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On the Power of Optimism in Constrained Online Convex Optimization
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Abstract
This paper studies the constrained online convex
optimization problem (COCO) where the learner
makes sequential decisions within a constrained
set. We present Optimistic-COCO, an adaptive
gradient-based algorithm that incorporates opti-
mistic design with the Lyapunov optimization tech-
nique. The proposed algorithm achieves strong
theoretical guarantees: 1) Optimistic-COCO pro-
vides a tight gradient-variation regret bound and
constant constraint violation; 2) Optimistic-COCO
is environment-agnostic, utilizing adaptive learn-
ing rates that rely solely on causal information.
These results resolve an open question posed in
prior work regarding whether an adaptive algorithm
can achieve problem-dependent regret and constant
constraint violation in COCO. We establish these
robust guarantees through carefully designed adap-
tive parameters and a refined multi-step Lyapunov
drift analysis. Experimental results further validate
our theoretical findings, demonstrating the practical
efficacy of the proposed algorithm.

1 Introduction
Constrained Online Convex Optimization (COCO) is a gen-
eralization of the online convex optimization framework
(OCO) and has become increasingly popular as more online
decision-making problems require balancing objectives with
adherence to operational constraints. For example, in an ad-
vertisement platform [Goldfarb and Tucker, 2011], the ad-
vertisers aim to maximize the click/conversion rates within
the weekly or monthly budgets; in the network traffic man-
agement [Mannor and Tsitsiklis, 2006], the operator aims to
minimize the latency of network flows within the network’s
capacity limits; in the portfolio management [Li and Hoi,
2014], the investor seeks to maximize returns while adher-
ing to risk constraints and maintaining a balanced alloca-
tion across various classes. In COCO, at each round t, the
learner makes a decision xt from a constrained set and then
observes the full information of ft(·). The goal is to min-
imize regret

∑T
t=1 ft(xt) −

∑T
t=1 ft(x

∗), while satisfying
∗Corresponding Author

g(xt) ≤ 0, ∀t ∈ [T ], where x∗ is the optimal solution to
the offline problem

min
x∈X0

T∑
t=1

ft(x) s.t. g(x) ≤ 0.

A straightforward solution to COCO is a projection-based
gradient descent method [Hazan and others, 2016], which
projects the decision into the feasible region at each round
defined by

X = {x ∈ X0 | g(x) ≤ 0}.
However, the projection operator is often computationally
burdensome and might be impractical, especially when the
constraint set is complicated (i.e., g is a complex func-
tion). To address the challenge, [Mahdavi et al., 2012;
Yu and Neely, 2020; Qiu et al., 2023] studied slightly relaxed
long-term constraints, where the constraints are allowed to
be violated and as long as they are satisfied over the long
term. In other words, the constraint violation over T rounds
V(T ) :=

∑T
t=1 g(xt) should be minimal. In this problem

setting, [Mahdavi et al., 2012] proposes a regularized primal-
dual subgradient algorithm and achieves O(

√
T ) regret and

O(T 3/4) violation bound. The regret and violation perfor-
mance is greatly improved to O(

√
T ) and O(1) in [Yu and

Neely, 2020] with a novel “drift-plus-penalty” framework.
However, these methods present their results with respect to
T , which only leads to worst-case performance. But, intu-
itively, when the loss functions change slowly (or even remain
static) in a benign environment, one would expect a better re-
gret than the O(

√
T ) worst-case regret.

To account for this, [Chiang et al., 2012] introduced a type
of gradient variation defined as

V max
T =

T∑
t=1

max
x∈X0

∥∇ft(x)−∇ft−1(x)∥2,

which measures the dynamics of the environment. Us-
ing this definition, [Chiang et al., 2012] achieves a
problem-dependent regret of O(

√
V max
T ) in OCO through an

optimistic-type two-step mirror descent algorithm. This ap-
proach captures the worst-case O(

√
T ) regret, but also im-

proves the regret bound when the variations are small, of-
fering better guarantees than the traditional O(

√
T ) bound.
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Algorithm Regret Violation Env-Agnostic
[Mahdavi et al., 2012] O(

√
T ) O(T 3/4) ✗

[Yu et al., 2017] O(
√
T ) O(

√
T ) ✗

[Yu and Neely, 2020] O(
√
T ) O(1) ✗

[Qiu et al., 2023] O(
√

V max
T ) O(1) ✗

Optimistic-COCO O(
√
Vt) O(1) ✓

Table 1: Comparison with related works. ‘Env-Agnostic’ indicates that the algorithm does not require prior knowledge of non-causal in-
formation such as T or VT . We define the problem-dependent polynomial Vt :=

∑t
s=1 ∥∇fs(xs) − ∇fs−1(xs)∥2 which captures the

dynamics of the problem. Note that, different from [Chiang et al., 2012] and [Qiu et al., 2023], we define the gradient variation Vt on
the current decision xt instead of the maximization over set X0 in V max

t . This definition is more relaxed since ∥∇ft(xt) − ∇ft−1(xt)∥2
can be zero in some setting, while maxx∈X0 ∥∇ft(x) − ∇ft−1(x)∥2 would be large. The gradient-variation bound was first achieved in
COCO by [Qiu et al., 2023], but their approach requires prior knowledge of the gradient variation V max

T . Optimistic-COCO introduces an
adaptive design that provides guarantees of any time regret and violation without needing such prior information, operating effectively under
an environment-agnostic setting.

More recently, [Qiu et al., 2023] studied OCO with con-
straints and established both a problem-dependent regret and
an O(1) violation bound, by assuming the non-causal infor-
mation of V max

T .
However, the existing approaches are not adaptive or

environment-agnostic. They rely on prior knowledge of the
total number of rounds, T , or more challenging, the total gra-
dient variations of the loss functions, V max

T , to properly sched-
ule the learning rate or other penalty parameters in the algo-
rithm. This assumption is overly strict in practice because the
learner can only observe the current loss function (or the ca-
sual cumulative gradient variation V max

t ). Estimating the full
variation of the problem at the beginning is extremely chal-
lenging, if not impossible. Therefore, an open question raised
by [Qiu et al., 2023] is both critical and challenging:

Is it possible to design an adaptive algorithm for COCO
such that it achieves a problem-dependent regret and constant
violation without any prior knowledge of the key environment
parameters?

In this paper, we provide a positive answer to this ques-
tion by introducing Optimistic-COCO, an efficient first-order
primal-dual method that incorporates the optimistic gradient
descent and Lyapunov optimization technique. Our contribu-
tions are summarized as follows:

• Algorithm Design: The design of Optimistic-COCO
is inspired by optimistic gradient descent method and
the Lyapunov optimization technique. For the primal
domain, Optimistic-COCO achieves fully adaptive by
leveraging historical information through optimistic gra-
dient descent that captures the variation of the environ-
ment and well-designed adaptive parameters to control
the loss-constraint tradeoff. For the dual domain, it de-
signs an alternative virtual queue update to further track
the constraint violation. Our algorithm does not require
any prior knowledge of the total gradient variation and
time horizon. It is adaptive to the non-casual variation
and can effectively balance regret and constraint viola-
tion.

• Theoretical guarantees: Optimistic-COCO establishes
anytime regret and violation bounds of R(t) = O(

√
Vt)

and V(t) = O(1), where the gradient violation is

Vt :=
∑t

s=1 ∥∇fs(xs) − ∇fs−1(xs)∥2. This not only
addresses the open question in [Qiu et al., 2023] re-
garding whether an adaptive and non-casual algorithm
can achieve a problem-dependent regret and constant vi-
olation but also improves the regret to a relaxed one
O(

√
Vt) (against O(

√
V max
T )). We derive these strong

results through the carefully designed virtual queue,
adaptive trade-off parameters, and a refined multi-step
Lyapunov drift analysis of the virtual queue process.
Specifically, we establish a relationship between the
trade-off parameter ϕt and the gradient variation Vt and
prove that it greatly enhances our bounds. A detailed
comparison to the most related results is summarized in
Table 1.

• Experiments: We evaluate Optimistic-COCO using
synthetic experiments in both dynamic and slowly
changing environments. Our experimental results
demonstrate that Optimistic-COCO outperforms base-
line algorithms in both settings (even the algorithm in
[Qiu et al., 2023] that uses the non-casual knowledge of
the total gradient variation). Moreover, it is observed
that in a slowly changing environment, Optimistic-
COCO achieves a much better performance than other
traditional worst-case algorithms. This proves our al-
gorithm’s effectiveness in different environments and
demonstrates the theoretical results.

1.1 Related Work
Online convex optimization is a broad field that has been
extensively studied with numerous variants [Chen et al.,
2017; Yuan and Lamperski, 2018; Mokhtari et al., 2020;
Yi et al., 2021; Guo et al., 2022; Sinha and Vaze, 2024;
Liu et al., 2024]. In this paper, we focus on the works most
relevant to ours.

“Optimism” in OCO: The concept of optimism in online
convex optimization has been widely studied in [Hazan and
Kale, 2010; Chiang et al., 2012; Rakhlin and Sridharan, 2013;
Yang et al., 2014] to establish the problem-dependent regret
beyond the traditional worst-case guarantee. The type of
gradient variation result is first derived in [Hazan and Kale,
2010] for online linear optimization with the optimistic-style
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algorithm. [Chiang et al., 2012] studies linear and smooth
loss functions to achieve O(

√
V max
T ) regret bound. [Rakhlin

and Sridharan, 2013] generalizes the results in [Hazan and
Kale, 2010] by introducing optimism in Follow the Regular-
ized Leader and Online Mirror Descent. [Yang et al., 2014]
extends results in [Chiang et al., 2012] to the non-smooth
setting and provides a guarantee of O(

√
V max
T ) in the gen-

eral non-Euclidean space. These results leverage the power
of “optimism”, though it remains uncertain whether this ap-
proach can be effectively applied to constrained settings to
achieve strong performance.

COCO: Constrained online convex optimization was ini-
tialized by [Mahdavi et al., 2012] where a regularized primal-
dual algorithm is proposed to achieve a O(

√
T ) regret bound

and a O(T 3/4) violation bound. It can also achieve an
O(T 2/3) bound for both regret and violation when the con-
straint function g(x) is linear. [Jenatton et al., 2016] extends
these results to the setting that the total round T is unknown,
providing regret and violation bound of O

(
Tmax{c,1−c}) and

O
(
T 1−c/2

)
, respectively, with c ∈ (0, 1) as a trade-off pa-

rameter. But this result is much worse than ours. [Yu et al.,
2017] shows O(

√
T ) bound both in regret and constraint vi-

olation, but they study a different constraint setting, which
is stochastic with the environment. When the Slater’s con-
dition holds, [Yu and Neely, 2020] proposes a “drift-plus-
penalty” framework to achieve O(

√
T ) regret and O(1) vi-

olation bound. However, these results fail to capture the vari-
ation of the loss functions, making them unable to achieve
improved performance even when the environment is benign.
Motivated by the optimism in OCO, a primal-dual gradient
descent-ascent algorithm is introduced in [Qiu et al., 2023]
that achieves problem-dependent O(

√
V max
T ) regret and O(1)

violation bound. Recently, the paper [Lekeufack and Jor-
dan, 2024] extends [Sinha and Vaze, 2024] to the setting of
both adversarial and fixed constraints by incorporating an op-
timistic design on a surrogate Lagrange function. While they
can achieve O(

√
VT ) regret and O(log T ) violation bound

in the fixed constraint setting, they focus on hard constraint
violation and require prior knowledge of the total gradient
variation VT to schedule the learning rates in the algorithms
carefully. As we discussed before, obtaining such non-casual
information is usually infeasible or even impossible in the
practical system.

2 Constrained Online Convex Optimization
In this section, we formally define the COCO problem
and introduce necessary assumptions. Let X0 ∈ Rd be
a closed convex set. We define stacked vector g(x) as
[g1(x), g2(x), · · · , gm(x)]⊤, where each gi(x) is a scalar-
value constraint function evaluated at the input x and m is
the number of constraints. Assume ft(x), ∀t ∈ [T ] and
gi(x), ∀i ∈ [m] are convex and continuous functions. When
not specified, we consider ∥ · ∥ to be an L2-norm.

We define the function h(x) as α-strongly convex if h(x)
satisfies

h(x) ≤ h(y) +∇h(x)⊤(x− y)− α

2
∥x− y∥2.

for any x, y ∈ Rd. The cumulative gradient variation at round
t is defined as

Vt :=
t∑

s=1

∥∇fs(xs)−∇fs−1(xs)∥2. (1)

For ease of exposition, we also denote Vt =
∑t

s=1 ∥∇fs −
∇fs−1∥2.

In COCO, at each round t, the learner selects a decision
xt from X0 and then observes the full information about
ft(x). To quantify the performance of generated sequence
{x1, x2, · · · , xT } by an algorithm, we compare them with a
static baseline, which is the solution to the following offline
COCO problem:

min
x∈X0

T∑
t=1

ft(x) s.t. gi(x) ≤ 0, ∀i ∈ [m]. (2)

Let x∗ be the optimal solution to (2), define the anytime regret
and violation at round t as follows:

R(t) :=

t∑
s=1

fs(xs)−
t∑

s=1

fs(x
∗) (3)

V(t) := max
i

t∑
s=1

gi(xs). (4)

Before introducing our algorithm and theoretical results,
we present the following standard technical assumptions in
COCO.
Assumption 1. The decision set X0 is convex and bounded
with diameter D such that ∥x− x′∥ ≤ D, ∀x, x′ ∈ X0.
Assumption 2. The loss function ft(x) satisfies |ft(x) −
ft(x

′)| ≤ F∥x − x′∥, ∥∇ft(x) − ∇ft(x
′)∥ ≤ F∥x − x′∥,

∀x, x′ ∈ X0, t ∈ [T ].
Assumption 3. The constraint function g(x) satisfies
∀x, x′ ∈ X0, ∥g(x) − g(x′)∥ ≤ G∥x − x′∥, ∥g(x)∥ ≤ R,
and ∥∇gi(x)−∇gi(x

′)∥ ≤ G∥x− x′∥, ∀i ∈ [m].
Assumptions 2 and 3 indicate the Lipschitz continuous of

functions and function gradients of both loss and constraint
functions. The bound of the constraint function follows di-
rectly from the continuity of g(x) and Assumption 1.
Assumption 4. There exists a point x̂ ∈ X0 and a positive
constant δ > 0 such that gi(x̂) ≤ −δ, ∀i ∈ [m].

This assumption, known as Slater’s condition [Boyd and
Vandenberghe, 2004], indicates the existence of a strictly fea-
sible solution to the constrained problem and is crucial for
establishing a constant violation bound. However, our algo-
rithm is fully adaptive and does not require prior knowledge
of δ for implementation; it is introduced solely to facilitate the
analysis. Finally, note that these assumptions are common in
online learning and easy to satisfy in practice [Cesa-Bianchi
and Lugosi, 2006; Hazan et al., 2007].

3 Optimistic-COCO
In this section, we introduce Optimistic-COCO, an efficient
optimistic gradient descent algorithm based on Lyapunov op-
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timization techniques. To present our algorithm, we first de-
fine the approximated Lagrange function as

Lt(xt,Qt) = ft(xt) + ϕt−1Q
⊤
t g(xt),

where virtual queue vector Qt = [Q1
t , Q

2
t , · · · , Qm

t ]⊤ rep-
resents the dual variable that controls constraint violation
of decisions. In Optimistic-COCO, at each round t, it first
computes the optimistic gradient θt and optimizes a surro-
gate decision function w.r.t. x. After submitting decision
xt+1 and observing the loss function, the algorithm calcu-
lates the causal gradient variation Vt+1 to update the trade-off
parameter ϕt+1 and learning rate ηt+1. The virtual queue is
then updated based on the current violation. We summarize
Optimistic-COCO in Algorithm 1.

Algorithm 1 Optimistic-COCO

1: Initialization: x0, x1 ∈ X0, Q0 = 0, L0(x) =
L1(x) = 0, ∀x ∈ X0, adaptive learning rates ηt =
Θ( 1√

Vt
) and ϕt = Θ(

√
Vt).

2: for t = 1, · · · , T do
3: Calculate the optimistic gradient:

θt = 2∇xLt(xt,Qt)−∇xLt−1(xt−1,Qt−1). (5)

4: Take adaptive gradient decision:

xt+1 = argmin
x∈X0

⟨θt, x⟩+
1

2ηt
∥x− xt∥2. (6)

5: Observe ft+1 and calculate: ϕt+1 and ηt+1.
6: Update virtual queue:

Qt+1 = [Qt + g(xt+1)]
+
. (7)

7: end for

To further explain the underlying intuition in the algorithm,
we recall the offline COCO problem in (2) and introduce a
Lagrange function to it:

Lt(x,λ) = ft(x) + λ⊤g(x),

where λ is the Lagrange multiplier associated with constraint
functions. Since ft is observed after making the decision xt

in online optimization. An efficient and classical method is to
approximate Lt with first-order estimation that:

Lt−1(xt−1) + ⟨∇Lt−1(xt−1), x− xt−1⟩.
The problem can then be solved by applying gradient descent
to both the primal and dual updates, which has been proven
to ensure an O(

√
T ) regret guarantee, as shown in [Mahdavi

et al., 2012; Yu and Neely, 2020]. However, to achieve an im-
proved problem-dependent guarantee, we require a more ef-
fective estimator capable of detecting environmental changes,
along with a refined dual design to balance the tradeoff be-
tween loss and constraints.

In the primal domain, inspired by the concept of “opti-
mism” in [Rakhlin and Sridharan, 2013], we design an op-
timistic gradient estimator:

θt = 2∇xLt(xt,Qt)−∇xLt−1(xt−1,Qt−1).

Rather than relying solely on gradient information from the
previous round, this estimator incorporates the momentum of
gradients, accounting for function variation. With this up-
dated gradient, we can compute the decision for the next time
step by optimizing the surrogate function in (6). Note that
this equation does not require computing the minimum of any
function, but instead involves a gradient-based descent, which
is computationally efficient.

In the decision in (6), we also introduce a regularization
(or smoothing) term 1

2ηt
∥x− xt∥2 to stabilize the algorithm,

where ηt = Θ( 1√
Vt
) represents the learning rate. Intuitively,

when the environment changes slowly, it incurs a smaller
ηt, encouraging the algorithm to make more stable decisions
that prioritize exploitation. Moreover, since we have no prior
knowledge of the total number of rounds T or the total gra-
dient variation VT , the design of the adaptive learning rate
should be carefully chosen. The specific value of ηt will be
further discussed in the theorem statements in the following
section. It is important to note that this design is non-trivial
in constrained optimization, where the loss functions, con-
straints, and dual variables (or virtual queues) are all interde-
pendent, making the analysis challenging.

For the dual domain, we employ the virtual queues Q
to approximate the dual variables. Intuitively, Q captures
the cumulative violation and encourages more conservative
decisions when the queue length grows large. The tradi-
tional update rule of virtual queues also imposed “optimism”
in the dual domain to achieve constant constraint violation,
however, we design a novel update for the virtual queue in
Optimistic-COCO which differs from previous approaches in
two aspects:

• Our algorithm leverages the unique feature of alterna-
tive updating in networking systems such that we can
leverage real queues as the signal to estimate dual vari-
ables directly. Specifically, at time slot t, we can ob-
serve the feedback from the current decision xt+1 and
use it to update the queue length. In contrast, traditional
”optimistic” optimization methods [Yu and Neely, 2020;
Qiu et al., 2023] update both the primal variable xt+1

and the dual variable Qt+1 simultaneously, relying only
on the previous decision xt.

• We do not introduce a trade-off parameter in the con-
straint function g(x) when updating the virtual queue,
as seen in previous works. Instead, the adaptive trade-off
parameter ϕt = Θ(

√
Vt), which balances regret and vi-

olation, is only applied to g(x) when making decisions.
In the next section, we will show that simply adding the
trade-off parameter to the virtual queue update, as in [Yu
and Neely, 2020] and [Qiu et al., 2023], undermines the
algorithm’s ability to achieve real adaptiveness.

Remark 1. We note that the definition of gradient variation
used in this paper

(
VT =

∑T
t=1 ∥∇ft(xt)−∇ft−1(xt)∥2

)
is more relaxed and practical. Compared to the previous def-
inition

(
V max
T =

∑T
t=1 maxx∈X0

∥∇ft(x)−∇ft−1(x)∥2
)

in [Chiang et al., 2012] and [Qiu et al., 2023], it is not neces-
sary to solve a maximization problem in each round with the
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full knowledge of gradient functions. While the computation
is simple when f is linear or quadratic, it might become even
more time-consuming than the algorithm’s runtime when the
loss function f is complex. However, with our definition and
analysis, the algorithm only needs to compute the gradient
variation at the current decision xt in each round, thereby
avoiding the heavy computational overhead in the existing
formulation.

4 Main Results
In this section, we first present our main theoretical results on
the bound of regret and constraint violation.
Theorem 1. Let the parameters be

ϕt =max
{√

Vt + ∥Qt∥+ 2F +R,ϕt−1

}
1

2ηt
=max

{
4Gϕt∥Qt∥+ 4M2ϕt + 4F,

1

2ηt−1

}
Under Assumptions 1-4, Optimistic-COCO algorithm
achieves the following regret and violation for any time
t ∈ [T ]

R(t) = O(
√
Vt),

V(t) = O (1/δ) = O(1).

where δ is the Slater’s constant.
This result implies that Optimistic-COCO can achieve

problem-dependent regret while maintaining constant con-
straint violation. Here, Vt represents the gradient variation
that captures the problem’s dynamics. When the environ-
ment is benign and the loss function remains fixed, this regret
bound indicates no gap between the offline optimal solution
and the online decision (since ∥∇ft(xt)−∇ft−1(xt)∥ = 0),
whereas the traditional O(

√
T ) regret still incurs a sub-linear

gap. Furthermore, since the gradient of loss functions is
bounded according to Assumption 2, our results also gen-
eralize the previous O(

√
T ) bound for worst-case scenarios,

where constant variation persists across all rounds. There-
fore, our problem-dependent variation bound reflects the dy-
namic and complexity of the problem, providing a stronger
guarantee for the algorithm.

In Optimistic-COCO, a non-increasing learning rate is em-
ployed to guide decision-making. The algorithm is fully
adaptive and does not rely on prior knowledge of the envi-
ronment, such as VT or T , unlike previous approaches [Yu
and Neely, 2020; Qiu et al., 2023]. Instead, the learning rate
increases progressively based on the accumulated gradient
variation over time. Initially, when the gradient variation is
small, the algorithm favors more aggressive exploration. As
the experiment progresses, the algorithm transitions towards
more stable behavior. Additionally, when the loss function
is fixed, the algorithm maintains a constant learning rate by
the definition of ηt, which is consistent with the optimiza-
tion of a known convex problem. This constant learning rate
also prevents excessively large updates at the start of the iter-
ations. Furthermore, the trade-off parameter is adaptive, and
its strategic placement is critical to achieving the algorithm’s
adaptivity and ensuring that constant constraint violation is
maintained.

Proof of Theorem 1
We give some proof sketches of our theoretical results in this
section and leave the full proof in the Appendix. To prove our
main theorem, we first introduce the following critical lemma
that provides a unified bound on both regret and drift.

Lemma 1. Under the Optimistic-COCO algorithm, we have
for any x ∈ X0 such that

ft+1(xt+1)− ft+1(x) +
ϕt

2
∥Qt+1∥2 −

ϕt

2
∥Qt∥2

≤ ϕtQ
⊤
t+1g(x)−

ϕt

2
∥Qt+1 −Qt∥2 + ⟨ϵt, xt+1 − x⟩

+
1

2ηt
∥x− xt∥2 −

1

2ηt
∥x− xt+1∥2 −

1

2ηt
∥xt+1 − xt∥2.

The proof of Theorem 1 follows this key lemma which pro-
vides a bound on the one-step regret and Lyapunov drift as a
whole. Note this lemma holds for all x ∈ X0 including the
optimal decision x∗, which facilitates the subsequent proofs,
so we highlight some key proof steps here.

Proof. For the Optimistic-COCO decision, we define

h(x) := ⟨θt, x⟩+
1

2ηt
∥x− xt∥2, ∀x ∈ X0.

It is not hard to check h(x) is 1/ηt−strongly convex due to
the quadratic term. Recall that xt+1 is the optimal solution to
h(x) in Optimistic-COCO, we have for any x ∈ X0

⟨θt, xt+1⟩+
1

2ηt
∥xt+1 − xt∥2 (8)

≤⟨θt, x⟩+
1

2ηt
∥x− xt∥2 −

1

2ηt
∥x− xt+1∥2.

which is one of the properties of the strongly convex function.
Further define an error term ϵt = ∇Lt+1(xt+1,Qt+1) − θt
and reformulate (8) as

⟨∇xLt+1(xt+1,Qt+1), xt+1 − x⟩+ 1

2ηt
∥xt+1 − xt∥2

≤⟨ϵt, xt+1 − x⟩+ 1

2ηt
∥x− xt∥2 −

1

2ηt
∥x− xt+1∥2.

Combine it with the convexity of Lt+1(x,Q) w.r.t. x, we
have the inequality

ft+1(xt+1) + ϕtQ
⊤
t+1g(xt+1)− ft+1(x)− ϕtQ

⊤
t+1g(x)

≤ ⟨ϵt, xt+1 − x⟩+ 1

2ηt
∥x− xt∥2 −

1

2ηt
∥x− xt+1∥2

− 1

2ηt
∥xt+1 − xt∥2. (9)

To cancel the term Q⊤
t+1g(xt+1), define a function of the

queue dynamic

h(Q) := −Q⊤g(xt+1) +
1

2
∥Q−Qt∥2, Q ≥ 0.
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Since Qt+1 is the optimal solution to h(Q) in Optimistic-
COCO, we have for any Q ≥ 0

−Q⊤
t+1g(xt+1) +

1

2
∥Qt+1 −Qt∥2

≤−Q⊤g(xt+1) +
1

2
∥Q−Qt∥2 −

1

2
∥Q−Qt+1∥2.

Setting Q = 0 yields

Q⊤
t+1g(xt+1) ≥

1

2
∥Qt+1∥2 −

1

2
∥Qt∥2 +

1

2
∥Qt+1 −Qt∥2.

Plugging it in inequality (9) and re-arranging the terms com-
pletes the proof.

Constraint Violation
Following the virtual queue update rule in Optimistic-COCO,
we directly have

V(t) = max
i

t∑
s=1

gi(xs) ≤ ∥Qt∥, ∀ t ∈ [T ]. (10)

which implies that the constraint violation of Optimistic-
COCO is bounded by the value of virtual queue and the prob-
lem reduces to determining the bound of the virtual queue.
We remark that, in previous works [Yu and Neely, 2020;
Qiu et al., 2023], their algorithms typically introduced a
trade-off parameter ϕ into the constraint function when up-
dating the virtual queue Qt, leading to a violation bound of
∥Qt∥/ϕ. This method is valid when the total gradient vari-
ation VT and time horizon T are known to set ϕ. However,
when these parameters are unknown, incorporating an adap-
tive parameter ϕt into the constraint function invalidates in-
equality (10), making it impossible to use virtual queue to
establish the violation bound. Therefore, in our algorithm,
we do not impose ϕt on the constraint function during the
virtual queue update and employ a ”Lyapunov drift” analysis
to Lemma 1 to derive the bound on ∥Qt∥.

Lyapunov drift analysis is used to investigate the stability
properties of control policies where a stable policy results in
bounded queue lengths. In our analysis, when Slater’s con-
dition holds as stated in Assumption 4, we study the upper
bound of queue length through a refined multiple-step Lya-
punov drift analysis.
Lemma 2. Set x = x̂ satisfy Slater’s condition in Lemma 1,
i.e., gi(x̂) ≤ −δ (δ > 0), ∀i ∈ [m]. Under Assumptions 1-4,
there exists a positive constant C and an integer K such that
the following multi-step Lyapunov drift holds:

1

2
∥Qt+K∥2 − 1

2
∥Qt∥2

≤(−Kδ +G+D2)∥Qt∥+K2δ/2 +KC.

The derivation of the Lyapunov drift over K steps is based
on the one-step drift. Specifically, in the proof for a single
step, we bound the error term ⟨ϵt, xt+1 − x⟩ using both con-
stant terms and quadratic terms like ∥xt+1−x∥2, with the ob-
jective of applying a telescoping summation across K steps.
Another key point in obtaining the (K)-step Lyapunov drift
lies in determining the values of ϕt and ηt, which control the
behavior of the drift.

This lemma implies that if the norm of the virtual queue
satisfies ∥Qt∥ ≥ K2δ+KC

Kδ−G−D2 , the drift becomes negative,
leading to a decrease in the virtual queue norm over the next
K steps, i.e., ∥Qt+K∥2 ≤ ∥Qt∥2. Intuitively, when the cur-
rent violation is large at step t, the algorithm will reduce the
violation after K steps. This is the central mechanism that
ensures our algorithm achieves constant constraint violation.

Lemma 3. Under Assumptions 1-4, Optimistic-COCO en-
sures that

∥Qt∥ = O
(
1

δ

)
= O(1)

This lemma is derived from Lemma 2, the update rule of
Optimistic-COCO, and the idea of contradiction. Then, the
proof of constraint violation in Theorem 1 is directly derived
by combining inequality (10) and this lemma.

Regret Analysis
Let x = x∗ in Lemma 1 and note Q⊤

t+1g(x
∗) ≤ 0 because

Qt+1 ≥ 0 from the update rule of virtual queue and x∗ is a
feasible solution to COCO such that g(x∗) ≤ 0. Then we
have the following lemma.

Lemma 4. Based on Lemma 1, set αt = 8ηt, we can bound
the one-step regret as

ft+1(xt+1)− ft+1(x
∗) (11)

≤ ϕt

2
∥Qt∥2 −

ϕt

2
∥Qt+1∥2 +

1

2ηt
∥x∗ − xt∥2 −

1

2ηt
∥x∗−

xt+1∥2 +
ϕt

2
∥Qt −Qt−1∥2 −

ϕt

2
∥Qt+1 −Qt∥2 +

1

2αt

∥xt − xt−1∥2 −
1

2αt
∥xt+1 − xt∥2 +

αt

2
∥∇ft −∇ft−1∥2

+
√
mGD (ϕt−1 − ϕt−2) ∥Qt−1∥

Note that most of the terms in this lemma can be bounded
by telescope summation when proving the regret bound be-
cause ϕt+1 ≥ ϕt and 1

2ηt+1
≥ 1

2ηt
from the definition

of ϕt and ηt. And it can be seen that the terms (ϕt−1 −
ϕt−2)∥Qt−1∥ and αt

2 ∥∇ft − ∇ft−1∥2 are part of the costs
that our algorithm incurs to achieve adaptiveness. If we have
prior knowledge of VT , the bound is obvious. While in our
proof,

∑t
s=1(ϕs−1 − ϕs−2)∥Qs−1∥ can be well bounded by

Lemma 3 and the term
∑t−1

s=1
αs

2 ∥∇fs − ∇fs−1∥2 can be
bound by the following lemma.

Lemma 5. Recall the definition of ηt in Theorem 1 and αt =
8ηt, we have the following inequality,

t−1∑
s=1

αs

2
∥∇fs −∇fs−1∥2 ≤ 1

M2

√
Vt.

Now we are ready to present the final bound of regret. Tak-
ing summation of the inequality (11) over time step t, we get
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(a) Cumulative Loss (b) Cumulative Violation (c) Cumulative Loss (d) Cumulative Violation

Figure 1: Experiment results in two settings. (a) and (b) are conducted in a highly dynamic environment. (c) and (d) are results in a slowly
changing environment. Each value is plotted by averaging over 20 independent runs.

that, for all t ∈ [T ],

R(t) =
t−1∑
s=1

fs+1(xs+1)− fs+1(x
∗)

≤ C1ϕt∥Qt∥+ C2

√
Vt + C3

= O(ϕt∥Qt∥+
√
Vt)

= O(
√
Vt)

where we use the definition of ϕt and ∥Qt∥ = O(1) from
Lemma 3. C1, C2, C3 are constants and the full proof can be
found in the Appendix.

5 Experiment
In this section, we present a series of synthetic experiments
designed to evaluate the performance of the Optimistic-
COCO algorithm under both dynamic and slowly-changing
environments. Our goal is to assess how well our algo-
rithm adapts to varying conditions and to compare its per-
formance against several well-established algorithms, specif-
ically, those proposed in [Mahdavi et al., 2012; Yu and Neely,
2020; Qiu et al., 2023]. Similar to the setups used in [Yu
and Neely, 2020; Yi et al., 2021], we consider a scenario
where the loss functions are linear, defined as ft(x) = ⟨ct, x⟩,
where ct is a time-varying coefficient. The constraint func-
tion is expressed as Ax ≤ b, with the decision variable x
belonging to R2. The constraint matrix A ∈ R3×2 and vector
b ∈ R2 are fixed and generated uniformly within the inter-
vals [0.1, 0.5] for A and [0, 0.2] for b, respectively. We set the
total number of rounds to T = 5000 and select the feasible
set X0 = [−1, 1]2. For each algorithm, we track and plot the
cumulative loss and violation over time.

Dynamic environment: In the dynamic setting, we define
ct = c1(t) + c2(t) + c3(t), where c1(t) is uniformly drawn
from [−t1/10, t1/10], c2(t) is uniformly drawn from [−1, 0]
for t ∈ [1, 1500]∪ [2000, 3500]∪ [4000, 5000] and from [0, 1]
otherwise, and c3(t) = (−1)µ(t), where µ(t) is a random per-
mutation of the vector [1, T ]. Figures 1(a) and 1(b) demon-
strate that Optimistic-COCO outperforms the baseline algo-
rithms in both regret and violation. From Figure 1(a), it can
be seen that all algorithms achieve similar performance level
of regret, consistent with the O(

√
T ) guarantee in the worst-

case scenario under a highly dynamic environment. And al-
gorithms with O(1) violation guarantee show better perfor-
mance in Figure 1(b).

Slowly-changing environment: We also conduct ex-
periments in a slowly-changing environment to justify the
problem-dependent theoretical guarantees. The loss func-
tions remain fixed within each 100-round segment. At the
start of each segment, the linear factor c is uniformly drawn
from [0, 1], and ct = c remains constant for the following
100 rounds. In this setting, the regret bound of O(

√
Vt)

is much smaller than O(
√
T ) since the loss functions do

not vary at each round. Figures 1(c) and 1(d) show that
Optimistic-COCO consistently outperforms all baseline al-
gorithms and significantly surpasses the algorithms in [Mah-
davi et al., 2012; Yu and Neely, 2020], which aligns with the
theoretical gap between O(

√
VT ) and O(

√
T ). Figure 1(d)

demonstrates that algorithms with O(1) guarantee still main-
tain strong violation performance, with Optimistic-COCO
performing slightly better

It’s important to highlight that our algorithm is fully adap-
tive, whereas we provided non-causal information about T
and VT to algorithms in [Mahdavi et al., 2012; Yu and Neely,
2020; Qiu et al., 2023] to configure the learning rate. Despite
this advantage, our algorithm achieves the best performance
in both environments without requiring any prior knowledge,
thereby validating our theoretical guarantees.

6 Conclusion
In this paper, we investigate constrained online convex
optimization (COCO) and introduce Optimistic-COCO, a
gradient-based algorithm that integrates optimistic designs
with the “drift-plus-penalty” framework. We prove that
Optimistic-COCO achieves a gradient-variation bound of
O(

√
Vt) for regret and constant bound for violation, thereby

encompassing and improving upon state-of-the-art results.
Our algorithm is fully adaptive, requiring no prior knowledge
of the time horizon T or the total gradient variation VT , ef-
fectively addressing the open problem highlighted in [Qiu et
al., 2023]. These advances are made possible through a re-
fined design of the scaled virtual queue and an optimistic re-
gret analysis. Our experimental results further corroborate
the theoretical findings.
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