
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A SAT-based Method for Counting All Singleton Attractors in Boolean Networks
Rei Higuchi1 , Takehide Soh1 , Daniel Le Berre2 , Morgan Magnin3 ,

Mutsunori Banbara4 and Naoyuki Tamura1

1Kobe University,
2CRIL-CNRS UMR 8188, Université d’Artois,
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Abstract
Boolean networks (BNs) are widely used to model
biological regulatory networks. Attractors here
hold significant meaning as they represent long-
term behaviors such as homeostasis and the re-
sults of cell differentiation. As such, computing at-
tractors is of critical importance to guarantee the
validity of a model or to assess its stability and
robustness. However, this problem is quite chal-
lenging when it comes to large real-world models.
To overcome the limits of state-of-the-art BDD- or
ASP-based enumeration approaches, we introduce
a SAT-based approach to compute fixed points (sin-
gleton attractors) of BN and exhibit its merits for
counting singleton attractors of large-scale bench-
marks well established in the literature.

1 Introduction
Boolean network (BN) [Kauffman, 1969b; Kauffman, 1993]
is a mathematical model representing state transition systems.
In a BN, each node is assigned a Boolean value of 0 (in-
active) or 1 (active). The state of each node is then deter-
mined by a Boolean function based on the states of its in-
put nodes in the previous discrete time step. The analysis
of both static and dynamic properties of transition systems
using BN has recently gained increasing importance in var-
ious fields. In particular, in biological systems, its applica-
tion includes gene regulatory networks [Kauffman, 1969a;
Daizhan Cheng, 2011], neural networks [Anthony, 2001],
cell cycle control networks [Münzner et al., 2019], and
signal transduction networks [Mori et al., 2015]. With
the expanding range of such applications, repositories like
GINsim [Naldi et al., 2018], CellCollective [Helikar
et al., 2012] and Biomodels [Malik-Sheriff et al., 2020],
which describe biological networks in a formal format like
BN, are being published and maintained.

Attractor is a steady state that a BN eventually reaches
as time progresses. It can be either a singleton attractor
(consisting of a single state) or a periodic attractor (cycling
through multiple states). Attractors may also represent home-
ostasis, ensuring that the network can return to a steady state

after a perturbation. Given its importance in understanding
the system, this has led to extensive research on attractor de-
tection [Mori and Akutsu, 2022]. In particular, analysis of
singleton attractors (a.k.a. fixed points) plays a crucial role
in understanding complex biological models since many bi-
ological systems stabilize to an observable phenotype rather
than exhibit cyclic behavior. For instance, in gene regulatory
networks, singleton attractors represent different cell types or
states [Kauffman, 1993; Abou-Jaoudé et al., 2016], thus help-
ing understand how cells differentiate.

Attractor computation is thus an important subject. There
are mainly two major approaches: BDD- and ASP-based
methods [Garg et al., 2008; Su and Pang, 2021; Klarner et al.,
2017; Benes et al., 2022; Trinh et al., 2023]. Those studies
focused on enumerating attractors. However, recently pub-
lished BNs are large and contain a huge number of attractors.
For instance, the BN named “#124 NSP9-PROTEIN” consists
of 252 nodes and has over 1020 singleton attractors. For such
BNs, enumerating all attractors is neither realistic nor partic-
ularly useful. Indeed, there are BNs for which all attractors
cannot be enumerated using state-of-the-art tools.

This limitation suggests counting attractors instead of enu-
merating them, as the number of attractors is still useful for
assessing effects of intentional gene activation/inhibition or
providing insights to network modelers. Thus, recent enu-
meration tools provide an option that returns only the number
of attractors to reduce I/O costs, enabling retrieval of attrac-
tor count without displaying them. However, even with this
feature, there remain BNs for which the number of attractors
is still unknown. It is also challenging to thoroughly revise
existing BDD- or ASP-based methods to adopt pure counting
approaches. In the case of BDDs, a BDD is constructed as a
compressed representation of all attractors, making enumer-
ation and counting essentially equivalent. For ASP, it would
be feasible if enumeration of stable models could be replaced
with counting. However, the latest ASP encodings [Trinh et
al., 2023] include disjunctive rules, whereas the latest stable
model counter [Kabir et al., 2024] does not support disjunc-
tive rules, making this approach difficult to implement.

Boolean Satisfiability Testing (SAT) problem [Biere et al.,
2021] is the problem of determining if there exists an assign-
ment of variables that satisfies a given Boolean formula. SAT
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has widespread applications in areas such as model checking,
scheduling, automated planning, constraint satisfaction, and
more [Biere et al., 2021]. Due to its significance, SAT has
garnered extensive research attention, leading to the devel-
opment of various efficient SAT solvers, whose input is for-
mulas in Conjunctive Normal Form (CNF). Advances in SAT
technologies have extended their applicability to a range of
challenging and practical combinatorial problems. Further-
more, SAT has several variants, such as AllSAT and #SAT
whose goals are to enumerate or count all models of a given
formula. In particular, for SAT solvers and #SAT solvers,
there are international competitions every year1, and these
competitions witness the improvement of the performance of
SAT and #SAT solvers.

In this paper, we propose a SAT-based method for counting
all singleton attractors of a given BN. To fully carry the power
of the state-of-the-art solvers, the difficulty is twofold: the
Boolean formulation of singleton attractors such that mod-
els of the formula and attractors have one-to-one correspon-
dences; the translation of arbitrary formulas into CNF formu-
las to allow the use of standard SAT or #SAT solvers. To
tackle this, we develop a Boolean formulation of singleton
attractors and study three CNF translation methods, includ-
ing one using the classical Tseitin translation [Tseitin, 1968],
one using a novel small implicant translation, and the last one
using the hybridization of the other two approaches. We eval-
uated the performance of the proposed method with the state-
of-the-art tools for BNs by comparing them with the 624 in-
stances used in the literature [Trinh et al., 2023] and 19 addi-
tional instances obtained from the BBM repository updates.
The contributions of this paper are summarized as follows:

• A Boolean formulation (not in CNF) for singleton at-
tractors in BNs whose models and attractors have one-
to-one correspondence.

• The evaluation of three translation methods from this
formulation to CNF formulas, including Tseitin, dedi-
cated small implicants, and their hybridization.

• Comprehensive comparisons with state-of-the-art tools
using 243 real-world and 400 artificial BNs.

• Determination of the number of singleton attractors for 9
real-world BNs and 73 large, crafted BNs, both of which
have never been revealed before.

2 Preliminaries
2.1 Boolean Logic Recap
We start with the definition of a general form of Boolean for-
mulas. Hereafter, unless otherwise specified, Boolean for-
mula will be referred to as formula. A Boolean variable v
is a formula. If P is a formula, ¬P is also a formula. If P
and Q are formulas, then P ∆ Q are formulas, where ∆ can
be Boolean operators ∨,∧,↔, and →. A disjunction of lit-
erals is called a clause. A conjunction of literals is called a
term. A formula is in Conjunctive Normal Form (CNF) if it
is a conjunction of one or more clauses. A formula is in Dis-
junctive Normal Form (DNF) if it is a disjunction of one or

1https://satcompetition.github.io/, https://mccompetition.org/

more terms. A formula is in Negation Normal Form (NNF) if
it contains only the logical connectives ∧, ∨, and ¬, and the
¬ operator applies only to literals. A partial assignment is
a mapping from a subset of Boolean variables to the Boolean
values 0 (false) or 1 (true). A complete assignment (or simply
assignment) is a mapping from the set of Boolean variables
to the Boolean values 0 (false) or 1 (true). We use the symbol
α to denote assignments and extend it to formulas, defining
a mapping that takes a formula and returns its truth value. A
Boolean formula is satisfiable (SAT) if there exists an assign-
ment that satisfies it and is unsatisfiable (UNSAT) otherwise.
A partial model (or complete model) is a partial assignment
(or complete assignment) that satisfies a given formula. A
SAT solver is a program that computes a model (if any) from
a CNF formula. A model counter/enumerator is a SAT solver
specialized for counting/enumerating all models from a CNF
formula.

2.2 Boolean Network and Attractor
Definition 1. A Boolean network (V, F ) is defined as fol-
lows. V = {v1, v2, . . . , vn} is a set of Boolean variables,
also referred to as nodes. F = (f1, f2, . . . , fn) is a vec-
tor of Boolean formulas, where fi is called an update func-
tion for the node vi. The update function fi : {0, 1}k(i) →
{0, 1} is a Boolean formula over Boolean variables Vi =
{vi,1, vi,2, . . . , vi,k(i)} ⊆ V , where k is a function that re-
turns the number of variables contained in fi. We call the set
of variables Vi as the set of input variables of vi.

When a BN represents a gene regulatory network, each vi
corresponds to each gene and values 0 and 1 correspond to the
inactive and active states of genes. Suppose that the states of
a BN evolve over discrete time points {0, 1, 2, . . .}. Then, the
state of a BN at a discrete time point t ∈ {0, 1, 2, . . .} is given
by a vector

→
v(t) = (vt1, v

t
2, . . . , v

t
n), where vti represents the

state of the node vi at time t. The value of the node vi at
time t+ 1 is determined by the update function fi applied to
the values of its input nodes at time t as follows. Here we
introduce f ti to simplify the description of fi.

vt+1
i = fi(v

t
i,1, v

t
i,2, . . . , v

t
i,k(i)) = f ti

Several update schemes were studied: synchronous (all
nodes updated simultaneously), asynchronous (one node at
a time), and generalized semantics (any subset of nodes up-
dated simultaneously). These different semantics preserve
singleton attractors [Paulevé and Sené, 2022]. As such, the
discussion proceeds with asynchronous BNs without loss of
generality. We define the relation of asynchronous transition
T between two states

→
v(t) and

→
v(t+ 1) as follows.

T (
→
v(t),

→
v(t+ 1))

def⇐==⇒

∃i ∈ [1, n]. (vt+1
i ↔ f ti ) ∧

n∧
j=1,j ̸=i

(vt+1
j ↔ vtj)

This denotes that the value of at most one variable vi can
change between two states in the asynchronous transitions.
Definition 2. A State Transition Graph (STG) (S, T ) of a
BN (V, F ) is defined as follows where S = {0, 1}n is the
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f1 = v2
f2 = ¬v3
f3 = ¬v1 ∧ v2 000 010 011 001

100 110 111 101

Figure 1: BN Example and its STG

set of states, and T is the transition relation given by the BN.
The state transition graph is a directed graph consisting of
the set of states S as nodes, and the arcs interpreted from the
transition T .

Definition 3. A Singleton Attractor is a state that cannot tran-
sition to any other state but itself. In other words, a singleton
attractor is a state that does not have outgoing arcs to any
other node in STG.

Figure 1 illustrates a BN example and its STG, where 110
(red colored) is the only singleton attractor. Note that self-
transition-loops are omitted in this Figure. Then, our target
counting problem is defined as follows:

Definition 4. Given BN (V, F ), a Singleton Attractor Count-
ing Problem (SACP) is the problem of counting the number
of all singleton attractors of (V, F ).

3 Related Work and Existing Tools
There have been various tools that can compute attractors
in BNs. Boolsim [Garg et al., 2008] uses algorithms based
on reduced ordered binary decision diagrams (ROBDD) and
is capable of computing singleton and periodic attractors.
Cabean [Su and Pang, 2021] is also a ROBDD-based
method. PyBoolNet [Klarner et al., 2017] uses the popu-
lar model checker NuSMV and ASP solvers. AEON [Benes
et al., 2022] uses ROBDD and is scalable to compute more
than a trillion singleton attractors. fASP [Trinh et al., 2023]
uses an ASP-based method to enumerate singleton attractors.

Automata network (AN) [Folschette et al., 2015] is another
mathematical model for state transition systems and is a sub-
class of safe Petri nets [Paulevé et al., 2012]. AN-ASP [Ab-
dallah et al., 2017] is an ASP-based method to calculate the
attractors in AN. SAF [Soh et al., 2023a] is a tool employing
a SAT-based method [Soh et al., 2023b] to calculate attrac-
tors in AN. While a BN can be represented as an AN via
transformations using tools like BioLQM [Naldi, 2018], the
transition rules in automata networks are different, and it is
not possible to specify complex logical expressions in the fir-
ing conditions.

At the time of writing, no methods or tools focus solely on
counting attractors, likely due to technical challenges (Sec-
tion 1) and the adequacy of enumeration for medium-sized
BNs. However, larger and more complex BNs have made
enumeration insufficient, motivating our research. ASP-
based methods, the state of the art for attractor enumeration,
could support counting if a stable model counter were avail-
able. In 2024, sharpASP [Kabir et al., 2024] was introduced,
but its lack of support for disjunctive programs limits applica-

bility to methods like fASP. If this is addressed, ASP-based
methods could become strong candidates.

4 Proposed Methods
One approach to constructing our proposed SAT-based sin-
gleton attractor counter is to utilize existing SAT-based meth-
ods. As mentioned in the previous section, there is a SAT-
based method for ANs [Soh et al., 2023a], and by apply-
ing the BN-to-AN conversion tool BioLQM along with the
latest model counter before and after this method, a SAT-
based counter can be realized. However, preliminary exper-
iments showed that this approach did not even outperform
the best enumeration-based methods (see Section 5). Other
approaches have applied Boolean formulas to AND/OR BNs
(i.e., BNs consisting of AND/OR nodes), assuming that up-
date functions are given in DNF. While they are theoretically
capable of handling arbitrary functions, they do not provide
concrete procedures for doing so [Tamura and Akutsu, 2009;
Inoue, 2011]. In this section, we thus propose a constraint
model for counting all singleton attractors in BNs with ar-
bitrary update function and present methods to translate this
model into CNF compactly.

4.1 Boolean Formulation of Singleton Attractors
We start with the Boolean formulation that must transition to
any other state but itself. Suppose that vi is the node whose
value changes in the transition between t and t+1. If its value
changes from 0 (at t) to 1 (at t + 1) then ¬vti ∧ f ti holds at
time t. Similarly, if its value changes from 1 (at t) to 0 (at
t + 1) then vti ∧ ¬f ti holds at time t. By negating those two
constraints, we obtain the constraint for singleton attractors
at time t as follows.

Ψ(t) =
∧

1≤i≤n

¬
((
¬vti ∧ f ti

)
∨
(
vti ∧ ¬f ti

))
Since singleton attractors can be detected at any time point t,
we arbitrarily consider the time t = 0. Thus, for simplicity,
we omit the notation of t. Finally, we obtain the Boolean
formula Ψ as follows.

Ψ =
∧

1≤i≤n

(vi ∨ ¬fi) ∧ (¬vi ∨ fi)

Proposition 1. Given BN (V, F ), any complete model of the
formula Ψ can be interpreted as a singleton attractor of (V, F )
and vice versa.

Proof. (⇒) Let α be a model of Ψ consisting of a Boolean
value vector

→
s = (s1, s2, . . . sn) such that α(vi) = si. It

does not satisfy the two transition conditions (¬vi ∧ fi) and
(vi ∧ ¬fi). Then, the state

→
s cannot transition to any other

state but itself. Thus,
→
s is an attractor of (V, F ). (⇐) If a

value vector
→
s is an attractor of (V, F ). Then, the state

→
s

does not transition to any other state but itself. A model α
consisting of

→
s does not satisfy the two transition conditions

(¬vi ∧ fi) and (vi ∧ ¬fi). Thus, α is a model of Ψ.

To utilize the power of SAT techniques, we need to trans-
late the arbitrary Boolean functions fi into a CNF formula. In
the following sections, we evaluate three methods to translate
Ψ into a CNF formula.
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4.2 Direct Translation
The most common way to translate an arbitrary Boolean func-
tion in CNF is to use the Tseitin translation [Tseitin, 1968].
Direct translation uses bidirectional Tseitin translation to con-
vert the arbitrary formula Ψ into a CNF formula ΨD. It is
performed by recursively replacing any “complex” subfor-
mula by a new variable and appending the definition of the
new variable to the formula. The process terminates when
the formula is either a conjunction or a disjunction of literals.
Those definitions can be simply expressed by sets of clauses
without adding new variables. We denote the Tseitin transla-
tion by TT . Using the Tseitin translation, Direct translation
is given as follows.

ΨD =
∧

1≤i≤n

(vi ∨ ¬li) ∧ (¬vi ∨ li) ∧ TT (li ↔ fi)

It is known that bidirectional Tseitin translation preserves
the number of complete models, i.e. the original formula and
the translated CNF have exactly the same number of complete
models. Thus, the following proposition holds.

Proposition 2. Given BN (V, F ), any complete model of the
formula ΨD restricted to the original variables of Ψ is a com-
plete model of Ψ and any complete model of Ψ can be ex-
tended to a complete model of ΨD.

Example 1. Suppose that f1 = (v2 ∨ v3 ∨ v4) ∧ (v2 ∨ ¬v5)
is an update function of a given BN. By Direct translation
described above, we obtain the following Boolean formula,
where l1, p1 and p2 are newly introduced auxiliary Boolean
variables.

(v1 ∨ ¬l1) ∧ (¬v1 ∨ l1)
(¬p1 ∨ v2 ∨ v3 ∨ v4) ∧ (¬v2 ∨ p1) ∧ (¬v3 ∨ p1) ∧ (¬v4 ∨ p1)
(¬p2 ∨ v2 ∨ ¬v5) ∧ (¬v2 ∨ p2) ∧ (v5 ∨ p2)
(¬l1 ∨ p1) ∧ (¬l1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ l1)

This Direct translation can be implemented without any
complex computation. However, the disadvantage of this
translation is that sometimes the number of auxiliary vari-
ables and companion clauses becomes comparatively large,
which can have a negative impact on the solver runtime as we
will see in the experimental section.

4.3 Indirect Translation
In this approach, we will use again Tseitin traslation, but to
feed the Boolean function to a model enumerator to obtain a
DNF representation without adding new variables.

Let M be a function that translates a Boolean formula into
the set of all its (complete) models. Then, for a formula ϕ, we
can obtain a logically equivalent formula in disjunctive nor-
mal form (DNF) by using a DNF translation function DNF
as follows.

DNF (ϕ) ↔
∨

m∈M(ϕ)

∧
l∈m

l

Then, using this translation, we can translate the singleton
attractor formula Ψ into a CNF formula as follows, since the

negation of a DNF is a CNF and the conjunction of two CNF
is still a CNF:

ΨI =
∧

1≤i≤n

¬ (DNF (¬vi ∧ fi)) ∧ ¬ (DNF (vi ∧ ¬fi))

Then, the following proposition holds.

Proposition 3. Given BN (V, F ), any complete model of for-
mula ΨI can be interpreted as a complete model of Ψ and vice
versa.

To perform this conversion using an off-the-shelf model
enumerator, we use again the Tseitin translation. The models
of TT (fi) contain both auxiliary variables from the Tseitin
translation and the original variables of fi. We can just filter
out the auxiliary variables to get all the models of fi from all
the models of TT (fi).

However, the number of literals in each clause corresponds
to the number of input variables for the function fi, and the
number of complete models may be exponential in the num-
ber of input variables of fi. This can lead to ΨI with a large
number of lengthy clauses, which may prevent the transla-
tion into DNF to complete or produce a formula too large
for the SAT solvers or model counters. An alternative ap-
proach is to compute the prime implicants of the formula, i.e.
subset-minimal sets of literals which satisfy the formula, in-
stead of its models. We employ the translation-based method
proposed in [Jabbour et al., 2014]: each model of the trans-
lated CNF ψPI corresponds to a prime implicant of the orig-
inal CNF ψ. Algorithm 1 shows the final procedure PMode-
lEnum. We call PModelEnum(ψ,∞) for implementing the
aforementioned function M.

The prime implicant of a Tseitin translated formula is not
necessarily a prime implicant of the original formula. Take,
for instance, the formula f = (v1 ∧ v2) ∨ (v1 ∧ ¬v2). It
will be translated using the Tseitin translation as TT (f) =
(p1 ∨ p2) ∧ (p1 ↔ v1 ∧ v2) ∧ (p2 ↔ v1 ∧ ¬v2). The single
prime implicant of f is v1. The prime implicants of TT (f)
are p1 ∧ ¬p2 ∧ v1 ∧ v2 and ¬p1 ∧ p2 ∧ v1 ∧ ¬v2, which
gives v1 ∧ v2 and v1 ∧ ¬v2 when restricted to the original
variables, which is exactly the set of models, i.e. M(f). So
computing the prime implicants of the Tseitin translated for-
mula is a pragmatic effort to reduce the size of the DNF en-
coding. Note that an approach to compute exactly the PI of
non clausal Boolean formula also exists [Previti et al., 2015].
We implemented PModelEnum in Scala and use Sat4j [Le
Berre and Parrain, 2010] as ModelEnumerator to perform
all those calls to model enumerators in memory: for most
benchmarks, the procedure takes less than 10 seconds.

Since we are interested in computing the prime implicants
of our Boolean function fi, we can simplify the Tseitin trans-
lation by only using an implication from the auxiliary vari-
ables to the original variables (instead of a bi-implication) and
apply a negation normal form (NNF) [Darwiche and Marquis,
2002] to avoid negated auxiliary variables. This will reduce
the number of clauses, not the number of variables, and will
also affect the number of prime implicants found. Take for in-
stance f = (v1∧v2)∨(v3∧v4), which has 2 prime implicants
(v1∧v2 and v3∧v4). The one-direction Tseitin encoding will
produce 1TT (f) = (p1∨p2)∧(p1 → v1∧v2)∧(p2 → v3∧v4)
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Algorithm 1 PModelEnum
Input: formula ϕ, cutoff co
Output: if enumeration succeeded or not, models M

1: Ω := one-direction Tseitin translation of NNF(ϕ)
2: ΩPI := PI translation [Jabbour et al., 2014] of Ω
3: (isOK,M) := ModelEnumerator(ΩPI , co)
4: M’ := {decode(m) |m ∈M}
5: return (isOK,M ′)

which has two prime implicants, p1 ∧ ¬p2 ∧ v1 ∧ v2 and
¬p1 ∧ p2 ∧ v3 ∧ v4 while TT (f) has four prime implicants,
p1 ∧ ¬p2 ∧ v1 ∧ v2 ∧ ¬v3, p1 ∧ ¬p2 ∧ v1 ∧ v2 ∧ ¬v4,
¬p1 ∧ p2 ∧ ¬v1 ∧ v3 ∧ v4 and ¬p1 ∧ p2 ∧ ¬v2 ∧ v3 ∧ v4.
Example 2. Suppose that f1 = (v2∨v3∨v4)∧ (v2∨¬v5) is
an update function. Using Algorithm 1, the following prime
implicants of ¬v1 ∧ f1 and v1 ∧ ¬f1 are obtained:

{{¬v1, v2}, {¬v1, v3,¬v5}, {¬v1, v4,¬v5}} and
{{v1,¬v2,¬v3,¬v4}, {v1,¬v2, v5}}, respectively.

Then, we obtain the following CNF formula as ΨI .

(v1 ∨ ¬v2) ∧ (v1 ∨ ¬v3 ∨ v5) ∧ (v1 ∨ ¬v4 ∨ v5)
(¬v1 ∨ v2 ∨ v3 ∨ v4) ∧ (¬v1 ∨ v2 ∨ ¬v5)

The upper three clauses are for ¬v1 ∧ f1, and the lower two
clauses are for v1 ∧ ¬f1.
So an alternative way to obtain a DNF of ϕ is as follows:

DNFP (ϕ) ↔
∨

m∈PModelEnum(ϕ,∞)

∧
l∈m

l

While not guaranteed that DNFP (ϕ) represents the com-
plete set of prime implicants, the impact of model compres-
sion is significant. For instance, we confirmed that for a BN
rule, the number of clauses was reduced from 1,073,741,823
to 30 within a reasonable translation time, compared to the
naive model-enumeration-based translation DNF (ϕ).

4.4 Proofs for Indirect translation
In this section, we will prove DNF (ϕ) ↔ DNFP (ϕ). To
provide the proof, we start with the two properties of the
Tseitin transformation in one direction. The full version of
proof is available online 2.
Properties of One-direction Tseitin Translation. Let A[B]
be a source negation normal form (NNF) formula contain-
ing a subformula B. Note that an arbitrary formula can be
converted to the NNF formula by using De Morgan’s law.
Let p be an auxiliary variable that does not appear in A[B].
Let A be an NNF formula such that A is obtained by all
the appearances of B with the positive literal p. Then, a
one-directional Tseitin translation of A[B] for B can be per-
formed by A ∧ (¬p ∨ B). We clarify its properties with the
following two propositions, which is based on the proof for
equi-satisfiability in the literature [Tamura et al., 2010].
Proposition 4. Suppose that α is a partial model ofA∧(¬p∨
B), and α′ is a partial model obtained by excluding p from α.
Then α′(A[B]) = 1 holds.

2https://doi.org/10.5281/zenodo.15462044

Proposition 5. Let α be a model such that α(A[B]) = 1. Let
α′ be a model that extends α to the domain that includes p
such that α′(p) = α(B). Then α′(A ∧ (¬p ∨B)) = 1 holds.
Properties of PModelEnum. From here, we will also rep-
resent an assignment α as a set of literals for simplicity.
For instance, suppose that ϕ is a formula over variables
p, q, r. Then, an assignment p = 1, q = 1, r = 0 will
be represented as {p, q,¬r}. A partial assignment where
p = 1, q = 1 will be represented as {p, q}. In addition,
α(ϕ) = 1 means that any assignment satisfies

∧
l∈α l also

satisfies ϕ. The following proposition holds between M(ϕ)
and PModelEnum(ϕ,∞).
Proposition 6. Given an arbitrary formula ϕ, for any
α ∈ M(ϕ), there exists a partial model α′ ∈
PModelEnum(ϕ,∞) such that α′ ⊆ α and α′(ϕ) = 1.

Proof. We prove it by contradiction. Assume that for some
α ∈ M(ϕ), there does not exist a partial model α′ ∈
PModelEnum(ϕ,∞) such that α′ ⊆ α and α′(ϕ) = 1.
For such α, by Proposition 5, there exists a model β (which
is α extended with auxiliary variables) that is a model of
1TT (ϕ). Then, let β′ be a prime implicant of 1TT (ϕ).
Obviously, β′ ⊆ β and β′(1TT (ϕ)) = 1 hold. For such
β′, by Proposition 4, there exists a model α′ that satisfies
α′(ϕ) = 1. Clearly, α′ ⊆ α holds, which contradicts the
assumption. Therefore, for any α ∈ M(ϕ), there exists a
partial model α′ ∈ PModelEnum(ϕ,∞) such that α′ ⊆ α
and α′(ϕ) = 1.

Then, we get the following proposition that gives the logi-
cal equivalence between DNF (ϕ) and DNFP (ϕ).
Proposition 7. Given an arbitrary formula ϕ, any model of
DNF (ϕ) is also a model of DNFP (ϕ) and vice versa.

Proof. Let Φ1 be DNF (ϕ) and Φ2 be DNFP (ϕ). (⇒) Ac-
cording to Proposition 6, for any α ∈ M(ϕ) there exists
α′ ∈ PModelEnum(ϕ,∞) such that α′ ⊆ α. Thus, if Φ1

has a satisfied disjunct, then Φ2 also has a satisfied disjunct.
Therefore, any model of Φ1 is also a model of Φ2. (⇐) Ac-
cording to Proposition 6, α′(ϕ) = 1. Therefore, there exists a
complete model α ∈ M(ϕ), which is obtained by extending
α′ to a complete model. Therefore, any model of Φ2 is also a
model of Φ1.

4.5 Hybrid Translation
Direct translation could generate shorter clauses, but it needs
many auxiliary variables, which explode the search space. In-
direct translation does not need any auxiliary variables but
could generate an exponential number of lengthy clauses.
Therefore, we develop a hybrid method that combines the
strengths of both encodings as follows:

ΨH =
∧

1≤i≤n

HybridTranslation(vi, fi, co)

where HybridTranslation is detailed in Algorithm 2 and co
is a cutoff value. The two translation methods are evaluated
for each update function. The switching criterion is the num-
ber of models enumerated. If it becomes greater than co, Di-
rect translation is used; otherwise, Indirect translation is used.
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Algorithm 2 HybridTranslation
Input: vi, fi, co
Output: CNF formula

1: (isOK+,M+) := PModelEnum(¬vi ∧ fi, co)
2: (isOK−,M−) := PModelEnum(vi ∧ ¬fi, co)
3: if (isOK+ & isOK−) then return ¬(M+ ∪ M−)
4: else return (vi ∨ ¬li) ∧ (¬vi ∨ li) ∧ TT (li ↔ fi)

Since one of the two translation methods is used for each up-
date function, the following proposition is obvious.

Proposition 8. Given BN (V, F ), any complete model of the
formula ΨH restricted to the original variables of Ψ is a com-
plete model of Ψ and any complete model of Ψ can be ex-
tended to a complete model of ΨH .

Indirect translation generally performs better than Direct
translation, but it requires model enumeration, which can be
time-consuming. We explored various co values across some
instances and found that 1000 strikes an effective balance,
covering most BN rules within a reasonable translation time.
Therefore, we used co = 1000 in our experiments.

5 Experiments
Environment. We conducted all experiments on a machine
with Core i5 12400 (2.5GHz) of CPU and 64 GB of RAM.
The time limit was 30 minutes per solver per benchmark.
Benchmark. We have used all the benchmarks em-
ployed in [Trinh et al., 2023], which consist of a wide
variety of Boolean networks. Biodivine Boolean Models
(BBM) [Pastva et al., 2023] include 230 networks sourced
from all popular model repositories of Biological Systems
such as GINsim, CellCollective and Biomodels,
as well as individual publications. Pseudo-random (P-
Random) consists of 400 random networks with 1000–5000
variables, preserving the structure of real-world networks,
created in the literature [Trinh et al., 2023]. This benchmark
provides larger BN instances than the real-world networks.
The selected BNs (Selected) are 13 instances of real-world
BNs that were collected in [Trinh et al., 2023].
Compared Solvers. As discussed in Section 3, since no at-
tractor counter exists to the best of the authors’ knowledge,
we use the state-of-the-art enumeration tools for comparison:
AEON [Benes et al., 2022], fASP-c and fASP-s [Trinh et
al., 2023], PyBoolNet [Klarner et al., 2017], and SAF [Soh
et al., 2023a]. The latter one uses BioLQM [Naldi, 2018] to
translate each BN into AN. The runtime provided does in-
clude such translation time.
No Printing Options. To ensure the best option for count-
ing, we configured all enumeration tools to not print attrac-
tors but only the number of attractors found, thereby avoid-
ing I/O overhead. If we want to obtain all the solutions as
a plain text file, the computational performance significantly
slows down. For instance, AEON solved 224 instances with-
out printing solutions within 1800 seconds, but it only solved
204 instances when printing solutions. This also indicates
that the enumeration of real large BNs is impractical.

Proposed Method Setting. The three translation methods
are implemented in Scala. We evaluated three state-of-the-art
exact model counters from the 2023 competition, SharpSAT-
TD [Korhonen and Järvisalo, 2023], d4 [Lagniez and Mar-
quis, 2017], and GPMC [Ryosuke Suzuki and Sakai, 2017],
on our SACP instances. SharpSAT-TD, the model-counting
track winner, provided the best results. Additionally, we offer
an enumeration solver using Hybrid translation and the All-
SAT solver BDDMINISATALL [Toda and Soh, 2016]. We use
D.C., I.C., and H.C. for Direct, Indirect, and Hybrid counting
solvers, and H.E. for the Hybrid enumeration solver in the ta-
bles below. The runtime provided does include all translation
times. Another proposed baseline-method is the one using the
existing SAT-based method for ANs [Soh et al., 2023a]. We
configured SAF with BioLQM and SharpSAT-TD enabling
to count singleton attractors of BNs (named SAF.C).
Consistency and Resource Availability. We have checked
all numbers of attractors are consistent between all solvers.
All benchmarks, solvers, and log files are available online2.
Experimental results. Table 1 summarized the numbers
of instances solved by each solver that are classified by A)
benchmark series, B) range of the number of attractors |A|,
and C) range of the number of nodes n. The first and second
columns denote each category and the number of instances
it contains. The remaining columns denote the number of in-
stances solved by existing methods and proposed methods. In
A), the proposed translation-based method was able to count
the number of singleton attractors in almost half of the in-
stances (between 313 and 330). In contrast, about one third
of them could be enumerated by AEON (244), H.E. (240),
and fASP-s (235). In B), the proposed method solved the
largest number of instances over all ranges. In particular, the
proposed method is the only tool capable of counting all sin-
gleton attractors when BNs contain more than 1030 of them.
In C), the proposed method solved the largest number of in-
stances over all ranges. In particular, the proposed method is
the only tool capable of computing all singleton attractors in
BNs whose number of nodes is greater than 2000. Note that
AEON and fASP-s solved, respectively, 6 and 9 instances in
that range, but all of those are UNSAT, which means there
are no singleton attractors. Additionally, real-world instances
have fewer than 500 nodes, except for two in Selected. All
P-Random instances have more than 1000 nodes.

Table 2 lists BN instances where the number of singleton
attractors was previously unknown and presents the computed
values using the proposed approach. The first column denotes
the network name and its source literature. The second and
third columns denote the number of variables and the num-
ber of attractors identified in BN, respectively. This table
demonstrates the ability of the proposed method to uncover
previously unknown attractors in BN, and also highlights a
challenging benchmark instance.
Impact of the SAT Translation on CNF Formulas. Table 3
shows the comparisons between the three proposed transla-
tion methods: Direct, Indirect and Hybrid. The first col-
umn denotes the initial of the benchmark set. The 2nd to 4th
columns show the number of instances that cannot be trans-
lated within the time limit of 1800 seconds. The 5th column
shows the average ratio of the number of variables between
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A) #Instances solved in each benchmark set
Existing Methods Proposed Methods

#Ins. PyB. SAF fASP-c fASP-s AEON SAF.C H.E. D.C. I.C. H.C.
BBM 230 180 220 195 213 224 228 218 230 229 230
P-Random 400 0 0 15 15 12 0 15 71 88 88
Selected 13 5 6 6 7 8 10 7 12 11 12
Total 643 185 226 216 235 244 238 240 313 328 330
B) #Instances solved according to #Attractors |A|
0 ≤ |A| < 1000 157 138 142 157 157 154 142 157 157 157 157
1000 ≤ |A| < 1010 72 47 70 59 70 72 70 71 72 72 72
1010 ≤ |A| < 1030 27 0 14 0 8 18 24 12 27 25 27
1030 ≤ |A| 387 0 0 0 0 0 2 0 57 74 74
C) #Instances solved according to #Variables n
0 ≤ n < 100 198 170 196 182 194 198 197 197 198 198 198
100 ≤ n < 1000 44 15 30 19 26 34 41 28 44 42 44
1000 ≤ n < 2000 111 0 0 6 6 6 0 6 41 49 49
2000 ≤ n 290 0 0 9 9 6 0 9 30 39 39

Table 1: Number of instances solved by each solver

Instance #Vars #Attractors
#113 ER-STRESS [Ostaszewski et al., 2020] 182 1168455003694263561093120
#122 NSP14 [Ostaszewski et al., 2020] 168 33278627362665583108034953216
#124 NSP9-PROTEIN [Ostaszewski et al., 2020] 252 13611294676837538538534984297270728458240
#144 SNF1-AMPK-PATHWAY [Lubitz et al., 2015] 202 10096027719780900754667077632
#220 H.-RESPONSE-IN-L. [Ganguli et al., 2015] 342 2656331146614175432704000
#221 MYCOBACTERIAL-L. [Hegde et al., 2012] 317 2473901162496
Cell-Cycle-Control [Romers and Krantz, 2017] 3158 —
Alzheimer [Aghamiri et al., 2020] 762 1355318094474400392445140020586319209-

-7103960354330270737143428036029317120
Cholocystokinin [Aghamiri et al., 2020] 383 47935169240579835005239296
Leishmania (same as #220 above) [Ganguli et al., 2015] 342 2656331146614175432704000
Yeast-Pheromone [Romers and Krantz, 2017] 246 5711631030629640192

Table 2: Number of singleton attractors computed by the proposed approach for real-world BNs on which it was unknown

Set T.O. #Variables #Clauses #Literals
D I H I H I H I H

B. 0 1 0 0.47 0.48 0.49 0.49 0.58 0.58
P. 0 0 0 0.22 0.22 0.52 0.52 1.52 1.52
S. 0 2 0 0.36 0.36 0.68 0.61 1.90 1.34

Table 3: Number of timeouts by each translation and average ratios
between Direct and Indirect/Hybrid translations

Direct and Indirect translation. Similarly, the 6th column
shows the average ratio of the number of variables between
Direct and Hybrid translations. That is, if the figures are less
than 1 then the number is smaller than the number of Direct
translation. The following columns similarly denote the ratio
of the number of clauses and the number of literals. We can
see that Indirect translation cannot translate three instances
within the time limit while Direct and Hybrid translation can
translate all instances. We can also see that the number of
variables and clauses of Indirect and Hybrid translation are
smaller than the ones of Direct translation. However, the
number of literals is larger than in Direct translation, except
for BBM instances. The update functions in BBM instances
often consist of a small number of variables but many opera-

tors such as (v1∧ (v2∨v3)∧¬v4)∨ (v2∧v3∧¬v4). In these
cases, Direct translation generates more literals than Indirect
or Hybrid translation.

6 Conclusion
In this work, we proposed a SAT-based method for counting
singleton attractors in large Boolean networks (BNs). It de-
termines the number of singleton attractors for 9 real-world
and 73 crafted BNs that had never been revealed before, a
result that holds some impact in the field of biological net-
work research. Furthermore, the translation methods for con-
verting arbitrary propositional formulas into compact CNF
are considered applicable to other problems in the field of
AI. As demonstrated by the results of the proposed baseline
solver, our findings are not merely the outcome of applying
a model counter but are instead a result of the careful refine-
ments and techniques introduced in our translation approach.
Future work is refinements on the algorithm, including lever-
aging existing logic minimizers, such as Espresso 3, to further
reduce the DNFs obtained through Indirect translation.

3https://github.com/Gigantua/Espresso
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