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Abstract

Tabular data is widely adopted in various machine
learning tasks. Current tabular data learning mainly
focuses on closed environments, while in real-
world applications, open environments are often
encountered, where distribution shifts and feature
decrements occur, leading to severe performance
degradation. Previous studies have primarily fo-
cused on addressing distribution shifts, while fea-
ture decrements, a unique challenge in tabular data
learning, have received relatively little attention. In
this paper, we present the first comprehensive study
on the problem of Fully Test-Time Adaptation for
Feature Decrement in Tabular Data. Through
empirical analysis, we identify the suboptimality
of existing missing-feature imputation methods and
the limited applicability of missing-feature adap-
tation approaches. To address these challenges,
we propose a novel method, LLM-IMPUTE, which
leverages Large Language Models (LLMs) to im-
pute missing features without relying on train-
ing data. Furthermore, we introduce Augmented-
Training LLM (ATLLM), a method designed to
enhance the robustness of feature decrements by
simulating feature-decrement scenarios during the
training phase to address tasks that can not be im-
puted by LLM-IMPUTE. Extensive experimental
results demonstrate that our proposal significantly
improves both performance and robustness in miss-
ing feature imputation and adaptation scenarios.

1 Introduction

Tabular data [Altman and Krzywinski, 2017], a highly
structured data format, organizes information in rows and
columns, where each row represents an independent sample
or instance, and each column corresponds to a specific feature
or attribute [Sahakyan ef al., 2021]. Tabular data is exten-
sively utilized in real-world applications. For instance, tabu-
lar data supports financial tasks such as credit scoring [West,
2000] and stock market prediction [Zhu ef al., 2021]. Tabu-
lar data also facilitates medical applications including disease
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diagnosis [ Y1ldiz and Kalayci, 2024] drug development [Mei-
jerink et al., 2020]. To fully leverage its potential, machine
learning research has designed various models tailored to tab-
ular data, ranging from traditional tree-based models (e.g.,
CatBoost [Prokhorenkova et al., 2018] and XGBoost [Chen
and Guestrin, 2016]) to emerging deep-learning models (e.g.,
SwitchTab [Wu et al., 2024] and TabPEN [Hollmann et al.,
2025]). These models have demonstrated exceptional perfor-
mance across diverse tabular tasks.

Most existing tabular machine learning models are trained
and evaluated in closed environments where data distribution
and feature spaces between training and testing phases are
consistent. However, real-world applications of tabular data
often occur in open environments [Zhou, 2022], where dis-
tribution shifts and feature decrement between training and
testing phases are prevalent [Guo et al., 2025]. For exam-
ple, in natural disaster prediction, training data may origi-
nate from a specific region, while the testing phase involves
data from different regions. Similarly, in recommendation
systems, user interests evolve dynamically over time, neces-
sitating that models dynamically adjust their recommenda-
tion strategies to adapt to different data distributions. These
challenges in open environments highlight the limitations of
models developed for closed environments, necessitating the
development of more robust and adaptable tabular models.

A prominent research direction addressing challenges in
open-environment is fully test-time adaptation (FTTA). FTTA
aims to enhance the performance of pre-trained models dur-
ing the fully test-time phase, where training data is unavail-
able. Recent research has proposed various FTTA algorithms.
For example, Tent [Wang et al., 2021] adapts models by up-
dating batch normalization parameters. FTAT [Zhou et al.,
2025] introduces a confident distribution optimizer, a local
consistency weighter, and a dynamic model ensembler to
optimize the adaptation process. However, these FTTA al-
gorithms primarily focus on distribution shifts [Shao et al.,
2024], assuming consistent feature space between training
and testing phases and fail to address feature decrement in-
herent to tabular data, which restricts their effectiveness in
open environments where feature decrements occur.

Feature decrement refers to the reduction in feature dimen-
sions during the testing phase compared to those available in
the training data. For instance, in weather prediction systems,
certain primary sensors may cease transmitting data without
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replacement by new sensors, resulting in a degradation of
features. Current methods for addressing feature decrements
can be categorized into two types: missing-feature imputa-
tion and missing-feature adaptation. Missing-feature imputa-
tion aims to impute missing feature values to maintain consis-
tent input dimensions, while missing-feature adaptation en-
ables themselves to dynamically adjust to feature-decrement
scenarios. However, the majority of missing-feature impu-
tation methods depend on training data to impute, rendering
them unsuitable for FTTA scenarios. Furthermore, existing
missing-feature adaptation approaches often face significant
challenges in achieving effective adaptation to FTTA scenar-
ios. This indicates significant limitations of both approaches
when handling feature decrements in FTTA scenarios.

It is evident that the existing FTTA algorithms, primarily
designed for distribution shifts, cannot be applied in feature
decrements, and the feature decrement methods cannot be ap-
plied in FTTA scenarios. Hence, it is urgent to research FTTA
in feature-decrement scenarios to propose more robust and
adaptive solutions. To this end, this paper conducts a system-
atic investigation into FTTA for feature decrement in tabular
data for the first time.

In this paper, we introduce the problem of Fully Test-Time
Adaptation for Feature Decrement in Tabular Data and
conduct a systematic empirical investigation. First, we define
the problem of fully test-time feature decrements and evalu-
ate existing methods in fully test-time feature-decrement sce-
narios. We compare missing-feature imputation methods,
finding no significant performance improvement compared
with random-value imputation, indicating that imputed val-
ues from missing-feature imputation methods are not optimal.
We also observe that missing-feature adaptation approaches
exhibit poor robustness in fully test-time feature-decrement
scenarios, with performance significantly degrading as the
degree of feature decrement increases. To address the sub-
optimality of existing missing-feature imputation methods,
we propose LLM-IMPUTE, a method leveraging LLMs to
generate imputed values without relying on training data. To
tackle the limited applicability of missing-feature adaptation
approaches, we introduce ATLLM, a model specifically de-
signed for feature-decrement scenarios. ATLLM enhances
robustness through an augmented-training module tailored to
feature-decrement scenarios. LLM-IMPUTE and ATLLM
form a comprehensive framework, significantly improving
FTTA algorithms’ performance and robustness in feature-
decrement scenarios.

Our contributions are summarized as follows:

* Problem. We find that current FTTA algorithms are tai-
lored to distribution shifts and inapplicable in feature
decrements, while current methods designed for feature
decrements remain unevaluated in fully test time.

¢ Analysis. We conduct extensive empirical analysis and
identify the suboptimality of missing-feature imputation
methods and the limited applicability of missing-feature
adaptation approaches.

e Method. We propose LLM-IMPUTE, by utilizing
LLMs to impute missing features without training data,
and introduce ATLLM to enhance robustness of feature

decrements by simulating feature-decrement scenarios.

» Evaluation. Comprehensive experiments on 9 datasets
demonstrate that proposed FTTA methods exhibit sig-
nificant improvements in performance and robustness in
feature decrements over 11 comparison models.

2 Related Work

2.1 Fully Test Time

Fully test time is first introduced in Tent [Wang et al., 2021],
which aims to enhance the performance of pre-trained mod-
els when training data is unavailable during the test phase.
Various FTTA algorithms have been proposed. For instance,
Tent [Wang er al., 2021] achieves adaptation by updating the
batch normalization parameters of the model. EATA [Niu et
al., 2022] further enhances this approach by incorporating
active sample selection and weighting strategies to improve
adaptation efficiency. FTAT [Zhou er al., 2025] introduces a
confident distribution optimizer, a local consistency weighter,
and a dynamic model ensembler to refine the adaptation pro-
cess. However, current FTTA algorithms predominantly ad-
dresses distribution-shift scenarios and overlooks challenges
posed by feature decrements. To address this gap, we focus
on the problem of FTTA for feature decrement in tabular data.
To the best of our knowledge, our work is the first to system-
atically define and analyze this problem.

2.2 Tabular Machine Learning

Tabular data refers to structured and heterogeneous data,
which is widely utilized in domains such as medical diag-
nostics, financial analytics, and social sciences [Borisov ef
al., 2022; Kadra et al., 2021; Shwartz-Ziv and Armon, 2022].
Current models designed for tabular data can be broadly cat-
egorized into two main types: tree-based models and deep-
learning models. Tree-based models excel at handling irregu-
lar patterns and non-informative features within the objective
function, offering robust performance in scenarios where data
lacks rotational invariance [Grinsztajn et al., 2022]. While
with the rapid advancement of deep learning, numerous deep-
learning-based models tailored for tabular data have emerged,
including SwitchTab [Wu et al., 2024] and TabPFN [Holl-
mann et al., 2025]. Although in closed environments both
types achieve excellent performance [Jia et al., 2024], they
have not been fully evaluated in feature-decrement scenarios.

2.3 Feature Engineering on LLMs

Recent studies have explored feature engineering for tabular
datasets by leveraging LLMs. This field primarily focuses
on two aspects: feature generation and feature selection. (1)
Feature generation is a critical process in feature engineering
that aims to derive meaningful features from raw data with-
out manual intervention. For example, CAAFE [Hollmann
et al., 2024] introduces a context-aware feature engineering
framework that utilizes LLMs to generate semantically mean-
ingful features based on the task description. In contrast,
OcTree [Nam et al., 2024] eliminates the need for manually
defining the search space and leverages the optimization and
inference capabilities of LLMs to discover effective feature
generation rules. (2) Feature selection involves identifying
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Method Type

Specific Missing-feature Imputation Methods

Method Representative Models
Treat missing-feature values as feature minima CatBoost
Left subtree split XGBoost, LightGBM
Missing-feature values as a separate category TabTransformer

Common Missing-feature Imputation Methods

Impute missing features by 0

Most deep-learning models

Table 1: Representative missing-feature imputation methods.
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Figure 1: Methods performance comparison: missing-feature impu-
tation vs. random-value imputation.

and selecting the most relevant features from a dataset. With
extensive prior knowledge, LLMs can analyze and determine
which feature is crucial for a specific goal. For instance, LM-
Priors [Choi et al., 2022] prompts an LLM to evaluate each
candidate feature by predicting its relevance to the target vari-
able [Li et al., 2024]. However, there is a notable lack of
approaches that leverage LLMs to impute missing features.

3 Problem Formulation and Analysis

In this section, we first present a detailed definition and for-
malization of FTTA for feature decrement in tabular data.
Then, we provide a comprehensive analysis on this prob-
lem, exploring the impact of fully test-time feature-decrement
scenarios on missing-feature imputation and missing-feature
adaptation approaches.

3.1 Problem Formulation

Formally, the goal of tabular prediction tasks is to train a
machine-learning model f : X — ), where X is the input
space and ) is the output space. We define the set of features
in X as C.

Feature Decrement. We define the feature sets C for train-
ing and testing data as C'"%" and C'¢*!, respectively. If
there’s no feature decrement, the feature sets from training
and testing data are identical, i.e., C*"*" = C'st, While in
feature-decrement scenarios, some features in testing data are
missing, i.e., Ct¢5¢ ; Ctram,

Fully Test Time. Fully test time refers to the scenario
where, during the testing phase, only the trained model f and
testing data are available, while training data is inaccessible.

FTTA for Feature Decrement in Tabular Data. This pa-
per tackles the research problem of FTTA for feature decre-

ment in tabular data, focusing on how to improve the robust-
ness of tabular data learning algorithms for the feature decre-
ment problems, without relying on training data during the
test phase.

3.2 Analysis

We begin the study by analyzing the performance and ro-
bustness of existing missing-feature imputation methods and
missing-feature adaptation approaches in fully test-time fea-
ture decrement scenarios.

Missing-feature imputation methods aims to impute miss-
ing features to maintain consistency between dimensions of
training and test inputs. Current missing-feature imputation
methods adopt one of two primary approaches for imput-
ing missing features to ensure normal prediction function-
ality. The first approach involves utilizing the model’s self-
imputation module specifically designed to handle missing
features. For instance, CatBoost [Prokhorenkova et al., 2018]
processes missing values by treating them as the minimum
value of the feature. Similarly, other tree-based models, such
as XGBoost [Chizat er al., 2020] and LightGBM [Badirli et
al., 20201, typically follow a default strategy of assigning
missing values to the left child node. TabTransformer [Huang
et al., 2020], leveraging its deep learning architecture, im-
putes missing features by treating them as a distinct category.
The second approach involves imputing missing features with
a constant value, commonly zero. This approach is widely
used in various deep-learning models as a simple method for
imputing missing data. Table 1 provides a comparison of rep-
resentative models employing these two missing-feature im-
putation methods.

Missing-feature adaptation approaches can directly predict
test data with missing features, eliminating the need for im-
puting missing values, thereby avoiding potential biases or
errors introduced by imputation methods. These approaches
are designed to adapt to feature-decrement scenarios by lever-
aging the available features, without requiring additional pre-
processing steps such as imputing. By focusing on the in-
trinsic relationships within the observed data, missing-feature
adaptation approaches can maintain model performance even
when some features are absent.

Howeyver, these methods have not been evaluated in FTTA
scenarios. Therefore, we conduct empirical experiments to
assess their efficacy and identify two observations.

Observation 1: The suboptimality of missing-feature im-
putation methods. To address the question of whether
current missing-feature imputation methods are effective in
FTTA scenarios, we compare model performance under two
imputation strategies: missing-feature imputation methods
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Figure 2: Missing-feature adaptation approaches performance decreases from different degrees of feature decrement.

and random-value imputation. We choose four types of
missing-feature imputation methods to evaluate, including
left subtree split, feature minima, separate category and zero.
Random-value imputation means to impute missing values
with randomly generated numbers. Experimental results, de-
picted in Figure 1, reveal minimal performance differences
between these two strategies. It suggests that generated im-
putation values by missing-feature imputation methods do not
significantly alleviate adverse effects of feature decrement on
model performance. In essence, these imputed values are
nearly equivalent to random values, underscoring their sub-
optimality. It is evident that rather than being specifically
designed to address feature decrements, missing-feature im-
putation methods appear to function primarily as a technical
requirement to align training and testing inputs.

Observation 2: The limited applicability of missing-
feature adaptation approaches. Current missing-feature
adaptation approaches can be divided into tree-based models
and deep-learning models. We choose CatBoost, XGBoost
and 8 current deep-learning models, including SwitchTab,
TabPFN, etc. To evaluate whether these approaches can ef-
ficiently handle feature decrements in FTTA scenarios, we
compare their performance with and without feature decre-
ments. Experimental results, illustrated in Figure 2, can be
summarized as follows: (1) Model performance degradation
with feature decrement in FTTA scenarios. Scatter points be-
low the y = z line indicate a decrease in model performance
from without feature decrement to with feature decrement,
confirming that feature decrement negatively impacts model
performance in FTTA scenarios. (2) Correlation between
performance degradation and feature-decrement degree. The
color gradient of the scatter points, where brighter points rep-
resent larger deviations from the y = z line, reveals a strong
positive correlation between the degree of feature decrement
and the extent of performance degradation in FTTA scenar-
ios. Larger deviations are associated with more significant de-
clines in model performance. (3) Limited robustness of mod-

els. While TabTransformer (represented by star-shaped mark-
ers) shows relatively smaller deviations from the y = x line,
it is still not immune to feature decrement. This highlights
the limited applicability of existing missing-feature adapta-
tion approaches to adapt to FTTA scenarios.

These findings highlight limitations of existing missing-
feature imputation methods and adaptation approaches in
FTTA scenarios, and emphasize the need for solutions tai-
lored to fully test-time feature-decrement scenarios. There-
fore, we shift our focus to FTTA algorithms and explore
the potential of LLMs for addressing fully test-time feature
decrements. LLMs possess two key advantages as FTTA al-
gorithms for handling feature decrements:

* Diverse and Rich Prior Knowledge. Pre-trained on
large-scale datasets, LLMs possess a vast repository of
knowledge encompassing factual information, linguistic
conventions, cultural contexts, and common sense [Zhao
et al., 2023]. Additionally, LLMs demonstrate a nu-
anced understanding of complex concepts and terminol-
ogy across various domains [Chang et al., 2024]. This
extensive knowledge base enables LLMs to infer rele-
vant patterns and relationships from limited information,
effectively addressing feature-decrement challenges by
leveraging contextual understanding.

* Input without the Need for Imputing. Unlike mod-
els which require fixed-dimension input, LLMs accept
text inputs of variable lengths [Lamb er al., 2024]. This
enables LLMs to handle missing features during testing
without requiring imputations. For instance, if some fea-
tures are unavailable during testing, LLMs can still pro-
cess the input, albeit with shorter text sequences com-
pared to the training phase. This inherent flexibility al-
lows LL.Ms to maintain their predictive capabilities even
with incomplete data.

Therefore, we propose two FITA algorithms based on
LLMs to handle problems of the suboptimality of existing
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You are a data retrieval expert who can call on any resource.
Given the task background description and the specific
meaning of the feature names, you need to develop values
for each feature to fill in when feature values are missing.

Background: < Task Description > .
Goal: < Task Target > .
Features: < Features Description > .

Please analyse this task and solve it step by step.
Step 1: Analyse. Based on the common sense , state in
sentences the causal relationship or trend between each

feature and the task description, and give a range of values
for features that are usually prevalent in real life.

Step 2: Impute. Based on the information above and the
answers from Step 1, identify a value for each feature to
impute when this feature is missing. The value imputed
should be reasonable and within the range given in Step 1.

Output format: “Feature” : Value

Answer:

Figure 3: A prompt template for the LLM-IMPUTE method.

missing-feature imputation methods and the limited applica-
bility of missing-feature adaptation approaches.

4 Methodology

In this section, we introduce the LLM-IMPUTE approach
to address the inadequacies of current missing feature im-
putation methods and develop the ATLLM framework to
broaden the applicability of missing feature adaptation strate-
gies. The significance of LLM-IMPUTE and ATLLM in re-
search and real-world applications is detailed in Appendix
C. Existing imputation methods often yield suboptimal re-
sults. To achieve more accurate imputations, we utilize LLM
APIs, which, being closed-source, are accessible even when
training data are unavailable. Figure 3 illustrates the process
by which LLM-IMPUTE imputes missing features. To en-
hance the accuracy of LLM-generated imputations, we mimic
the reasoning process of human experts in tabular prediction
tasks by employing a step-by-step guidance mechanism based
on prompt learning and chains of thought [Wei et al., 2022].
The input comprises three key elements:

41 LLM-IMPUTE

Task Description. The background information and tar-
get of a given task are first integrated with descriptions of

Train Data Original Train Data Samples Samples with missing values
Column | Column’| Target | . Column |Column’| Target Column |Column’| Target
Prepr 4
value | value | class value | value | class value P class
value | value | class value | value | class E value | class

1Serialization

Predict

Fine-tune - Column: value .
¢=== Ours- ATLLM_ [[L ~ Column’: value - Column: value ]

Question { Question J
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Figure 4: Overview of ATLLM.
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Figure 5: Overlap degree between feature ranges from LLM-
IMPUTE and actual datasets. The numbers above bars indicate how
many of imputed values provided by LLM-IMPUTE are within fea-
ture ranges of the actual dataset.

features (as shown in red text in Figure 3). Notably, be-
cause there is no access to training data, we refrain from
providing information such as data distributions or the mini-
mum/maximum value of each feature, which are commonly
included in feature-engineering methods.

Inference Process. The inference process of LLMs is di-
vided into two steps (see green text in Figure 3).

e Step 1 - Analyse. The first step directs LLMs to utilize
its internal knowledge, in conjunction with the informa-
tion provided in the dataset, to infer the relationships be-
tween features and the task at hand and to give a realis-
tic range of feature values. This step ensures that LLMs
fully leverage prior knowledge about the task.

* Step 2 - Impute. In the second step, LLMs are required
to output a specific value for each feature, based on the
value range derived in Step 1. This output is then used
to impute the missing features. In this step, LLMs must
analyze the relevance of the range of values proposed in
the first step and select an appropriate and generalized
value from within that range.

Output Format. To facilitate the parsing and utilization of
imputed values, we guide LLMs in structuring its responses
through explicit instructions (see blue text in Figure 3).
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Models Credit Electricity Heart Iris Eyemovements Abalone Bike Concrete Laptop

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE
Catboost +526 +7.02 +1.07 +31.3 +0.83 4035 +0.00 -2.72 +2.07 +1.54 -0.014 -0215 -0.059 -6239 -0.065 -4367 -0.003 -6.380
XGBoost +8.08 +11.5 4227 +1.11 +4.85 +844 4370 +3.84 +339 +440 -0056 -1.689 -0.022 -9301 -0.076 -5631 -0.146 -874.4
MLP +7.07 +122 +1.78 +145 +12.7 +12.1 +184 +256 +1.79 +2.77 -0.044 -1.031 -0.026 -1895 -0.196 -24.02 -0.017 -28.39

TabPFN +3.16 +0.05 +127 +149 +6.01 -129 4253 -1.44 +1.50 +4.90 \ \ \ \ \ \ \ \

TabPFNv2 +2.01 -1.88 +0.88 +3.73 +2.06 +109 +6.82 +6.79 -3.73 +11.1 \ \ \ \ \ \ \ \
FT-Transformer +16.4 4241 +1.16 +233 +4.39 +18.6 +173 +232 4233 +0.00 -0.016 -0.129 -0.019 -1259 -0.031 -0.037 -0.005 +1.333
SwitchTab +105 4732 437 +441 +1.65 +113 +183 +214 -112 +12.6 -0.044 -0.581 -0.008 -6.994 -0.047 -3946 -0.001 -47.14
TabNET +7.03 4233 +049 +328 +0.78 -275 +3.64 +7.71 +0.84 +2.61 -0.003 -0.948 -0.035 -27.77 -0.072 -5440 -0.170  -768.4
TabTransformer -0.23 +16.4 +0.59 +153 +2.57 +15.6 +448 +41.1 +1.67 +2.14 -0.023 -0.005 -0.007 +0.255 -0.039 +0.125 -0.001  -2.340
TabR +4.51 +8.61 -124 +252 +5.69 +3.18 +6.79 +8.06 +0.06 +3.09 -0.016 -0.175 -0.032 -1493 -0.062 -4205 -0.021  -39.69
TANGOS +12.9  +0.00 +1.51 +340 +124 -553 +37.7 +480 +0.75 +7.62 -0.012 +0.015 -0.033 -1927 -0.058 -4.557 -0.004 -83.34

Table 2: Model performance improvement by LLM-IMPUTE. The classification task is the more metrics’ improvement (accuracy and F1
score) the better, while the regression task is the more metrics’ decrease (nRMSE and MAE) the better.

4.2 ATLLM

Due to the heavy reliance on the prior knowledge of LLMs,
LLM-IMPUTE exhibits limited effectiveness when applied
to anonymized datasets such as Jannis from AutoML [Grin-
sztajn et al., 2022], because it is incapable to analyze features
which lack semantic meanings. To address this limitation,
we further construct ATLLM as a complementary approach
to LLM-IMPUTE. ATLLM has an augmented-training mod-
ule by simulating feature-decrement scenarios in the training
phase to improve its robustness. An illustrative overview of
the ATLLM is presented in Figure 4. ATLLM is comprised
of three main components:

Preprocessing. The preprocessing step augments training
data by adding samples with manually missing features while
preserving the original training data. These augmented sam-
ples are generated by manually removing certain features
from the original training data. This component is specifically
designed to simulate real-world feature-decrement scenarios,
where any features may be missing in the testing phase.

Serialization. After preprocessing, training data are con-
verted into sentences suitable for LLMs’ input. ATLLM uti-
lizes the List Template (" - Feature: value. ") format to struc-
ture the input text, leveraging LLMs’ strong ability to read
and parse lists effectively [Hegselmann et al., 2023].

Fine-tuning and Predicting. The serialized sentences are
then used to fine-tune Llama3-8B, a model released by Meta
Al in April 2024. During fine-tuning, the number of epochs
is set to 30 to ensure that the model has ample opportunity to
learn and converge. The learning rate is set to le™> to pre-
vent overfitting and enable the model to converge effectively.
Finally, the fine-tuned ATLLM is put into the downstream
tabular task for prediction.

S Experiments

5.1 Experimental Settings

In this section, we introduce datasets, models, and evaluation
metrics used in experiments.

Datasets. To effectively simulate feature-decrement sce-
narios in tabular data, we select a variety of open-source
and reliable datasets from OpenML and Kaggle’s extensive
dataset library. These datasets encompass three primary
tasks: binary classification, multi-class classification, and

regression, and span a range of fields such as finance and
healthcare. A summary of the key attributes of the datasets
is provided in Appendix A.

Models. To demonstrate the effectiveness of our proposed
methods, we compare them against three categories of mod-
els: tree-based models, deep-learning models, and LLM. In
Appendix B, we provide full hyperparameter grids for tree-
based and deep-learning models and the prompt for LLM.
Detailed experiment results are shown in Appendix D.

* Tree-Based Models. We evaluate XGBoost [Chen and
Guestrin, 2016] and CatBoost [Prokhorenkova et al.,
2018] as representatives of gradient-boosted decision
trees. Both models aim to correct the errors of previous
iterations by adding additional decision trees, thereby re-
ducing prediction errors.

* Deep-Learning Models. Deep-learning models we
evaluate include MLP, FT-Transformer [Gorishniy et al.,
2021], Switchtab [Wu et al., 2024], TabPFN [Hollmann
et al., 2023], TabPFNv2 [Hollmann et al., 2025], Tab-
Net [Arik and Pfister, 2021], TabR [Gorishniy et al.,
2024], TabTransformer [Huang er al., 2020], and Tan-
gos [Jeffares et al., 2023].

e LLM. We select Llama3-8B as the representative of
LLMs for evaluation. For this model, we construct the
input text using the List Template format.

Evaluation Metrics. We utilize accuracy and F1 score for
classification tasks, where higher values are preferred. For re-
gression tasks, we employ normalized Root Mean Square Er-
ror (nRMSE) and Mean Absolute Error (MAE), where lower
values are preferred.

5.2 LLM-IMPUTE Results

Overall Performance. As illustrated in Table 2, LLM-
IMPUTE significantly enhances the performance of various
models in feature-decrement scenarios, underscoring its ef-
fectiveness as a robust solution for imputing missing features.
The experimental results demonstrate that LLM-IMPUTE
achieves an average improvement of approximately 5% in
overall model performance across 9 datasets.

Rationality. Figure 5 shows the overlap degree between
feature ranges from LLM-IMPUTE and actual datasets, and
the percentage of generated values of LLM-IMPUTE that fall
within actual feature ranges. Despite the fact that feature
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Figure 6: The performance of ATLLM and comparison models under different degrees of feature decrement.

ranges predicted by LLM-IMPUTE in Step 1 do not perfectly
match actual ranges (i.e., the overlap degree is not high), most
of the imputed values generated by LLM-IMPUTE still fall
within realistic bounds and exhibit practical relevance.

Superiority. LLM-IMPUTE addresses the issue of the sub-
optimality of existing missing-feature imputation methods by
generating values that are both valid and common-sense val-
ues. Furthermore, as LLM-IMPUTE only requires a single
API call per tabular dataset, it helps reduce time costs while
simultaneously improving model performance.

5.3 ATLLM Results

Overall Performance. Figure 6 illustrates the performance
comparison between ATLLM and missing-feature adapta-
tion approaches in feature-decrement scenarios across vari-
ous datasets. When the degree of feature decrements is sub-
stantial, ATLLM consistently outperforms all the comparison
models. Experimental results demonstrate that ATLLM sur-
passes existing approaches, with a 3% improvement in clas-
sification accuracy and a 5% reduction in regression nRMSE.

Robustness. We observe that TabPFNv2 exhibits excel-
lent performance, especially when the degree of feature-
decrement is low. However, its robustness is limited, as its
performance deteriorates significantly with increasing degree
of feature decrements. In contrast, ATLLM maintains rela-
tively stable performance across varying degrees of feature
decrements. This stability demonstrates that ATLLM has su-
perior robustness compared to other models.

Superiority. The comparison between LLM and ATLLM
reveals that the performance of ATLLM with no fea-
ture decrement is also improved. This suggests that the
augmented-training module not only enables ATLLM to bet-
ter handle feature-decrement scenarios but also deepens its
understanding of the task during the training phase. Fur-
thermore, ATLLM demonstrates superior performance on
datasets with a higher number of features.

6 Conclusion

In this paper, we make the first attempt to address the problem
of FTTA for feature decrements in tabular data, a unique and
critical challenge in tabular data learning. Existing FTTA al-
gorithms are primarily designed to handle distribution shifts
and fail to effectively address feature decrements. Mean-
while, existing methods for feature decrement, such as miss-
ing feature imputation and adaptation, suffer from subopti-
mal performance and limited applicability. To tackle these
challenges, we propose two novel FTTA approaches: LLM-
IMPUTE, which leverages LLMs for training-free missing
feature imputation, and ATLLM, which achieves better ro-
bustness by simulating feature-decrement scenarios during
training, to further address tasks that can not be imputed, as an
complementarity of LLM-IMPUTE method. Comprehensive
experimental results demonstrate that our proposal signifi-
cantly improves both performance and robustness in FTTA
scenarios for feature decrement in tabular data.
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