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Abstract
While single-concept customization has been stud-
ied in 3D, multi-concept customization remains
largely unexplored. To address this, we propose
MultiDreamer3D that can generate coherent multi-
concept 3D content in a divide-and-conquer man-
ner. First, we generate 3D bounding boxes using
an LLM-based layout controller. Next, a selective
point cloud generator creates coarse point clouds
for each concept. These point clouds are placed
in the 3D bounding boxes and initialized into 3D
Gaussian Splatting with concept labels, enabling
precise identification of concept attributions in 2D
projections. Finally, we refine 3D Gaussians via
concept-aware interval score matching, guided by
concept-aware diffusion. Our experimental results
show that MultiDreamer3D not only ensures ob-
ject presence and preserves the distinct identities of
each concept but also successfully handles complex
cases such as property change or interaction. To the
best of our knowledge, we are the first to address
the multi-concept customization in 3D.

1 Introduction
Recent advancements in text-to-3D methods [Poole et al.,
2022; Liang et al., 2023] have significantly progressed the
generation of 3D models [Mildenhall et al., 2021; Kerbl et
al., 2023] from text prompts. The main idea is to optimize
3D models by distilling the score of text-to-image diffusion
model [Rombach et al., 2022; Gal et al., 2022] using score
distillation sampling (SDS). The SDS enables the generation
of both general objects and personalized subjects or concepts,
such as “one’s dog” or “unique sunglasses” with personalized
diffusion models [Ruiz et al., 2023; Gal et al., 2022]. How-
ever, the existing literature predominantly focuses on cus-
tomizing a single-concept 3D model, thereby constraining its
application in more diverse and complex scenarios.

In this study, we tackle multi-concept text-to-3D cus-
tomization, aiming to produce a 3D model that includes
multiple user-defined concepts. For example, consider the

† Corresponding authors.

<C2>

<C1><C0>
“A   <C0>   cat is above the   <C1>   car”

“A   <C2>   dog and   <C3>   robot toy”

(a) Object missing

(b) Concept mixing

<C3>

Figure 1: Challenges in multi-concept 3D customization. The 3D
content is produced using multi-concept 2D diffusion models using
the SDS-based method [Liang et al., 2023]. (a) The “C1 car” is
missing which leads to poor layout context. (b) The dog’s head is
combined with a robot toy’s body, which we call a concept-mixing
problem.

3D model generated from the text prompt: “A C0 dog is
wearing C1 sunglasses.” where C0 and C1 represent user-
specific concepts such as their “one’s dog” or “unique sun-
glasses”. Achieving high-quality multi-concept 3D models
entails overcoming two main challenges: object missing and
concept-mixing problems, as illustrated in Figure 1. First,
current text-to-3D methods [Poole et al., 2022; Liang et al.,
2023] struggle to generate 3D content that accurately repre-
sents multiple objects described in a given textual descrip-
tion. This issue arises primarily due to the limitations inher-
ent in text-to-image diffusion models [Rombach et al., 2022;
Saharia et al., 2022], which not only face challenges in gen-
erating multiple objects in 2D but also often suffer from poor
layout context, leading to missing or incorrectly positioned
objects. Second, naively adapting multi-concept 2D diffusion
model [McMahan et al., 2017; Gu et al., 2024] to optimize 3D
model using SDS struggles with the concept-mixing problem,
where distinct concept identities are blended or lost. This is-
sue arises from two main factors: the inherent instability of
SDS, and the difficulty in managing multiple concepts within
a single 2D diffusion model. When these two components are
combined, the resulting 3D model often fails to accurately
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Input concept

“A   <C0>   dog and   <C1>   penguin toy”

Multiple subjects

<C5> 

<C6>

<C1><C0>

<C3><C2>

“A <C5>   dog is wearing   <C6>   sunglasses” 

Interaction

“A   <C2> cat sitting and   <C3>   dog running”

Property change

“A  <C2> cat and  <C3>   dog and  <C4> robot_toy”

Multiple subjects	≥ 3

<C4>

Figure 2: Multi-concept 3D customization with MultiDreamer3D. MultiDreamer3D can generate 3D content incorporating multiple input
concepts in three cases: 1) multiple subjects, 2) property change, and 3) interaction.

preserve and distinguish between the multiple user-defined
concepts.

To address these challenges, we introduce Mul-
tiDreamer3D, a method designed to preserve the individual
identities of each concept within a coherent layout context
in 3D. The MultiDreamer3D operates in two main stages,
utilizing two primary modules: the 3D Layout Generator
(LG) and Concept-aware Diffusion Guidance (CDG). In the
first stage, LG addresses the object missing by incorporating
a large language model (LLM) [Achiam et al., 2023] based
3D layout controller and a selective concept point cloud
generator. Specifically, we obtain 3D bounding boxes by
querying text prompts to the 3D layout controller, ensur-
ing the presence of objects and coherent layout context.
Subsequently, the selective concept point cloud generator
generates individual coarse point clouds for each concept,
referred to as concept point clouds, and positions them
within the 3D bounding boxes. In the second stage, CDG
addresses the concept-mixing problem by updating the 3D
Gaussian with the concept-aware diffusion score. Specifi-
cally, 3D Gaussians are initialized with the concept point
clouds and explicit concept labels, and updated with the
proposed concept-aware interval score matching (CISM)
loss. This approach ensures that each concept maintains its
distinct identity without blending or loss during 3D model
optimization. As illustrated in Figure 2, our method can
generate 3D models with multiple concepts. To demonstrate
the effectiveness of MultiDreamer3D, we construct and
evaluate three cases of multi-concept 3D content generation:
1) multiple subjects, 2) property change, and 3) interaction.
These cases illustrate how MultiDreamer3D effectively
maintains the distinct identities of multiple concepts while
ensuring object presence and a coherent layout, even in
cases involving complex interactions within a 3D space. Our
contributions can be summarized as follows:

• To the best of our knowledge, we are the first to address
multi-concept 3D customization.

• We introduce a 3D Layout Generator (LG) that generates
3D bounding boxes and individual concept point clouds,
addressing the object-missing problem.

• We propose Concept-aware Diffusion Guidance (CDG)
that updates 3D Gaussians based on concept-aware dif-
fusion score, addressing the concept-mixing problem.

• Our experimental results demonstrate the effectiveness
of our method, showcasing its ability to maintain distinct
concept identities of multiple concepts within a coherent
layout context in 3D.

2 Background
2.1 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) [Kerbl et al., 2023] has
emerged as a leading explicit 3D representation for novel
view synthesis. 3DGS is composed of updatable anisotropic
3D Gaussians denoted as Θ = {µ,Σ, σ, c}. Here, µ ∈ R3

represents the position, Σ ∈ R3×3 is the 3D covariance,
σ ∈ R denotes the opacity, and c ∈ Rs represents the color,
where s indicates the degree of spherical harmonics (SH).
The 3D Gaussian is formulated as follows:

G(x) = e−
1
2x

TΣ−1x. (1)

3DGS uses a neural point-based rendering technique for
pixel color computation, which involves blending N -ordered
overlapping points:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (2)

Here, ci refers to the per-point color, and αi is computed
based on the per-point opacity σi and the 2D projection of
the 3D covariance Σ.
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(b) Concept-aware Diffusion Guidance (CDG)

Concept-aware
DDIM inversion

(a) 3D Layout Generator (LG)

∇!ℒ"#$%

Rendered image

Diffusion 
model

Backprop

3D layout “A robot toy is riding  motorbike”

“A robot toy”   ,  “A motorbike” Concept 
point cloud

“motorbike”

“A   <C1>   motorbike”
Prompt

𝜓&"'(
𝜓&")(

LoRA

Concept informationUser input

“A   <C0>   robot toy is riding   <C1> motorbike”
Regional
concept
attention

3DGS Θ 

Initialize 
3DGS

Selective
concept point 

cloud
generator “robot toy”

Rendered concept mask

𝑥*

𝑥+

<C0> <C1>

Target concept

“A   <C0>   robot toy  
      is riding motorbike” 

3D layout 
controller

Figure 3: Overall pipeline of MultiDreamer3D. (a) The 3D layout controller produces 3D bounding boxes given text descriptions. Subse-
quently, the selective concept point cloud generator outputs coarse concept point clouds and positions within the 3D bounding boxes. (b)
The images and concept masks are rendered from 3D Gaussian Splatting (3DGS) Θ and updated with concept-aware interval score matching
(CISM) loss, facilitated by regional concept attention (RCA).

2.2 Lifting 2D Diffusion Model to 3D
Score distillation sampling (SDS) [Poole et al., 2022] has be-
come a promising method for text-to-3D generation. This
technique cleverly adapts the text-to-image diffusion model
to optimize 3D models, such as NeRF [Mildenhall et al.,
2021] or 3DGS [Kerbl et al., 2023]. Recently, Lucid-
Dreamer [Liang et al., 2023] proposed Interval Score Match-
ing (ISM), which aims to improve 3D generation quality by
updating Θ with multi-step noise prediction. The process be-
gins with the prediction of noise ϵϕ(xs, ∅, s) at the diffusion
timestep s = t − δT . Here, δT indicates the step size of
the Denoising Diffusion Implicit Model (DDIM) [Song et al.,
2020] inversion, and ∅ denotes null text prompt. Following
this, xt is derived through the DDIM inversion process. The
gradient of ISM is calculated as follows:

∇ΘLISM (ϕ, x) = Et,ϵ

[
w(t)(ϵϕ(xt; y, t)− ϵϕ(xs; ∅, s)︸ ︷︷ ︸

ISM update direction

) ∂x
∂Θ

]
. (3)

These methods enable the effective transfer of textual descrip-
tions into precise 3D geometries without 3D supervision.

3 Method
The overall pipeline of our method is illustrated in Figure 3.
Our method consists of two stages, utilizing two primary
modules: 1) 3D Layout Generator (LG) and 2) Concept-
aware Diffusion Guidance (CDG). In the first stage, the LG
generates 3D bounding boxes with a 3D layout controller
to specify individual concept objects, considering the layout
context. Subsequently, the LG generates and selects point
clouds for each concept, termed concept point clouds, with
a selective concept point cloud generator that acquires their

coarse geometry. These concept point clouds are then po-
sitioned within their respective 3D bounding boxes. In the
second stage, we initialize a 3DGS with the concept point
clouds and assign concept labels to identify the concepts of
each 3D Gaussian. The 3D Gaussians are then updated us-
ing CDG, specifically through a concept-aware interval score
matching (CISM) loss that incorporates regional concept at-
tention (RCA), designed to preserve the distinct identities of
the concepts throughout the process.

3.1 3D Layout Generator
3D Layout Controller. To produce multi-concept 3D content
of high quality, it is essential to ensure both the presence of
objects and layout context based on textual descriptions. To
address this, we propose a 3D layout controller that leverages
Large Language Models [Achiam et al., 2023], which gener-
ates 3D bounding boxes for individual concepts based on text
prompts. We create examples for three cases (multiple sub-
jects, property change, and interaction) to serve as samples
for in-context learning. The 3D layout controller then uses
in-context examples with instruction to output the parameter
of 3D bounding boxes Bboxi = [Xi, Yi, Zi,Wi, Di, Hi] for
each concept in global coordinate system. Then, we derive
scale si and translation ti to position i-th concept objects into
3D bounding boxes:

si = min(
Wi

W
,
Hi

H
), ti =

[
Xi +

Wi

2
, Yi +

Di

2
, Zi +

Hi

2

]
. (4)

W andH denote the maximum width and height, (Xi, Yi, Zi)
are the coordinates of the lowest left corner, and (Wi, Di,Hi)
represent the width, depth, and height of the bounding box for
the i-th concept.
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Selective Concept Point Cloud Generator. The goal of
concept point cloud generation is to acquire the coarse ge-
ometry of individual concepts. To achieve this, we employ
Shap-E [Jun and Nichol, 2023] to generate initial concept
point clouds. These prompts can include either simple con-
cept class tokens or brief descriptions, such as “a dog” or “a
jumping dog”. Shap-E then generates implicit neural repre-
sentation (INR) weights corresponding to these text prompts.
Following this, vertices of the voxel grid are queried through
the INR to obtain colors and signed distance function values,
which are subsequently used to construct the concept point
clouds. In our method, we manually input text prompt to
Shap-E for each concept point clouds.

However, Shap-E often generates point clouds with dis-
torted geometry. To mitigate this issue, we introduce a
point cloud selector that utilizes a vision language model
(VLM) [Achiam et al., 2023] to ensure reliable 3D geometry.
Our selection module begins by generating multiple candi-
date point clouds from a single text prompt using Shap-E. The
point cloud selector then evaluates these candidates by ana-
lyzing renderings from fixed viewpoints, selecting the point
cloud that best matches the text prompt. The selected point
cloud pcdi is then positioned within the 3D bounding box in
global coordinate system:

pcdglobal = si × pcdi + ti. (5)
Here, si and ti denote scale and translation of i-th concept.

3.2 Concept-aware Diffusion Guidance
3DGS Initialization with Concept Labeling. After concept
point clouds are generated and positioned, they are initial-
ized into 3D Gaussians. However, initializing 3D Gaussian
without embedding concept information cannot give precise
feedback for individual concepts. To address this, we propose
concept labeling by incorporating a k-class one-hot encoded
concept label m ∈ Rk into each 3D Gaussian, represented
as Θi = {µi,Σi, σi, ci,mi}. This setup enables the render-
ing of a 2D binary concept mask M ∈ Rk×h×w, facilitat-
ing precise concept-specific feedback for each Gaussian. The
rendering process of concept rendering M follows:

M =
∑
i∈N

miαi

i−1∏
j=1

(1− αj). (6)

Here, m denotes the concept label. The concept rendering
Mk ∈ R1×h×w represents the contribution of the k-th con-
cept to the projected 2D pixel within the range [0, 1]. How-
ever, this includes low-concept contributions that are noisy.
To minimize such noisy contributions, we apply a threshold
factor τ to the concept rendering M , producing a binary con-
cept mask M ∈ Rk×h×w.

Regional Concept Attention. Updating the concept 3D
Gaussians with concept-specific feedback is essential to pre-
vent concept mixing. To achieve this, we introduce the Re-
gional Concept Attention (RCA) module as shown in Fig-
ure 4. The RCA modulates the cross-attention map in a text-
to-image diffusion model [Rombach et al., 2022] by incor-
porating individual concept information. This enables uni-
fied noise prediction while preserving the distinct identities
of each concept. The noise prediction process is as follows.

First, we observe that text prompts containing multiple
concepts often lead to concept-mixing problems, as illus-
trated in Figure 1 (b). To address this issue, we decompose
the text prompts into individual concept prompts. For exam-
ple, when generating a 3D model from a text prompt “A C0
robot toy is riding C1 motorbike”, we break it down into the
following concept prompts:

p0 = “A C0 robot toy is riding motorbike”,
p1 = “A C1 motorbike”,
pbg = “A robot toy is riding motorbike”.

The input text prompts can either be decomposed manu-
ally by the user or automatically using LLM [Achiam et al.,
2023]. (For more details, see Suppl. 2.5.)
Next, we modulate the cross-attention layer with the RCA.
The RCA inputs concept masks M, concept LoRAs ψ,
and concept prompts p and outputs an aggregated concept-
specific attention feature. The concept-specific query vector
is computed:

Qi =W q · (Mi · F ), Qbg =W q · (Mbg · F ). (7)

Here, W q denotes the query projection matrix and F denotes
the input image feature. Mi denotes the i-th concept mask,
while Mbg = (M0 ∪ M1... ∪ Mk)

c represents the back-
ground mask. This process ensures isolated concept query
vectors are used for attention computation. Subsequently,
concept-specific keys and values are computed:

Ki = (W k + λ · ψk
i ) · pi, Vi = (W v + λ · ψv

i ) · pi (8)

Kbg =W k · pbg, Vbg =W v · pbg. (9)

Here, W k andW v denote the key and value projection matri-
ces. The ψi and pi represent the i-th concept LoRA and the
concept prompt, while λ is the LoRA scale. This ensures that
individual concept information is encoded into keys and val-
ues. Then, concept-specific attention features are computed:

Ai = Softmax
(
QiK

T
i√
d

)
· Vi. (10)

Here, Ai denotes the concept-specific attention feature. Fi-
nally, we aggregate concept-specific attention features:

Â(Ψ, P,M) = Mbg ·Abg +
k∑

i=1

Mi ·Ai. (11)

Here, Â represents the aggregated attention feature, and Ψ,
P denote the set of concept LoRAs and text prompts. The k
denotes the number of concepts. The noise prediction with
our RCA module is represented as ϵϕ(xt, t, Â(Ψ, P,M)).

Concept-aware Interval Score Matching. We introduce
concept-aware interval score matching (CISM), a method
designed to optimize each concept’s 3D Gaussians using
concept-aware diffusion scores. The process begins by ren-
dering a novel view image x and a concept mask M from the
3D Gaussian Θ. Let xt and xs denote latents at timesteps t
and s, where s = t − δT , that are derived through DDIM
inversion [Song et al., 2020] with null text prompts (i.e. “
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Figure 4: The Regional Concept Attention (RCA) modulates the cross-attention layer in the diffusion model. Individual concept query vectors
are computed with image features and each concept masks. Subsequently, key and value vectors for each concept are derived using concept-
specific LoRAs and prompts. Then concept-specific attention features are computed with each query, key, and value. The final cross-attention
features are aggregated with masked concept-specific attention features.

”). However, DDIM inversion using a single weight dif-
fusion model [Rombach et al., 2022] lacks concept-specific
knowledge, leading to suboptimal inversion results. To over-
come this limitation, we introduce concept-aware DDIM in-
version, which adapts the RCA module during the inversion
process to incorporate multi-concept knowledge. The pro-
posed concept-aware DDIM inversion is formulated as:

xt =
√
ᾱtx̂

s
0 +

√
1− ᾱtϵϕ(xs, s, Â(Ψ, ∅,M)). (12)

Here, x̂s
0 = 1√

ᾱs
xs −

√
1−ᾱs√
ᾱs

ϵϕ(xs, s, Â(Ψ, ∅,M)), and ∅
and Â(·) denote null text prompts and aggregated concept
features using the RCA module, respectively. Technically, the
null text prompt is tokenized into a <BOS> token followed
by a sequence of <EOS> tokens of maximum token length,
which is encoded into a null text embedding via a text en-
coder. The null text embedding is then processed by the RCA
module to produce an unconditional part of the concept-aware
diffusion score. This diffusion score is subsequently used to
predict xs → xt with Eq. (12). The CISM loss is then com-
puted using the following equation:

∇ΘLCISM = Et,ϵ[w(t)(ϵϕ(xt; t, Â(Ψ, P,M))

− ϵϕ(xs; s, Â(Ψ, ∅,M)))
∂x

∂Θ
].

(13)

Here, Ψ and M denote concept LoRA and masks, while P
and ∅ denote the set of concept prompts and null prompts,
respectively. Using the CISM loss, we can effectively update
the 3D Gaussian, ensuring individual concept identities.

4 Experiments
4.1 Datasets
We selectively choose real concept image data from the Cus-
tom Diffusion [Kumari et al., 2023] and DreamBooth [Ruiz
et al., 2023] datasets, which contain 13 unique objects (three
wearables and 10 unique objects). This selection is made to
explore three specific cases: 1) multiple subjects, 2) prop-
erty change, and 3) interaction. First, the multiple subjects
case involves generating 3D models that incorporate several
distinct objects simultaneously. Second, the property change
case focuses on subjects with altered attributes, such as differ-
ent poses (e.g., “jumping” or “sitting”). Third, the interaction
case examines where multiple subjects interact in complex
ways, such as one subject “wearing” another. These cases
evaluate MultiDreamer3D’s ability to both preserve concept
identity and maintain the presence of objects while handling
complex cases such as property changes or interactions. To
comprehensively address these cases, we craft and utilize 47
text prompts specifically designed to cover these three cases.

4.2 Baseline Methods
In the absence of multi-concept customization method in 3D,
we devise a series of baseline methods using existing 2D ap-
proaches. The most intuitive and straightforward baseline in-
volves adapting multi-concept 2D diffusion model to train a
single 3D model with interval score matching (ISM) [Liang
et al., 2023]. Here, we establish two baselines: 3DGS + ISM
with FedAVG [McMahan et al., 2017] and Mix-of-Show [Gu
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“A   dog   wearing   headphone”

3DGS + ISM  (FedAVG) 3DGS + ISM (Mix-of-Show) MultiDreamer3D (ours)

“A   cat   is sitting and   dog   is running”

Multiple subjects

cat dog

Property change

headphonedog

Interaction

“A   dog   and    robot toy”

robot toydog

Multiple subjects ≥ 3

cat dog

robot_toy “A cat and dog and robot_toy. ”

Figure 5: Qualitative results. We compare our method with other baselines in three cases, multiple subjects, property change, and interaction.
The red dashed line indicates the objects mentioned in the text prompt that are missing.

Method Text-align ↑ Image-align ↑

3DGS + ISM with Mix-of-Show [Gu et al., 2024] 0.2024 N/A
3DGS + ISM with FedAVG [McMahan et al., 2017] 0.2396 N/A
LG + ISM with Mix-of-Show [Gu et al., 2024] 0.2199 0.6081
LG + ISM with FedAVG [McMahan et al., 2017] 0.2578 0.6338
MultiDreamer3D (Ours) 0.2732 0.6582

Table 1: Quantitative results. We assess the text-concept alignment with 3D models using CLIP scores. Here, ours is LG + CISM.

et al., 2024]. For the 3DGS, we initialize the 3D Gaus-
sian using a randomly generated sphere. In the FedAVG
approach, multiple single-concept DB-LoRA weights [Ruiz
et al., 2023] are merged into a single LoRA weight using a
weighted sum. Similarly, in the Mix-of-Show method, mul-

tiple ED-LoRA weights [Gu et al., 2024] are merged using a
gradient fusion technique. Both the single-concept DB-LoRA
and ED-LoRA models are trained on 13 unique objects before
applying these techniques for multi-concept training.
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Method Text-align ↑ Image-align ↑
3DGS + ISM with Mix-of-Show 1.62 1.91
3DGS + ISM with FedAVG 2.17 2.18
MultiDreamer3D (Ours) 4.72 4.66

Table 2: User study. Participants rate alignment on a 5-point Likert
scale (1 indicating strong disagreement, 5 indicating strong agree-
ment). Here, ours is LG + CISM.

cat

dog (a) (b) (c) (d)
“A cat with red hat and  dog  with blue tie”

Figure 6: Ablation study. (a) generated with baseline (3DGS + Fe-
dAVG [McMahan et al., 2017]), (b) with proposed 3D Layout Con-
troller + CISM, (c) combined with Shap-E [Jun and Nichol, 2023],
(d) combined with pointcloud selection.

Components Text-align ↑ Image-align ↑
Baseline (3DGS + FedAVG) 0.2396 N/A
(+) 3D Layout Controller + CISM 0.2637 0.6011
(+) Shape-E 0.2720 0.6487
(+) Pointcloud selection (ours) 0.2732 0.6582

Table 3: Ablation study. For the ablation study, we used 3DGS +
FedAVG [McMahan et al., 2017] for the baseline.

4.3 Evaluation Metrics
We evaluate both text-3D and image-3D alignments with
CLIP [Radford et al., 2021]. For text-3D alignment, we
render 30 evenly spaced views within an azimuth range of
[−45, 45] degrees to avoid occlusion and compute the average
CLIP score between the text prompt and these renders. For
image-3D alignment, we decompose each concept 3D Gaus-
sians with our concept labeling, rendering each isolated con-
cept from 120 views spanning [−180, 180] degrees, which are
compared to the corresponding real concept images.

4.4 Qualitative Results
In Figure 5, we compare our method with baselines. Both
3DGS + ISM with FedAVG and 3DGS + ISM with Mix-of-
Show struggle to preserve individual concept identities, lead-
ing to concept mixing and/or object missing. In contrast, our
method consistently maintains object presence and distinct
concept identities. In multiple subjects, our method preserves
concept identities and aligns with text prompts, avoiding the
concept mixing seen in other methods. In property changes,
our approach maintains concept integrity and enables pose
variations, while others often miss objects or cannot achieve
pose variations. In interaction, our method performs compa-
rably to 3DGS + ISM (FedAVG) and better than 3DGS + ISM
(Mix-of-Show), effectively capturing complex interactions.

4.5 Quantitative Results

In Table 1, we evaluate the image-3D and text-3D align-
ments of generated outputs. Our method achieves the high-
est text and image alignment scores, which indicates that our
method faithfully reflects text descriptions into multi-concept
3D content while preserving the identities of individual con-
cepts. For image alignment, since other baselines are initial-
ized with a random sphere, isolating the concept 3D Gaus-
sians for these baselines is not feasible. For fair comparison,
we utilize our 3D Layout Generator (LG) module to initialize
the 3DGS (third and fourth rows of Table 1). This compar-
ison demonstrates that the RCA, followed by self-attention
layers in diffusion model, effectively preserves concept iden-
tities by maintaining long-range dependencies and ensuring
scene coherence across the entire image.

4.6 User Study

To demonstrate the effectiveness of our method, we con-
duct a user study with 32 participants. The study compares
10 3D samples, where participants evaluate three methods
based on two criteria: 1) text alignment, assessing how well
the 3D model reflects the text prompts, and 2) image align-
ment, measuring how accurately the 3D model represents real
concept images. Participants rate each model on a 5-point
Likert scale [Joshi et al., 2015], where 1 signifies “strongly
disagree” and 5 signifies “strongly agree”. The results are
presented in Table 2. Our method achieves the highest hu-
man preference for both text and image alignment across all
baselines, demonstrating its ability to accurately reflect text
prompts and real concept images.

4.7 Ablation Study

In Figure 6 and Table 3, we demonstrate the effectiveness of
the components in our method. Figure 6 (a) shows the gener-
ation of the baseline model (3DGS + FedAVG), which suffers
from object missing. Figure 6 (b) presents the generation us-
ing our 3D Layout Controller with CISM, which successfully
maintains the presence of individual objects. Figure 6 (c)
showcases improved geometry in the generated outputs but
still suffer from distorted geometry. Figure 6 (d) highlights
further enhanced results enabled by the selection module.

5 Conclusion

In this paper, we introduced MultiDreamer3D, a method for
multi-concept 3D customization that effectively addresses the
challenges of object missing and concept mixing. Our 3D
Layout Generator facilitates the presence of concept objects
and coherent layout context through the use of a 3D layout
controller and selective concept point cloud generator. By
initializing 3D Gaussian Splatting with explicit concept la-
beling, we enable clear concept identification. The subse-
quent update of the 3D Gaussians using Concept-aware Dif-
fusion Guidance ensures the preservation of distinct identities
of each concept. Our results showed that MultiDreamer3D is
effective across various baselines.
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