal
is to transform the initial problem description into the follow-
ing mathematical model:

max f(x) st Viel.n,g(x)<0 (1)

For a mathematical model of a problem g, it can be ex-
pressed as M = (mp,m,, m,, M), Where m,, represents

the constants or parameters in constraints of the problem, m,,
represents the decision variables x, m,, denotes the objective
function f(x), and m, represents the constraints of the prob-
lem like ¢; (x).

Currently, the basic process for using LLMs to model opti-
mization problems is as follows: upon receiving a description
of the optimization problem, we first extract key information
and structure it in a specific format. Next, prompts are em-
ployed to guide the LLMs in constructing the model for the
problem. Finally, we iteratively interact with the LLMs to
identify and eliminate errors in the generated model.

After completing the modeling, we input the generated
model along with the original problem’s data file into the
solver for the solution. When the output yields an optimal
solution that meets the problem’s requirements, we consider
the modeling to be correct.

3 Method

This section describes the methods of the PAMOP framework
(see Figure 2). To construct the partition tree, we use LLMs
to extract key information from the problem description. The
tree systematically breaks down the problem both mathemat-
ically and semantically. Self-augmented prompts guide the
LLMs in modeling the leaf nodes, which are merged bottom-
up into a complete model. Finally, the root node’s informa-
tion aids in iteratively correcting the model through syntax
error correction, code execution, and reverse translation until
the model is error-free.

3.1 The Tree of Problem Partitioning

Extracting sub-problems directly from the original problem
description is challenging, as it is difficult to obtain indepen-
dent, model-ready components. Instead, we simulate sub-
problems using constraint sets. A tree partitions the problem,
creating relatively independent sub-problems, each contain-
ing key information needed for modeling. Figure 3 shows the
partition result for the example in Figure 1.

The partitioning process occurs layer by layer from the root
node downward. The root node represents the entire prob-
lem, in which we store all the content of the original prob-
lem awaiting partition. At each layer of the partition, a node
is split into several child nodes, where the constraints within
each child node are highly related. In contrast, the constraints
between child nodes are relatively weakly correlated. The
leaf nodes formed by the partition represent the sub-problems
to be modeled.

The tree structure for partitioning the problem allows us to
prevent the LLMs from needing to process complex logical
relationships in longer texts. When complex logical process-
ing is necessary (such as in constraint modeling), the LLMs
do not need to handle long texts.

3.2 Construction of the Partition Tree

Extracting Structured Representation. Before partition-
ing, we derive a structured representation of the problem,
extracting textual descriptions for the objective functions %,
constraints t., and parameters and variables ¢,. To avoid
modeling bias from missing the global context, we also gen-
erate a concise problem summary g. This extraction process,
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A brief description of the problem to be modeled: A seaport unloads shipping containers off of rail cars, holds them in its yard,
and then loads them onto ships. Our goal is to determine a strategy to minimize costs from unloading, storage, and crane rentals

over the period.
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with Our Method

data file /

I = 200, number of initial containers \

T
T aﬂtrylthUCt*at+HC*At+1+CC*ct

D = (450,700,500,750), demand min ) UC, * a; + HC + max(0,a, ~ D) + CC +cc S

UC = (75,100,105,130), unloading cost = oyl Ao =Aps +aps —dor,

UL = (800,500,450,700), unloading capacity a, <UL, a; < UL,

T =4, g Ar +ap > d,

HC = 20, holding cost Z“tSM' Ac S_M'

M = 500, maximum of containers T=Ct <ne. Ar41 =0,

N N

NC = 4, maximum of cranes

¢t < NC,
/ \ dy < cp % CL. /

CC = 200, crane capacity
CL = 1000, cost of each crane

result: 15000 X

result: 251500 \/

Figure 1. Example of optimization problem modeling when multiple constraints are present. It can be observed that using only prompt
engineering techniques, such as 1-shot and Chain-of-Thought (CoT), may lead to some constraint information being ignored in the modeling
process (highlighted in red in the correct model). However, by incorporating the question partition module from PaMOP prior to modeling,
we achieve correct results without losing key information. (For clarity, we have omitted elements such as 1-shot and parameter definitions

without affecting the figure’s interpretability.)

guided by Goxtr, prompts the LLM to produce the structured
elements, which are stored in the root node of the partition
tree, as shown in Figure 3. We will use G to refer to all oper-
ations processed by LLMs.

We prompt the LLM to assign a vagueness score to each
constraint, which is then stored in the root node as part of the
constraint information.

After gathering the information in the root node, we par-
tition the problem iteratively using a tree structure. Real-
world problems often decompose into loosely connected sub-
problems with independent variables and semantic differ-
ences. For instance, as shown in Figure 1, the problem can
be divided into two parts: train-to-yard and yard-to-ship. To
partition the problem, we use two methods (Figure 2): inde-
pendent set separation at the root node and constraint clus-
tering at subsequent layers. The former separates constraints
based on mathematical relationships, while the latter clusters
them based on semantic information.

Separating independent sets. Inspired by the work of
Gasse et al. [2019], we represent the mathematical relation-
ships within the problem as a bipartite graph G = (VUC, E),
where V' denotes the constants and variables involved in
the problem (obtained from ¢,), C' represents the constraints
(obtained from t.), and each edge in E indicates a high-
confidence association between a variable and a constraint.
We define this confidence level by extracting keywords from
constraints and matching them with keywords from variable
descriptions, thereby constructing the graph. We then apply
graph search algorithms to separate independent subgraphs
from the bipartite graph, designating these as children of the

root node.

Clustering constraint sets. For each node to be decom-
posed, we aim to cluster the constraints into several sets. We
define the distance between constraints for clustering pur-
poses. In PaMOP, the distance is defined as the inverse of
the similarity s; ; between two constraints, as follows:

1 1
s;;+e 1l+e¢

; )

dij =

where the € denotes a small fixed value.

We combine three methods to measure the similarity be-
tween constraints: contextual relationships, keyword match-
ing, and vector similarity. Constraints are typically extracted
in order, so adjacent ones are likely to be similar. Thus, we
prioritize higher similarity scores for adjacent constraints.

Keyword similarity is determined by the number of com-
mon keywords in the top k£ of two constraints, where key-
words are extracted using the term frequency-inverse doc-
ument frequency (TF-IDF) method. Word vector similarity
is calculated using cosine similarity between GloVe embed-
dings trained on Wikipedia 2014 [Pennington et al., 2014].

We apply weighted averages of these three similarity mea-
sures to different layers of the partition tree. Noise points
from clustering are treated as potentially relevant constraints
rather than removed. The partitioning process continues iter-
atively until each leaf node contains either a small number of
constraints or highly similar ones.
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Figure 2. Overview of PAMOP Framework. PaAMOP begins by extracting problem information using LLMs. A tree structure then decomposes
constraints into simpler sub-problems. Prompt engineering guides the LLM in modeling the leaf nodes, which are subsequently merged
bottom-up into a complete model. Finally, the mathematical model undergoes iterative correction through syntax checks, code execution, and

reverse translation until error-free.

3.3 Generation and Improvement of Solver’s
Model

Constructing solver’s model. We employ prompt engineer-
ing to guide the LLM in modeling all the leaf nodes generated
in the previous step. Ultimately, these models are merged
into a complete mathematical model in AMPL, which can be
run directly when supplemented with the necessary data files.
During the modeling of a leaf node node;, in addition to the
constraint descriptions . and the constant and variable infor-
mation t, required for the model, we also need to provide the
global summary g of the problem as input to ensure that the
LLM maintains an overall understanding of the problem. The
modeling process is given by:

Meq = gmod (.97 tva U tc,j) ;

j € cons;
where the cons; means the list of constraints contained in
node 4, and t. ; means the j-th constraint in ¢..

Motivated by the Chain-of-Thought (CoT) approach [Wei
et al., 2022], we introduced a comprehensive process for
specifying optimization problems within prompts. Addition-
ally, we developed a set of principles for the task of modeling
optimization problems to ensure the stability of outputs gen-
erated by LLMs.

When modeling vague constraints, achieving logically co-
herent results can be challenging, as different constraints may
exhibit varying degrees of vagueness in their descriptions. By
utilizing the tree structure to decompose the original problem,

3

when modeling nodes containing vague constraints, we can
incorporate information from their parent and sibling nodes
to aid in the modeling process.

After each leaf node is modeled separately, the formulas
will be merged layer by layer from the bottom up into a com-
plete model. Since the constants and variables ¢, have been
described in advance, there is minimal conflict between for-
mulas modeled at different nodes. Thus, we can directly
merge the modeled formulas and finally complete the mod-
eling of the objective function at the root node. At this stage,
the overall model can be expressed as:

M = (mpvmvamoamc) = Gmod (gvtvatmmc)~ “4)

This process generates the complete model. We use
AMPL [Fourer et al., 1987] for modeling, as it separates the
model and data files. Unlike humans, LLMs treat mathe-
matical formulas, modeling languages, and programming lan-
guages as different “languages,” so we directly generate code
in the modeling language instead of formulas.

Error correction. After constructing the model, we debug
it by checking syntax with regular expressions and verifying
parameters against data files. Following Zhang et al. [2023],
we apply LLM-based self-debugging: the model and data
files are input into a solver, and errors from infeasible solu-
tions are embedded into prompts for iterative correction until
a valid model is obtained.
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Figure 3. Example of building the partition tree for an optimization problem.

solution(ans, e) = Solve(M, data) 5
M:gexe(Mae)' ©)
If issues persist, we address logical inconsistencies via re-
verse translation. Specifically, we extract annotation infor-
mation that captures the intended meaning of each statement
from our analysis of the partition tree and the generation pro-
cesses. For the constraint under evaluation, we conceal its
related annotations to obtain m., effectively rendering the
model into a partial black box. We then input m/, into an
LLM, which infers the meanings of the constraints based on
the complete set of parameters. Another LLM, acting as a
language expert, assesses the semantic consistency between
the generated sentences and the original ones by comparing
them and producing a binary decision (0 or 1). For constraints
deemed semantically inconsistent, we forward these—along
with the original problem and model—to the LLM, which
reinterprets the problem and regenerates the previously prob-
lematic constraints to refine the final model.

t/c - grev (mp7 My, m/c)
M= gcomp(tca t/c)v e {07 1} (6)
M = gremod (Tv me, M)

4 Experiments

In our experiments, we aim to evaluate the accuracy and
execution efficiency of the PAaMOP approach in the auto-
mated modeling process, particularly for optimization prob-
lems with complex constraints. To achieve this, we design a
series of experiments, including validating the approach on
the NLPALP public benchmark dataset as well as on several
of our real-world problem instances to assess its potential for
practical applications. By comparing our approach with exist-
ing methods, we further evaluate the performance of PaMOP.

Additionally, we conduct ablation studies to assess the con-
tributions of individual modules to the overall performance.
Furthermore, we perform a horizontal evaluation of our ap-
proach applied to different underlying LLMs further to assess
its adaptability and performance in various environments.

4.1 Experimental Setup

In our experimental setup, we tested the system using GPT-
4. For these experiments, we set the model’s temperature to
0.2 (controls randomness of the model’s output) and the max-
imum number of failed iterations to 5. By default, we input
a problem and receive a model file in the AMPL language.
To evaluate the accuracy of the model file, we use AMPL to
call Gurobi to solve the model and obtain the objective value.
To adapt the dataset to the AMPL format, we have prepro-
cessed the dataset’s data.json into a data.dat version. When
the solver successfully solves the problem without any error,
we consider the problem resolved and exit the system.
Finally, we use accuracy to represent the success rate and
the execution rate to represent the proportion of model files
that can be executed. These two metrics are the primary in-
dicators we focus on. We also employ a compile error rate
(CE rate) to capture the percentage of generated programs
that fail to compile, which may be due to missing parameters
in the modeling process, among other reasons. Additionally,
we use the runtime error rate (RE rate) to measure the rate
of errors during execution. These errors are mostly due to
internal logical errors in the model (such as infeasible mod-
els or nonlinear constraints). For instance, when a model is
unbounded, it is very likely due to missing constraints.

4.2 Baseline Methods

We conducted a detailed comparison between our method and
four approaches based on LLM-enhanced reasoning, includ-
ing Chain-of-Thought, Progressive Hint, Tree-of-Thought,
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| Accuracy T | Execution Rate T | Compile Error Rate | | Runtime Error Rate |

Default 25.3% 48.3% 40.2% 11.5%
Chain-of-Thought 28.8% 51.5% 38.7% 9.8%
Progressive_Hint 33.5% 52.3% 34.6% 13.1%
Tree-of-Thought 36.4% 54.4% 35.1% 10.5%
Reflexion 40.3% 69.7% 19.1% 11.2%
Optimus 56.7% 78.4% 11.8% 9.8%
PaMOP (Ours) |  62.3% | 86.8% | 7.3% | 5.9%

Table 1. Comparison results with baseline methods on the NLP4LP datasets (1: higher is better, |: lower is better).

Methods ‘ Problems

| Storage | Scheduling | Placement A | Placement B | Mining | HR Allocation
Reflexion X % v < » ~
Optimus X x v v v 9
PaMOP v v v v v 7

Table 2. Comparison of methods on real-world problem instances.

and Reflexion. In addition, we compared our method with
Optimus, which also utilizes LLMs for optimization problem
modeling. “Default” represents the default GPT model with-
out any reasoning enhancements; in this setup, we only pro-
vided the model with the task requirements to be completed,
without adding any additional reasoning prompts or enhance-
ment strategies.

4.3 Benchmark Datasets

The NLP4LP dataset [AhmadiTeshnizi et al., 2024] is col-
lected from optimization textbooks and manuals. It includes
problems such as network flow, scheduling, combinatorial
optimization, and more. In total, it contains 54 LP problems
and 13 MILP problems. Each example contains a description
of the problem, the classification of the problem, the dimen-
sions of the input data, and the data file.

We also utilized a custom set of optimization problems de-
rived from real-world scenarios. This dataset includes prob-
lems related to storage, scheduling, placement, mining, and
HR allocation. It was designed to evaluate the applicability of
our approach in practical settings. For instance, the example
“Storage” involves 3,795 parameters, 124 decision variables,
and 162 constraints.

4.4 Experimental Results and Analysis

The performance of various methods on the NLP4LP dataset
is summarized in Table 1, while Table 2 presents results on
several real-world problem scenarios encountered during our
experiments. Among the different LLM-based reasoning en-
hancement methods, simpler approaches such as Chain-of-
Thought provide limited improvements for the task at hand.
Further work demonstrates higher accuracy by introducing
preprocessing steps and self-reflection mechanisms.

Our proposed method demonstrates a distinct advantage
in performance metrics within the dataset. On the NLP4LP
dataset, our model achieved an accuracy rate of 62.3%, which
is approximately 5% higher than the state-of-the-art method.
In real-world problem scenarios, the Reflexion method was

able to solve only one relatively simpler problem, while the
Optimus method successfully addressed approximately half
of the cases. In contrast, our proposed method was capable
of solving all of the problems presented. This significant im-
provement can be attributed to our approach to detailed prob-
lem decomposition and model optimization based on multi-
angle feedback. This multi-layered optimization process en-
sures that the model can reason with greater precision and
efficiency when faced with complex optimization problems.
The performance would decline considerably if any of these
critical components were removed. To further validate and
investigate the specific roles of these components and their
impact on model performance, we will conduct a detailed
analysis and experimental verification in the ablation study.

4.5 Ablation Studies

We use simple pure prompts as a baseline and test on GPT-
4, progressively adding components to improve problem-
solving performance. The three modes are:

Prompt Only. Specific prompts guide the LLM to output
solutions in a given format, with few-shot learning for better
task understanding.

Partition + Prompt. The partition component splits the
problem into smaller parts, which are modeled separately and
then combined.

Partition + Prompt + Correction. An error correction
module is added to address infeasible models, performing
checks and reverse translation.

As illustrated in Table 3, pure prompts exhibit subpar per-
formance in modeling, successfully tackling only a limited
number of problems. The incorporation of a partition mod-
ule mitigates errors by decomposing larger problems, and the
subsequent addition of a correction module further enhances
both accuracy and execution efficiency.

4.6 Evaluation of Different Base Models

We also conducted tests using different open-source and
closed-source large models as the base. Specifically, we se-
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| Accuracy 1 | Execution Rate T | Compile Error Rate | | Runtime Error Rate |

Prompt Only 25.3% 48.3% 40.2% 11.5%
w/ Partition 48.5% 63.4% 26.2% 10.4%
Full 62.3% 86.8% 7.3% 5.9%

Table 3. Comparison results of ablation studies (1: higher is better, |: lower is better).

GPT-3.5-turbo GPT-4 Llama-3.3-70b
Accuracy  Execution Rate | Accuracy Execution Rate | Accuracy Execution Rate
Default 5.4% 46.3% 25.3% 48.3% 29.3% 56.2%
Reflextion 11.3% 63.2% 40.3% 69.7% 38.6% 66.4%
PaMOP 24.3% 71.2% 62.3% 86.8% 54.7% 83.2%

Table 4. Comparison results of different models.

lected GPT-3.5-turbo, GPT-4, and Llama 3.3-70b for compar-
ison. As shown in Table 4, all methods benefit from improve-
ments in LLMs, with our approach yielding the most notable
performance enhancement. Additionally, we observed that
Llama performed well in the pure prompt-based approach;
however, as the complexity of the problems increased, its
adaptability was slightly inferior to that of GPT-4.

4.7 Insights from Experiments

Imposing strict format requirements. When faced with
strict formatting requirements, LLMs often struggle to fully
comply with specific standards. For instance, when we re-
quire an LLM to embed code in a particular markup format,
they may sometimes use different code block styles instead
of the one specified. This inconsistency may stem from the
model’s inherent flexibility and diversity in generating con-
tent. Imposing such rigid formats can potentially limit the
model’s output generation capabilities. In practice, overly
strict formatting requirements can interfere with the model’s
output, as it needs to balance between maintaining the for-
mat and ensuring output quality. This, in turn, may affect its
performance in logical reasoning and problem-solving tasks,
indicating that forcing adherence to fixed formats could di-
minish the overall capability of LLMs in certain scenarios.

Handling of complex constraints. In practical industrial
applications, optimization problems often not only involve a
large number of constraints but also exhibit complex logical
relationships and a high degree of dynamism. These con-
straints may include limitations on resources, time require-
ments, cost control, and the optimization of multiple perfor-
mance metrics, which may be interdependent or even con-
flicting. Therefore, solving these optimization problems re-
quires not only a robust algorithmic framework but also pre-
cise logical reasoning and flexible strategies to balance and
coordinate these complex factors.

However, our method has not been specifically designed to
optimize algorithms for these complex constraints; instead, it
primarily relies on the inherent logical reasoning capabilities
of LLMs. This implies that while LLMs have a certain ability
to handle general logical reasoning and constraints, their per-
formance may be limited when faced with high-complexity
problems in real-world scenarios.

5 Related Work

Prompt engineering has been widely explored to improve
LLMs’ performance. Techniques like CoT prompting [Wei
et al., 2022] decompose complex reasoning into step-by-step
processes, while its extensions [Zheng et al., 2023; Yao et al.,
2024; Besta et al., 2024] refine reasoning paths. Knowledge
augmentation and feedback interaction [Shinn er al., 2023;
Lewis et al., 20201, as well as compositional multi-prompt
learning [Zhu et al., 2023], enhance outputs across various
tasks. Program-assisted models like [Gao et al., 2023] and
systems like NaturalProver [Welleck et al., 2022] focus on
reasoning, code generation, and debugging.

In optimization modeling, OptiMUS [AhmadiTeshnizi et
al., 2024] employs prompt engineering to construct mathe-
matical models, debug solver code, and validate solutions.
Xiao et al. [2023] improve modeling reliability using multi-
agent cooperation. These methods advance LLM capabilities
for optimization but face challenges in scaling and accuracy
when handling complex real-world problems.

While existing work has advanced prompt design and op-
timization problem modeling, our approach differs in key as-
pects: 1) we enhance the effectiveness of prompting across
different modeling phases; 2) we incorporate problem par-
titioning and a deeper focus on background information to
handle large-scale problems; 3) we use multi-faceted external
inputs for model correction and leverage LLMs’ code-reading
capabilities, leading to more refined outcomes.

6 Conclusion

In this paper, our goal is to model optimization problems de-
scribed in natural language, while also being capable of han-
dling large-scale problems. We propose PAMOP, an optimiza-
tion problem modeling framework based on LLMs to achieve
this. The core of PaAMOP involves decomposing the original
problem into several subproblems, guiding the LLM to model
these subproblems, and iteratively correcting errors through
diverse methods. Experiments demonstrate that PaMOP ex-
hibits excellent modeling capabilities on the NLP4LP dataset
and can effectively handle large-scale problems, showing po-
tential for modeling real-world problems in the future.
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