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Abstract
Recent Deep Reinforcement Learning (DRL) tech-
niques have advanced solutions to Vehicle Rout-
ing Problems (VRPs). However, many of these
methods focus exclusively on optimizing distance-
oriented objectives (i.e., minimizing route length),
often overlooking the implicit drivers’ preferences
for routes. These preferences, which are crucial
in practice, are challenging to model using tra-
ditional DRL approaches. To address this gap,
we propose a preference-based DRL method char-
acterized by its reward design and optimization
objective, which is specialized to learn historical
route preferences. Our experiments demonstrate
that the method aligns generated solutions more
closely with human preferences. Moreover, it ex-
hibits strong generalization performance across a
variety of instances, offering a robust solution for
different VRP scenarios.

1 Introduction
Vehicle Routing Problems (VRPs) are ubiquitous in the real-
world applications, and each problem is unique with its own
set of constraints. In addition, the constraints often evolve
rapidly due to changes in practical situations.

Classical methods for VRPs can be categorized into ex-
act methods and heuristic methods [Martı́ and Reinelt, 2022].
The exact methods, while guaranteeing an optimal solution,
are computationally expensive. On the other hand, heuris-
tic methods provide good solutions more efficiently depend-
ing on problem-specific rules and expert knowledge, but can-
not guarantee optimality. Both exact and heuristic methods
tend to struggle in dynamic environments, such as those in-
fluenced by weather or traffic conditions. Recently, learning-
to-optimize techniques have achieved significant success in
solving VRPs such as the traveling saleman problem (TSP)
and the capacitated vehicle routing problem (CVRP) [Ben-
gio et al., 2021; Kool et al., 2018; Kwon et al., 2020;

*Yaqing Hou and Qiang Zhang are the Corresponding authors.

Zhang et al., 2023; Bello et al., 2016; Wu et al., 2024;
Zhou et al., 2023]. They eliminate the need for extensive
hand-crafted heuristics and domain-specific expertise, en-
abling a trained model to perform well across a range of in-
stances.

Existing literature on learning to optimize VRPs can be
broadly categorized into two paradigms: constructive solvers
and iterative solvers. Constructive solvers learn policies to
construct solutions from scratch in an end-to-end autoregres-
sive manner, while iterative solvers start with an initial so-
lution and progressively refine it towards better solutions.
Generally, constructive solvers efficiently achieve strong per-
formance, whereas iterative solvers excel in exploring near-
optimal solutions within a longer time budget.

However, current learning-to-optimize models for VRPs
focus on optimizing metrics such as route distance and travel
time. However, these metrics are often impractical in real-
world scenarios, and the optimal solutions may fail to sat-
isfy real requirements, such as drivers’ preferences for cer-
tain paths [Ceikute and Jensen, 2013]. In practice, some
navigation software typically suggest the shortest or fastest
routes, yet drivers frequently modify these suggestions to
retrieve, adjust, and reuse their preferred paths. Through
these modifications, drivers are essentially optimizing the
paths according to their own preference objectives. The pref-
erences are often subjective and difficult to be formalized
into constraints [Toledo et al., 2013]. For example, drivers
might prefer routes with a lower probability of traffic con-
gestion, fewer traffic lights, smoother road surfaces, or cer-
tain service stations prioritized based on their schedules. The
preference-driven objectives pose a key challenge in real-
world VRP applications, i.e., the preferences are always sub-
jective and evolve with the dynamics of practical situations.
Static learning-to-optimize models or traditional methods of-
ten fail to fully capture drivers’ preferences and their adjust-
ments to routes. These subjective and ever-changing factors
are precisely what make VRP a highly complex and challeng-
ing combinatorial optimization problem.

A recent learning-to-optimize approach is proposed to
learn drivers’ preferences by estimating the transition proba-
bilities between stops based on their historical routes [Mandi
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Figure 1: The preference-aware deep reinforcement learning frame-
work.

et al., 2021]. Although this method effectively captures cer-
tain aspects of driver preferences, it is heavily based on metic-
ulously labeled historical data, making it challenging to gen-
eralize to new and diverse problem instances.

To address the problem, we propose a preference-based
deep reinforcement learning framework as illustrated in Fig-
ure 1. This framework estimates human preferences from his-
torical route data to generate solutions that align with these
preferences. Our main contributions include: 1) We designed
a reward signal based on Arc Difference to quantify the sim-
ilarity between generated routes and historical routes; 2) We
proposed a novel optimization objective combining prefer-
ence loss and reinforcement loss, effectively enhancing the
adaptability of the policy network in preference learning; 3)
We validated significant advantages of the framework in gen-
erating high-quality solutions and favorably generalizing to
difference scenarios.

2 Related Work
2.1 Traditional VRPs
Since Dantzig and Ramser [Dantzig and Ramser, 1959] first
introduced the VRP to optimize fuel delivery routes for truck
fleets, VRP has become one of the most economically sig-
nificant combinatorial optimization problems, widely applied
among distributors and logistics companies. Traditional VRP
focuses on minimizing operational costs [Hu et al., 2009],
e.g., travel time [Lecluyse et al., 2009], fuel consumption, or
carbon emission [Xiao et al., 2012; Peng and Wang, 2009].
Early research concentrated on CVRP, which assumes fixed
vehicle capacities and aims to minimize total travel distance,
providing a foundation for more complex real-world routing
scenarios [Laporte, 2007].

With advances in optimization methods, research has
shifted towards Rich VRP variants [Caceres-Cruz et al.,
2014; Drexl, 2012], which take into account multiple ob-
jectives, uncertainty, and real-world constraints such as in-
ventory, environment, energy, and driver-specific require-
ments [Mor and Speranza, 2022]. These additional con-
straints and objectives significantly increase the complexity
of VRP, posing challenges to the development of more effec-
tive optimization algorithms.

As a human-centered objective, driver preferences further
complicate the VRP owing to its subjective and dynamic

properties, encompassing diverse preferences such as avoid-
ing high-traffic areas, reducing the number of stops at traffic
lights, or prioritizing smoother road surfaces. Unlike explicit
constraints like capacity or time windows, these preferences
are difficult to handle, or if possible, it is hard to formalize
them into weights or decision rules. As Potvin et al. found,
it is often easier to collect examples and historical solutions
than to derive explicit rules from route planners [Potvin et al.,
1993]. This makes preference-based optimization an emerg-
ing and crucial aspect of VRP research.

2.2 Preference Learning in VRPs

Driver preferences can be integrated into the optimization
process by incorporating them into the objective function,
typically formalized as a multi-objective VRP [Jozefowiez
et al., 2008] and solved through weighted sums or multi-
objective evolutionary algorithms to find Pareto optimal so-
lutions [Schaffer, 2014]. However, the optimization with im-
plicit preferences of drivers is a significant challenge, since
they cannot be explicitly formalized in practice.

To address the challenge, Canoy et al. [2019] proposed a
different perspective by introducing a Markov model to learn
drivers’ preferences. This approach eliminates the need for
explicitly specifying preference constraints or sub-objectives.
Instead, the Markovian model learns preferences directly
from historical routes (i.e., plans) that were manually adjusted
by human planners to better meet real-world requirements af-
ter being generated by off-the-shelf solvers.

Previous research on learning driver preferences primar-
ily focused on scenarios with a single origin and destination.
For example, TRIP [Letchner et al., 2006] leverages histori-
cal GPS data to infer drivers’ preferences by comparing their
travel time ratios to average travel times, thereby generating
routes that closely mimic those preferred by drivers. Simi-
larly, Funke et al. [2016] deduced drivers’ preferences from
GPS traces and encoded them into the weights of a linear pro-
gram, which is subsequently optimized to provide route sug-
gestions. Guo et al. [2020] improved solution quality by con-
sidering diverse routing preferences that vary depending on
contextual factors. While these methods explicitly represent
driver preferences, Mandi et al. [2021] assume that prefer-
ences can be expressed probabilistically as utilities or likeli-
hoods of arcs in the graph, providing a more flexible frame-
work for capturing implicit preferences. They built upon the
maximum likelihood routing framework proposed by Canoy
et al. [2019], which models transition probabilities between
stops as explicit preferences of drivers or planners to identify
route with the maximum utility. To incorporate contextual
features, Mandi et al. extended the framework by introduc-
ing a neural network model that leverages both historical and
contextual information for more accurate transition probabil-
ity estimation. Their approach achieved higher solution qual-
ity compared to the method of [Canoy and Guns, 2019].

Although the approach by Mandi et al. achieved notable
success, it relies heavily on meticulously labeled historical
data to provide the model with diverse information. Further-
more, the trained model is effective only for the specific in-
stance, making it difficult to generalize to broader instances.
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3 Preliminaries
3.1 Problem Description
Capacitated Vehicle Routing Problem (CVRP) is defined on
a graph G = (V,A), where V = {0, 1, ..., N} is the ver-
tex set and A = {(i, j) : i, j ∈ V, i ̸= j} represents the
set of directed arcs. Vertex 0 denotes the depot, while ver-
tices {1, ..., N} represent customer nodes. Each arc (i, j) has
an associated cost cij , which could represent distance, travel
time, or a combination of relevant metrics. Each customer
i ∈ V has a non-negative demand qi, while the deopt 0 has
no demand, i.e., q0 = 0. A fleet of m identical vehicles, each
with a capacity Q, is stationed at the depot. The objective of
CVRP is to determine a set of least-cost routes for the fleet,
such that the following constraints are satisfied:

1. Each customer i ∈ V is visited exactly once by exactly
one vehicle.

2. The route of each vehicle starts and ends at the depot.

3. The total demand of customers assigned to a route does
not exceed the vehicle capacity Q.

The solution to the CVRP is represented as a set of routes
τ = {τ1, ..., τm}, where each route τk is a sequence of nodes
{v0, vk1, ..., vkp, v0} visited by a vehicle, starting and end-
ing at the depot. The cost function c(τ) computes the total
cost of all routes. The objective is to find the optimal set of
routes τ∗ that minimizes the total cost [Lau and Liang, 2002;
Munari et al., 2016; Yu et al., 2017], i.e., argminτ∈Φ c(τ). Φ
denotes the set of all feasible solutions satisfying the problem
constraints.

In practical applications, CVRP solutions often need to
consider real-world complexities, such as time windows,
driver preferences, and dynamic constraints. These factors
further complicate the optimization process, making CVRP
a critical combinatorial optimization problem in logistics,
transportation, and supply chain management.

3.2 Deep Reinforcement Learning for VRP
Deep Reinforcement Learning (DRL) trains an agent to max-
imize the cumulative reward by interacting with an environ-
ment and receiving reward signals. In VRPs, state transitions
are typically modeled as a deterministic process. One com-
monly used policy gradient method is REINFORCE [Sutton,
2018], whose update rule is given by:

∇θJ(θ) = Ex∼D,τ∼πθ(τ |x)[(r(x, τ)

− b(x))∇θ log πθ(τ |x)]

≈ 1

|D|
∑
x∈D

1

|Sx|
∑
τ∈Sx

[(r(x, τ)

− b(x))∇θ log πθ(τ |x)]

where D denotes the dataset of problem instances, x ∈ D
represents an instance, and Sx is the set of sampled solu-
tions (or trajectories) for x. The reward function r(x, τ)
is defined by objective function, and b(x) is the baseline
function used to calculate the advantage function A(x, τ) =
r(x, τ) − b(x), which helps reduce the variance of the gra-
dient estimator. The policy πθ(τ |x) defines a distribution

over trajectories τ = (a0, a1, . . . , aT ), where each trajec-
tory is a sequence of actions generated by the policy as
πθ(τ |x) =

∏T
t=0 πθ(at|st). The initial state s0 is determined

by x, and the state st at time step t depends on the previous
state and action (e.g., st = f(st−1, at−1)). The action at is
selected by the policy based on the state st.

Unlike popular RL environments such as Atari [Bellemare
et al., 2013] and Mujoco [Todorov et al., 2012], which pro-
vide diverse and strong reward signals, VRPs present unique
challenges. As the policy improves, the differences in re-
ward signals between solutions become increasingly subtle.
Specifically, the agent often encounters solutions with min-
imal reward differences, i.e., |r(x, τ) − b(x)| < ϵ, where ϵ
is a small constant. This results in negligible updates to the
policy objective J(θ), which heavily relies on the advantage
function A(x, τ) = r(x, τ)− b(x). Consequently, the policy
struggles to escape local optima, particularly during the later
stages of training.

Moreover, DRL for VRPs aims to maximize the expected
optimal reward during inference. There is an inconsistency
between the training objective (which optimizes expected val-
ues of rewards) and the inference objective (which seeks to
maximize the best possible reward) can degrade performance.

Ex∼D

[
max

τ∼πθ(τ |x)
r(x, τ)

]
̸= Ex∼D

[
Eτ∼πθ(τ |x)r(x, τ)

]
Since inference only considers the best solutions, when

the advantage function A(x, τ) approaches zero, RL methods
struggle to differentiate among solutions and fail to empha-
size optimality. Therefore, it is essential to construct a more
stable reward signal that highlights the optimality of solutions
during training.

4 Methodology
In this section, we first introduce Preference-based Reinforce-
ment Learning (PbRL) and explain how utilize this technique
to extract human drivers’ preferences from historical trajec-
tory data. By learning these preferences, our method guides
the reinforcement learning policy network to generate solu-
tions that align with human preferences.

4.1 Preference-Based Reinforcement Learning
In the PbRL [Wirth et al., 2017] framework, the agent’s opti-
mization objective is to learn a reward function from a prefer-
ence dataset rather than receive a reward signal directly by in-
teracting with the environment. Our approach extracts human
preference information from historical route data and uses it
to train the policy network such that the generated routes con-
form to these preferences.

Suppose that we have access to a preference dataset Dp =
{(τ1, τ2, y)}, where each triplet consists of two trajectories τ1
and τ2 along with a preference label y ∈ {0, 1}. When τ1 is
preferred over τ2, y = 1; otherwise, y = 0. These prefer-
ences are assumed to be generated by an underlying reward
function r̂(x, τ), which encodes the rewards between trajec-
tories.

To map the reward difference to preference probability,
we employ classical preference models such as the Bradley-
Terry model [Bradley and Terry, 1952] or the Thurstone
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model [David, 1963]. These models transform the reward dif-
ference between trajectories into a pairwise preference prob-
ability distribution:

p∗(τ1 ≻ τ2 | x) = f(r̂(x, τ1)− r̂(x, τ2)) (1)
In the BT model, the sigmoid function is utilized as the map-
ping function, defined by

σ(x) =
1

1 + e−x
,

whereas the Thurstone model adopts the cumulative distri-
bution function Φ(x) of the standard normal distribution for
f(·). By defining this relationship, the task of learning the
reward function r̂ϕ(x, τ) can be approached as a binary clas-
sification problem. The goal is to optimize the parameters by
maximizing the likelihood of the observed preference data,
which is mathematically represented as:

max
ϕ

E(τ1,τ2,y)∼Dp
[y log pϕ(τ1 ≻ τ2)]

This formulation effectively transforms the reward learning
process into a supervised learning task, leveraging the binary
nature of preference judgments to guide the optimization of
the reward function.

4.2 Arc Difference and Reward Function
To quantify the similarity between a generated route and his-
torical routes, and to connect this similarity to human prefer-
ences, we adopt the concept of arc difference [Mandi et al.,
2021]. The arc difference measures the structural disparities
between the generated route and historical routes, using arc
sets as the basis for comparison. A smaller arc difference in-
dicates that the generated route is more similar to historical
route. Since humans typically prefer routes resembling those
traveled historically, the arc difference serves as an important
indicator of route generation quality and reflect the human
preference to certain degree.

Based on the arc difference, we define a reward function
that quantifies the similarity between the generated routes and
historical routes. Given an instance x, the reward function for
route τ is defined as:

reward = −(1− β) ∗ distance− β ∗ ad(x, τ) (2)
where distance represents the route length optimized in tra-
ditional reinforcement learning methods. Parameter β is a hy-
perparameter that controls the influence of the arc difference
on the reward function. Specifically, when β = 0, the reward
function focuses solely on minimizing the distance, aligning
with the traditional reinforcement learning objective without
considering similarity to historical routes. And ad(x, τ) de-
notes the arc difference between τ and the historical routes
τ∗, which is defined as:

ad(x, τ) =
1

N

N∑
i=1

|E(τ) \ E(τ∗i )| (3)

The goal of designing this reward signal is to make the
generated route similar to historical routes of a driver, i.e.,
aligning them with the objective of optimizing human prefer-
ences. The reward function can be used to a policy network
for learning routes that are similar to historical routes biased
towards human preference.

4.3 Policy Optimization with Preference
A key aspect of our method is to convert quantitative reward
signals into qualitative preference information. This conver-
sion not only stabilizes the learning process but also reduces
reliance on numerical reward signals, meanwhile emphasiz-
ing the relative superiority among solutions. In our approach,
we train the policy network with the preference information
extracted from historical routes to generate routes that con-
form to human preferences. Unlike traditional reinforcement
learning methods that focus solely on operational metrics,
such as travel time or distance, our objective is to capture rel-
ative preferences among solutions, thereby making the gen-
erated routes better reflect human-centered decision-making
processes.

Similar to common practices in reinforcement learning, ap-
plying the arc difference as a reward signal encounters a sig-
nificant challenge: the state and action spaces grow expo-
nentially with the problem size, leading to inefficient explo-
ration. A common solution is to include an entropy regular-
ization term H(πθ) during optimization to balance exploita-
tion and exploration, encouraging the network to explore a
wider range of route choices:

J(θ) = Ex∼D,τ∼πθ(τ |x)[r(x, τ)] + αH(πθ(τ | x)) (4)

where α controls the strength of entropy regularization term,
and H(πθ(τ | x)) = −

∑
τ πθ(τ | x) log πθ(τ | x) is the en-

tropy of the policy, designed to encourage policy diversity and
exploration. Based on previous work [Ziebart et al., 2008;
Haarnoja et al., 2017] , the analytical form of the optimal
policy in Eq. 4 is:

π(τ | x) = 1

Z(x)
exp

(
1

α
r(x, τ)

)
(5)

where Z(x) is the normalization factor defined as:

Z(x) =
∑
τ

exp

(
1

α
r(x, τ)

)
The normalization factor Z(x) represents the weighted

sum of all possible trajectories τ , ensuring that π(τ | x) is
a valid probability distribution and assigns appropriate prob-
ability weights to each route. This analytical form indicates
that the probability assigned to each trajectory by the opti-
mal policy is determined by its reward r(x, τ); the higher the
reward, the higher the probability of generating that trajec-
tory. This expression not only provides a solid theoretical
foundation for policy optimization but also reveals the close
relationship between reward signals and policy distribution.
Similar methods appear in other related studies, such as the
reparameterization approach in a KL-regularized objective by
Rafailov et al. [2024], the application in an inverse reinforce-
ment learning framework by Hejna & Sadigh [2024]. These
works all demonstrate that explicitly associating reward sig-
nals with the policy probabilities is an effective means of de-
signing reinforcement learning objectives.

Preference-Based Reward
Building on the above analysis, this form further supports the
reparameterization of the reward function by expressing it as
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a function of the policy probability, thereby guiding the de-
sign of the optimization objective more directly [Lin et al.,
2025]. Specifically:

r̂(x, τ) = α log π(τ | x) + α logZ(x) (6)
The direct association between the reward function and the

policy probability provides theoretical support for preference-
based route optimization, while making the optimization pro-
cess more tractable. From Eq. 6, we can directly relate the
optimal policy π∗ to the reward function r, thereby revealing
the preference relationships among trajectories. Specifically,
the preference between two routes τ1 and τ2 can be mapped
into a pairwise preference distribution via their reward differ-
ence:

p∗(τ1 ≻ τ2 | x) = f
(
α
[
log π(τ1 | x)− log π(τ2 | x)

])
(7)

A key feature of this representation is that it naturally
avoids the computational complexity of calculating the nor-
malization factor Z(x). When considering reward differ-
ences, Z(x) is a constant term with respect to a particular pair
of routes and is canceled out when computing the preference
probability.

By leveraging this relationship, we successfully transform
the numerical reward signal into a qualitative preference rep-
resentation based on the policy probabilities. This transfor-
mation not only effectively captures the relative merits of dif-
ferent routes but also better reflects human preferences in
route selection, thus further guiding the policy network to
generate solutions more similar to historical routes.

4.4 Generating Conflict-Free Preference Labels
To produce conflict-free preference labels, we use the base-
line reward function r(x, τ), which is defined in Eq. 2, as
a physical measure of route quality and generate preference
labels y = 1[·] : R → {0, 1} through pairwise comparisons.
This reward-based preference label generation ensures con-
sistency and transitivity of preference relationships across the
dataset.

It is worth noting that, unlike common approaches in
previous DRL methods that adjust the reward signal via
affine transformations, our method fully exploits the affine-
invariance of preference labels. Specifically, the indicator
function remains invariant under the following affine trans-
formation:
1
[
k ·r(x, τ1)+ b > k ·r(x, τ2)+ b

]
= 1

[
r(x, τ1) > r(x, τ2)

]
(8)

where k > 0 is any positive constant and b is any real value.
This property indicates that preference labels remain inde-
pendent of the scale and shift of the reward function, consis-
tently focusing on the relative superiority of solutions. This
approach not only improves the stability of the learning pro-
cess but also reinforces the consistency of policy preferences
in the optimization objective.

4.5 Preference-Based Learning Objective
We combine the arc difference with the policy probability to
design a preference-based learning objective:

J(θ) =Ex∼D,(τ1,τ2)∼πθ(·|x)

[1[r(x, τ1) < r(x, τ2)] · log pθ(τ1 ≻ τ2 | x)]
(9)

where r(x, τ1) and r(x, τ2) are defined as above, representing
the arc difference between the generated routes τ1, τ2 and the
historical routes, respectively. Meanwhile, pθ(τ1 ≻ τ2 | x)
is the preference probability assigned by the policy network
πθ for routes τ1 and τ2. By emphasizing the relative prefer-
ence among routes, this objective function guides the policy
network to generate solutions that more closely resemble the
historical routes, thereby maximizing consistency with hu-
man preferences.

5 Experiments
5.1 Setup
We evaluated the performance of the proposed preference-
driven deep reinforcement learning framework on the classic
CVRP. The instances used in the experiments were sourced
from CVRPLIB. The experiments were conducted on a com-
puter equipped with an Intel(R) Core(TM) i5-13400 2.5GHz
CPU, 32.0GB RAM, and an NVIDIA GeForce RTX 4090
GPU, with model training and inference carried out using
POMO [Kwon et al., 2020], which is widely regarded as a
classic benchmark algorithm in the VRP field. Our code is
publicly available.1

Benchmark Algorithms
To comprehensively assess the effectiveness of the proposed
method, we first validated its performance advantage in gen-
erating solutions that are more aligned with human prefer-
ences by comparing it with the benchmark algorithms pro-
posed by Mandi et al. [2021](denoted as Neural Net(NN) in
the results table) and Canoy et al. [2019](denoted as Markov
in the results table), as well as the POMO [Kwon et al., 2020],
which serves as a widely regarded baseline in solving VRP.
Our policy network is also based on the POMO. Further-
more, we evaluated the impact of key components, such as
the reward function and optimization objectives, on model
performance by gradually removing these elements. Finally,
we tested the performance of the trained model on different
types of instances, exploring its adaptability to unseen in-
stances, thereby validating the generalization and stability of
the model.

Generation of Simulated Historical Routes
Training deep reinforcement learning models typically re-
quires large amounts of data, but acquiring real historical
routes data is expensive and difficult to cover all possible
scenarios. To address this issue, we adopted a method for
simulating historical route generation by randomly sampling
CVRP instances and perturbing the routes, thereby construct-
ing a diverse and representative training dataset.

Specifically, we selected a benchmark instance containing
73 customer nodes (excluding the depot) from CVRPLIB as
the initial dataset. From this instance, we randomly sampled
sub-instances containing 20 customer nodes and randomly as-
signed demand values to each customer node. Each train-
ing batch consisted of 50 sub-instances, ensuring the diver-
sity of the data. For each sub-instance, we first calculated

1https://github.com/pandarking/Preference-based-DRL
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Figure 2: Route Comparison. From left to right: historical route, route generated by POMO+PO, route generated by the neural network
(NN) [Mandi et al., 2021], and route generated by the Markov method [Canoy and Guns, 2019].

Method AD AD AD%
mean min mean

Neural Net(NN) 8.81 2 36.9
NN(without week) 8.82 2 37.0
NN(LSTM) 12.80 2 53.6
NN(different layers for stops) 9.51 2 39.8
NN(without past) 13.39 2 56.1
NN(without dist) 8.71 2 36.5
NN(without Markov) 8.81 2 36.9
NN(without stop) 8.75 2 36.6
Markov 13.21 2 55.3
POMO 9.15 5 28.6
POMO+PO(ours) 3.15 0 12.5

Table 1: Experiment results on CVRP

its absolute distance matrix D = [dij ], consisting of pair-
wise distances between all available nodes. A random matrix
E = [eij ] was then introduced, with elements eij sampled
from a uniform distribution U(0.8, 1.2). By element-wise
multiplying the distance matrix D with E, we generated a
preference matrix P = D⊙E to simulate human preferences
in route selection.

After obtaining the preference matrix P , we used a heuris-
tic algorithm to solve an initial historical route for each sub-
instance. To further simulate the diversity of human route se-
lections in real-world scenarios, we introduced random per-
turbations to each initial route solution, thereby generating
additional historical routes. Specifically, each sub-instance
generated 30 historical routes, including the initial solution
and its 29 randomly perturbed versions. These perturbed
routes reflect possible changes in human preferences by ad-
justing the order of nodes and the structure of the route.

Through the generation process, we constructed a train-
ing dataset with diverse and dynamic preferences, ensuring
both the effectiveness of model training and a more realis-
tic representation of the operational characteristics of CVRP
instances.

Evaluation Metrics
To quantitatively assess the effectiveness of the proposed
method, we utilize the following evaluation metrics:

Method AD mean AD min AD% mean

POMO+PO β=0 7.96 2 31.3
POMO+PO β=0.1 6.78 2 26.7
POMO+PO β=0.9 5.77 1 22.9
POMO+PO β=1 3.15 0 12.5

Table 2: Experiment results on different β

Method AD mean AD min AD% mean

POMO-RL 7.54 2 29.8
POMO+PO 3.15 0 12.5

Table 3: Experiment results on different optimization objective

• AD mean: The average arc difference between gener-
ated and historical routes, reflecting overall alignment
with human preferences.

• AD min: The minimum arc difference observed, indi-
cating the model’s best-case performance in matching
historical routes.

• AD% mean: The normalized average arc difference
as a percentage of total arcs, enabling fair comparisons
across instances of varying sizes.

5.2 Comparison with Preference-Based Routing
Methods

Table 1 summarizes the performance of several algorithms
across key evaluation metrics, including average arc differ-
ence (AD mean), minimum arc difference (AD min), and the
average arc difference ratio (AD% mean). In this comparison,
we involve the current best preference-based learning method
for VRPs [Mandi et al., 2021], which includes different ar-
chitectural variations such as LSTM-based models and mod-
els trained without specific contextual features (e.g., weekday
or distance information), and models where each stop has a
different network architecture. We also compare our method
with the preference-based learning method [Canoy and Guns,
2019] as well as POMO [Kwon et al., 2020] which is a typical
DRL based method for VRPs. The results demonstrate that
our proposed method (POMO+PO) significantly outperforms
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Method AD mean AD min AD% mean Method AD mean AD min AD% mean

Neural Net(NN) 8.81 2 36.9 NN(without distance) 8.71 2 36.5
NN∗ 15.74 10 64.3 NN(without distance)∗ 16.01 12 65.4
NN(without weekday) 8.82 2 37.0 NN(without Markov) 8.81 2 36.9
NN(without weekday)∗ 15.90 11 64.9 NN(without Markov)∗ 15.85 10 64.8
NN(LSTM) 12.80 2 53.6 NN(without stop info) 8.75 2 36.6
NN(LSTM)∗ 17.18 12 70.2 NN(without stop info)∗ 15.96 10 65.2
NN(different layers for stops) 9.51 2 39.8 Markov 13.21 2 55.3
NN(different layers for stops)∗ 17.03 11 69.6 Markov∗ 17.54 13 71.6
NN(without past) 13.39 2 56.1 POMO+PO 3.15 0 12.51
NN(without past)∗ 17.34 12 70.8 POMO+PO∗ 6.68 1 26.5

Table 4: Generalization results

Method AD mean AD min

NN(without dist) 15.97 9
NN(without stop) 15.93 9
POMO+PO 8.82 4

Table 5: Generalization results with unseen 100-nodes instances

all baselines. Notably, POMO+PO achieves an AD min of
0, indicating its ability to perfectly align with historical route
for certain instance.

Figure 2 illustrates the comparison between the routes gen-
erated by different methods and the historical route, high-
lighting that our approach produces route most similar to the
historical route. These findings underline the effectiveness of
our reward function and preference optimization strategy in
generating solutions that better align with human preferences,
surpassing both the DRL baseline POMO and preference-
based learning methods.

5.3 Evaluation of Reward Function and Policy
Learning Objectives

The ablation study investigates the impact of the designed re-
ward function and optimization objectives on model perfor-
mance. As described in Eq. 2, to evaluate the effect of the pa-
rameter β, we set its values to 0, 0.1, 0.9, and 1 while keeping
the other configurations unchanged. The results are summa-
rized in Table 2. It is evident that as β decreases, the model’s
performance degrades. Specifically, when β = 0, where only
the traditional route distance is optimized, the performance
reaches its lowest point. This demonstrates that models solely
optimized for distance fail to effectively generate solutions
similar to historical paths.

Furthermore, Table 3 examines the impact of different op-
timization objectives on the performance of the policy net-
work. We compare two objectives: the traditional reinforce-
ment learning objective (POMO-RL) and an objective incor-
porating preference optimization (POMO+PO). The results
reveal that POMO+PO significantly outperforms POMO-RL.
This indicates that relying solely on traditional reinforcement
learning objectives is insufficient to fully capture human pref-
erences. By introducing preference optimization objectives,
POMO+PO markedly enhances the policy network’s ability
to learn human preferences, resulting in routes that better

align with them.

5.4 Generalization Analysis
To evaluate the generalizability of our proposed method, we
tested the trained model on previously unseen CVRPLIB in-
stances. As shown in Table 4, our method (POMO+PO)
maintained strong performance even on unseen instances,
consistently generating routes that closely resemble histori-
cal routes. In contrast, the methods proposed by Mandi et
al. [2021] and Canoy et al. [2019] experienced significant per-
formance degradation when applied to other instances, with
the average AD ratio of generated routes exceeding 64%. Ad-
ditionally, the methods tested on unseen instances are marked
with a ∗ in the table, while those on the original instances
are not. We also conducted additional experiments on larger-
scale CVRPLIB instances and compared our method against
previously well-performing models(Table 5). These results
demonstrate that our method, by incorporating preference-
based reward functions and optimization frameworks, ex-
hibits superior generalization capability in producing human-
preference-aligned solutions. It remains robust and adaptable
even in dynamic and diverse VRP scenarios.

6 Conclusion
This paper introduced a preference-based deep reinforcement
learning framework for solving VRPs, emphasizing align-
ment with human preferences derived from historical routes.
Unlike traditional methods focused solely on minimizing dis-
tance or time, our approach incorporates a novel reward func-
tion using arc difference and preference-based optimization
objective to guide the policy network. Through extensive
experiments, including ablation studies and generalization
tests, we demonstrated that our method outperforms exist-
ing preference-based routing methods. Our model excelled
in generating routes matching historical routes while main-
taining adaptability to unseen instances.

The proposed framework integrates human preferences to
enhance the practicality of routing solutions, offering a new
perspective for tackling complex VRPs. Future work will fo-
cus on refining the framework for higher performance and
exploring its application to broader optimization challenges,
such as time-dependent, large-scale VRPs and real-time dy-
namic scenarios, enhance its practical relevance in logistics
and transportation systems.
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