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Abstract
Deep learning-based speech enhancement (SE)
methods predominantly draw upon two architec-
tural frameworks: generative adversarial networks
and diffusion models. In the realm of SE, capturing
the local and global relations between signal frames
is crucial for the success of these methods. These
frameworks typically employ a UNet as their foun-
dational backbone, integrating Long Short-Term
Memory (LSTM) networks or attention mecha-
nisms within the UNet to effectively model both lo-
cal and global signal relations. However, the cou-
pled relation modeling way may not fully harness
the potential of these relations. In this paper, we
propose a novel, decoupled Association-based Fu-
sion Speech Enhancement method (AFSE). AFSE
first constructs a graph that encapsulates the asso-
ciation between each time window of the speech
signal, and then models the global relations be-
tween frames by fusing the features of these time
windows in a manner akin to graph neural net-
works. Furthermore, AFSE leverages a UNet with
dilated convolutions to model the local relations,
enabling the network to maintain a high-resolution
representation while benefiting from a wider re-
ceptive field. Experimental results demonstrate
that the AFSE method significantly improves per-
formance in speech enhancement tasks, validating
the effectiveness and superiority of our approach.
The code is available at https://github.com/jie019/
AFSE IJCAI2025.

1 Introduction
Speech enhancement (SE) aims to improve the quality of a
speech signal by reducing noise and other distortions, thereby
making it more suitable for further analysis or utilization
[O’Shaughnessy, 2024]. SE has become a critical process in
various applications including communications, hearing aids,
and medical applications [Chhetri et al., 2023].

Recent advancements in deep learning (DL) have brought
significant improvements to SE. DL-based approaches lever-

∗Corresponding author

age the power of neural networks to model the complex
relations between noisy and clean speech signals, showing
remarkable success in various scenarios [Tai et al., 2021].
These methods typically focus on minimizing the overall dif-
ference between the target speech and its denoised speech us-
ing Lp-norm distance [Li et al., 2021]. However, these dis-
criminative models inherently lack the ability to capture the
underlying structure of speech signals and their variability in
real-world environments [Phan et al., 2020]. Specifically, dis-
criminative models primarily focus on feature mapping be-
tween noisy and clean signals, ignoring the higher-order rela-
tions within the signal where such relations are critical. As a
result, they often struggle to generalize to unseen noise con-
ditions or complex acoustic scenarios.

Generative models have been introduced to improve SE by
learning the distribution of clean speech signals and gener-
ating plausible denoised outputs [Welker et al., 2022]. The
type of methods are mainly based on two architectural frame-
works: generative adversarial networks (GANs) and denois-
ing diffusion probabilistic models (DDPMs). It is well known
that capturing the local and global relations between signal
frames is crucial for the success of these methods. These
frameworks typically employ a UNet as their foundational
backbone, integrating Long Short-Term Memory (LSTM)
networks or attention mechanisms within the backbone to ef-
fectively model both local and global signal relations. How-
ever, the coupled relation modeling way may not fully harness
the potential of these relations.

Association is often used to characterize the relation
strength between multiple variables in data. Its ability for
relation modeling has been proved in multi-modal classifi-
cation [Liang et al., 2022], representation learning [Liang
et al., 2025]. The integration of association-based methods
with advanced DL algorithms has the potential to signifi-
cantly improve the performance of signal enhancement sys-
tems. In this paper, we propose a decoupled relation modeling
method, called Association-based Fusion Speech Enhance-
ment (AFSE) method. Specifically, AFSE first constructs a
graph that encapsulates the association between each time
window of the speech signal, and then models the global re-
lations between frames by fusing the features of these time
windows in a manner akin to graph neural networks. Further-
more, AFSE leverages a UNet with dilated convolutions to
model the local relations, enabling the network to maintain a
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high-resolution representation while benefiting from a wider
receptive field. The contributions of our work are as follows:

• We propose an effective method for modeling global re-
lation between frames by combining the association with
graph neural network.

• An association-based fusion speech enhancement
(AFSE) method is proposed, which achieves a better
usage of relation between signal frames in an decoupled
relation modeling strategy.

• The extensive comparison experiments on two public
datasets show that AFSE achieves competitive perfor-
mance with fewer model parameters compared to the
state-of-the-art speech enhancement methods.

2 Related Work
2.1 Speech Enhancement (SE)
Recently, SE methods driven by deep learning are mainly
based on the generative adversarial networks (GANs) and dif-
fusion models.

GANs-based SE: GAN is a representative generative
method and has been adopted in various domains. In the field
of SE, GANs have received widespread attention in recent
years and have achieved remarkable results. SEGAN [Pas-
cual et al., 2017] is one of the earliest GAN models applied
to speech enhancement. It improves the clarity of speech by
using binary labels (such as real or fake) in the discriminator
to distinguish enhanced speech from original speech. Subse-
quent work, such as FSEGAN [Donahue et al., 2018], further
optimized this structure and proposed an improved genera-
tive model for speech enhancement tasks. However, these
early methods rely on discrete labels for training and may
not be able to directly optimize speech quality evaluation in-
dicators related to human perception. To this end, Metric-
GAN [Fu et al., 2019] introduced continuous labels based
on evaluation indicators and improved the training method
of GAN. MetricGAN-OKD [Shin et al., 2023] further opti-
mizes this process and achieves multi-indicator optimization
through online knowledge distillation, which improves the ef-
fect of speech enhancement.

Diffusion-based SE: In the field of SE, DDPMs [Ho et al.,
2020] as a class of generative model have made significant
progress in recent years. The diffusion model gradually adds
noise to the data through a fixed forward process, and iter-
atively de-noises through a parameterized reverse process to
generate samples from the noise. Compared to other gener-
ative models, diffusion models demonstrate excellent sample
quality and a simpler training process, while placing few re-
strictions on the model architecture. The application of spe-
cific diffusion models to SE includes a variety of methods.
For example, DiffuSE [Lu et al., 2021] is an SE method based
on a diffusion model that generates high-quality speech sam-
ples by step-by-step de-noising. CDiffuSE [Lu et al., 2022]
further optimizes this process by combining conditional gen-
eration techniques to improve model generalization and en-
hancement. In addition, DR-DiffuSE [Tai et al., 2023b] sig-
nificantly improves noise reduction and voice quality by in-
troducing fast sampling technology and refining networks.

In summary, GANs often suffer from training instability
and mode collapse. DDPMs are computationally expensive
due to the iterative denoising steps. Furthermore, they model
the local and global relationships of data in a coupled manner,
which may not fully capture the intrinsic relationships within
the data. By adopting a decoupled modeling strategy and ex-
plicitly modeling the relationships between global frames, we
can better capture the intrinsic relationships within the data.

2.2 Graph Neural Networks (GNNs)
We utilize the message-passing mechanism of GNNs to
achieve global frame fusion after obtaining the global asso-
ciation between frames. GNNs directly operate on the graph
structure and aggregate information via a message-passing
mechanism [Zhou et al., 2020].

The k-th layer of the GNN message-passing scheme is de-
fined as:

h(k)
v = Cat

(
h(k−1)
v ,Agg

({
h(k−1)
u , euv | u ∈ Nv

}))
(1)

where Cat(·), Agg(·) and Nv denote the concatenation, ag-
gregate functions, and immediate neighbors of node v, re-
spectively; h(k)

v is the representation vector of node v in the
k-th layer, and euv is the edge vector between nodes u and v.

3 The Proposed AFSE
The whole framework of AFSE is shown in Fig. 1, which
consists of (1) frame representation learning, (2) global frame
fusion with association between frames, (3) local frame fu-
sion with dilated convolution, (4) loss function.

3.1 Frame Representation Learning
To improve the effectiveness of modeling relationships, we
first extract feature representations for each frame. This
way enhances the ability to capture detailed characteristics.
Specifically, the mixture signal in the time domain is first
transformed into the time-frequency (T-F) domain using the
Short-Time Fourier Transform (STFT), and its formulation in
T-F domain is written as:

Xk,l = Yk,l +Nk,l (2)

where X ∈ R2×L×K , Y ∈ R2×L×K , and N ∈ R2×L×K

denote the complex-valued noisy signal, clean signal, and
noise, respectively. 2 is the number of channels, L is the
number of time steps, and K is the number of frequency bins.
k ∈ {1, · · · ,K} and l ∈ {1, · · · , L} is the index of frequency
bin and time, respectively.

Since the global distribution of speech amplitudes obtained
with STFT is typically heavy-tailed, the information visi-
ble in untransformed spectrograms is dominated by only a
small portion of bins. Inspired by recent results from [Ju et
al., 2022] that power compression can decrease the dynamic
range of the spectrum and improve the significance of low-
energy regions with more informative speech components,
we apply an amplitude compression to adjust the energy dis-
tribution to achieve approximate normalization. The transfor-
mation [Tai et al., 2023b] is defined as follows:

X̃ =
√

|X|ei∠X , X̃ ∈ R2×L×K (3)
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Figure 1: The whole framework of AFSE

where ∠X denotes the phase, i denotes imaginary number,
and e is a natural constant. Next, the noisy spectrum X̃ is
passed into an encoder Enc to obtain an intermediate feature
representation H:

H = Enc(X̃), H ∈ RC×L×M (4)

where C is the number of channels and M denotes the en-
coded feature dimension. To model the relationship between
frames, we convert the features H into features F :

F = Reshape(H, (L,C ×M)), F ∈ RL×(C×M) (5)

where Reshape(H, size) denotes the shape of tensor H is
changed size. F contains L frame feature vectors, where
each ft is defined as:

ft ∈ R(C×M), t ∈ {1, 2, . . . , L} (6)

3.2 Global Frame Fusion with Association
To enhance the signal, we model the relationships within the
signal across different time windows. The association-based
method leverages these relationships to improve the signal
quality by reducing noise while preserving the essential char-
acteristics of the original signal. This section mainly intro-
duces how to perform global frame fusion with association in
a GNN-like work manner. To this end, we model the associa-
tion between frames as graph.
Modeling Association Graph Between Frames. We get
the representation of each frame by the frame representa-
tion learning, and we use association analysis to get the re-
lationship graph between frames. Specifically, we construct
a dense graph for each signal, where each frame is repre-
sented as a node, and any two nodes are connected with an

edge based on their association. Thus, the graph can be for-
mulated as G(V,E), where V is the set of vertices and E is
the set of edges. Here, H(0) = Reshape(H, (L,C,M)) ∈
RL×C×M is the embeddings denoting the nodes in the graph,
A ∈ RL×L be the adjacency matrix of the graph G(V,E).
Each of its elements represents an edge which is defined as:

Aij = 1− ∥fi − fj∥2
max
i,j

∥fi − fj∥2
(7)

where a greater value means a stronger correlation, and vice
versa means a weaker correlation. The constructed graph has
a global perception and can mine the relationship between
frames because Aij measures the connection weight between
any two frames in the signals. Therefore, we named the graph
G(V,E) as the global graph.

Fusion with Association. After constructing this densely
connected graph, we update the node embedding by correla-
tion fusion in a residual way, formulated as:

H(k) = αH(k−1) + (1− α)(ÃH(k−1)) (8)

where Ã = D− 1
2AD− 1

2 is the normalized adjacency ma-
trix. D denote the diagonal degree matrix, where Dii =∑n

j=1 Aij . α is the mixing coefficient, and H(k) denotes the
output embedding of the k-th graph convolution layer.

Next we combine embeddings from different layers to cap-
ture multi-level information. After k graph convolution lay-
ers, the concatenated embeddings are:

Hc = Cat(H(0), H(1), . . . ,H(k)) (9)
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where Cat denotes the tensor concatenation operation. Then
we transforms the concatenated embedding to produce the fi-
nal output, incorporating non-linear relationships. The final
output is obtained through a Multi-Layer Perceptron (MLP):

HG = σ (MLP(Hc)) (10)

where σ is an activation function. Finally, we restores the
transformed output to its original dimensions through a de-
coder Dec for subsequent local relation fusion.

XG = Dec(HG), XG ∈ R2×L×K (11)

3.3 Multi-scale Local Frame Fusion
In this section, we focus on the fusion of local frames at mul-
tiple scales using a specialized module that can leverage the
relation among different temporal scales to boost the speech
recovery. The model uses the complex spectrum as input and
follows a standard encoder-decoder U-Net architecture.

Encoder. Instead of regular convolutional layers, the en-
coder and decoder employ five BiConvGLU (Bi-directional
Convolutional Gated Linear Units) layers. These BiCon-
vGLUs are designed to capture local spectral-temporal pat-
terns while compressing the spectral features. The use of Bi-
ConvGLU enhances the model’s capacity to handle complex
features in both time and frequency domains.

Each convolutional block within the model uses a kernel
size of (2, 3) along the time and frequency axes, except for the
first block, which uses a kernel size of (2, 5). The stride is set
to (1, 2), meaning that while the frequency size is gradually
halved, the time size remains unchanged to ensure real-time
processing capability. After each convolution, the model ap-
plies Instance Normalization (InstanceNorm) and a Paramet-
ric ReLU (PReLU) activation function, which help to stabi-
lize and accelerate the training process.

Bottleneck Layer. In the bottleneck layer, which serves as
the transition between the encoder and decoder, the model
incorporates Stacked Temporal Convolution Modules (S-
TCMs) as proposed by [Li et al., 2021]. These S-TCMs are
crucial for capturing long-range dependencies in the time do-
main, which is essential for tasks that require understanding
temporal dynamics, such as speech enhancement.

The model integrates three groups of S-TCMs as the se-
quential module, each group stacks six S-TCM units with ex-
ponentially increasing dilation rates (1, 2, 4, 8, 16, 32). This
design allows the network to cover a large temporal receptive
field, which is vital for effectively leveraging relations across
different temporal scales. This approach significantly boosts
the network’s ability to recover detailed speech information
across various time scales.

Decoder. The decoder mirrors the encoder’s structure but
operates in reverse. It gradually restores the compressed fea-
tures to their original size using five BiConvGLU layers with
a fixed channel dimension of 64. The stride remains to be
set to (1, 2), and the kernel size matches that of the encoder
blocks, except for the last BiConvGLU, which uses a kernel
size of (2, 5). The model also incorporates skip connections
between corresponding encoder and decoder layers, which

Algorithm 1 AFSE Training Procedure
Input: the number of samples M , total epochs N , loss func-
tions Q, hops K, activation function σ, concatenation opera-
tion Cat, mixing coefficient α
Parameter: W: a trainable weight matrix , U: Unet, Enc:
Encoder, Dec: Decoder

1: for epoch = 1 to Total epochs N do
2: for m = 1 to M do
3: Sample a pair of noisy and clean speeches (X,Y )
4: H0 = Enc(X)
5: The adjacency matrix A is obtained by Eq. 7
6: Ã = D− 1

2AD− 1
2

7: Hc = H0

8: for k = 1 to K do
9: H(k) = (1− α)ÃH(k−1) + αH(k−1)

10: Hc = Cat(Hc, H
k)

11: end for
12: XG = Dec(σ(HcW))

13: X̂ = U(XG)

14: loss = Q(X̂, Y )
15: Update the learnable parameters W, U, Enc, Dec
16: end for
17: end for

help to mitigate information loss and enhance the quality of
the reconstructed output.

X̂ = U(XG), X̂ ∈ R2×L×K (12)

where U represents Unet. X̂ is the enhanced spectrum.
Finally, we use the Inverse Short-Time Fourier Transform
(ISTFT) to convert the enhanced speech from the time-
frequency domain back into the time domain.

The whole algorithm is shown in Algorithm 1.

3.4 Loss Function
The loss function used to train the network aims to minimize
the difference between the RI (real and imaginary) of the es-
timated spectrum and the target spectrum, as well as the mag-
nitude of the estimated spectrum and the target spectrum.

RI components loss is defined as:

LRI(ϕ) = ∥X̂r − Yr∥2F + ∥X̂i − Yi∥2F (13)

This term measures the Frobenius norm of the difference be-
tween the RI X̂r, X̂i components of the estimated spectrum
and the target spectrum Yr and Yi.

Magnitude loss is defined as:

LMag(ϕ) =

∥∥∥∥√|X̂r|2 + |X̂i|2 −
√

|Yr|2 + |Yi|2
∥∥∥∥2
F

(14)

This term measures the difference in magnitude between the
estimated and target spectra. By focusing on the magnitude,
this loss helps the model to better capture the overall energy
distribution of the signal.

The total loss is a weighted sum of the RI components loss
and the magnitude loss, and is defined as:

L(ϕ) = λRILRI(ϕ) + λMagLMag(ϕ) (15)
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Methods Pub./Year Do. G/L Params↓ CSIG↑ CBAK↑ COVL↑ PESQ↑ SSNR↑ STOI(%)↑
Unprocessed - - - - 3.35 2.44 2.63 1.97 1.68 92.1
DEMUCS Interspeech/2020 T G&L 18.87M 4.22 3.25 3.52 2.93 - -
CleanUNet ICASSP/2022 T G&L 39.77M 4.32 3.41 3.63 2.88 - -
GaGNet Appl Acoust/2022 T-F L 5.94M 4.26 3.45 3.59 2.94 - -
TaylorSENet IJCAI/2022 T-F L 5.40M 4.31 3.08 3.64 2.90 2.40 95.3
S4ND U-Net Interspeech/2023 T-F G 0.75M 4.37 3.56 3.70 2.99 - -
Dual-S4D TASLP/2024 T-F G&L 10.8M 3.94 3.00 3.23 2.55 - 93.4
DiffuSE APSIPA ASC/2021 T L - 3.66 2.83 3.03 2.44 - -
CDiffuSE ICASSP/2022 T L - 3.72 2.91 3.10 2.52 5.28 91.4
DR-DiffuSE AAAI/2023 T-F L 3.55M 4.38 3.57 3.76 3.09 9.52 94.9
DOSE NeurIPS/2023 T-F L - 3.83 3.27 3.19 2.56 - 93.6
VPIDM TASLP/2024 T-F L - 4.23 3.53 3.70 3.16 - -
SEGAN Interspeech/2017 T L - 3.48 2.94 2.80 2.16 7.73 -
MMSEGAN ICASSP/2018 T-F L - 3.80 3.12 3.14 2.53 - 93.0
MetricGAN ICML/2019 T G - 3.99 3.18 3.42 2.86 - -
MetricGAN+ Interspeech/2021 T-F G - 4.14 3.16 3.64 3.15 - -
DSEGAN SPL/2020 T L - 3.46 3.11 2.90 2.39 8.72 93.2
MGAN-OKDv2 ICML/2023 T-F G 0.82M 4.17 3.13 3.64 3.12 - -
AFSE(Ours) - T-F G&L 2.09M 4.44 3.66 3.85 3.18 10.17 95.0

Table 1: Comparison results on VoiceBank-DEMAND, where ↑ and ↓ denote that the larger/smaller the value is, the better the performance
is, respectively.

where λRI and λMag are weighting hyper-parameters and are
set to 0.5 and 0.5 with empirical trials, respectively. This
combined loss ensures that the network learns to accurately
predict both the phase and magnitude of the signal, leading to
more effective speech enhancement.

4 Experiment
To evaluate the proposed AFSE, we use two datasets:
VoiceBank-DEMAND (VBD) and DNS Challenge.
Training Configuration. We sample all the utterances at
16 kHz. The window size is set as 20 ms, with 50% overlap
between adjacent frames. 320-point FFT is utilized, leading
to 161-D in the feature axis. The model is trained on Pytorch
platform with a NVIDIA RTX 4090 GPU. We use the Adam
optimizer with a batch size of 8 to train the proposed model,
and the learning rate is initialized as 1e−3. Moreover, we
train the model by 60 epochs for two datasets.
Evaluation Metrics. We use the following metrics to eval-
uate SE performance: narrow-band (NB) [Rix et al., 2001]
and wide-band (WB) perceptual evaluation of speech qual-
ity (PESQ) [Rec, 2005] for speech quality, short-time ob-
jective intelligibility (STOI) [Taal et al., 2010] for intelligi-
bility, segmental signal-to-noise ratio(SSNR), scale-invariant
signal-to-noise ratio (SISNR) [Roux et al., 2019] and the
mean opinion score (MOS) prediction of the speech signal
distortion (CSIG) [Hu and Loizou, 2008] for speech distor-
tion, the MOS prediction of the intrusiveness of background
noise (CBAK) [Hu and Loizou, 2008] for noise intrusion,
the MOS prediction of the overall effect (COVL) [Hu and
Loizou, 2008] for overall signal quality.

4.1 VoiceBank-DEMAND
The VoiceBank-DEMAND [Valentini-Botinhao et al., 2016]
consists of 30 speakers, with 28 used for the train-

ing/validation dataset and the remaining two for the test
dataset. The training/validation and test datasets contain
11,572 utterances with four signal-to-noise ratio (SNR) (15,
10, 5, and 0 dB) levels and 824 utterances with four SNR
(17.5, 12.5, 7.5, and 2.5 dB) levels, respectively. In the
dataset, we compare our model with seventeen state-of-the-
art methods which are classified into following three cate-
gories:

• GAN-based methods: SEGAN [Pascual et al., 2017],
MMSEGAN [Soni et al., 2018], MetricGAN [Fu et al.,
2019], MetricGAN+ [Fu et al., 2021], DSEGAN [Phan
et al., 2020] and MGAN-OKDv2 [Shin et al., 2023].

• Diffusion-based methods: DiffuSE [Lu et al., 2021],
CDiffuSE [Lu et al., 2022], DR-DiffuSE [Tai et al.,
2023b], DOSE [Tai et al., 2023a] and VPIDM [Guo et
al., 2024].

• Other methods: DEMUCS [Défossez et al., 2020], Clea-
nUNet [Kong et al., 2022], GaGNet [Li et al., 2022b],
TaylorSENet [Li et al., 2022a], S4ND U-Net [Ku et al.,
2023] and Dual-S4D [Sun et al., 2024].

We report two types of metrics including model parame-
ters and enhancing performance the latter one contains CSIG,
CBAK, COVL, PESQ, SSNR, STOI. The experiment results
are reported in Table 1, where “T” and “F” denote time do-
main and spectrum domain, respectively; “G” and “L” denote
global relation and local relation, respectively. From Table 1,
the following conclusions can be drawn.

• AFSE achieves the best results in terms of all enhancing
performance except for STOI. For model parameters, the
S4ND U-Net ranks the first, followed by AFSE. How-
ever, S4ND U-Net ranks only the third, third, fourth,
fifth in CSIG, CBAK, COVL, PESQ, respectively.
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Methods Pub./Year Do. G/L Params↓ PESQ-WB↑ PESQ-NB↑ STOI(%)↑ SISNR(dB)↑
Noisy - - - - 1.58 2.45 91.52 9.07
NSNet ICASSP/2020 T-F G - 2.15 2.87 94.47 15.61
DTLN Interspeech/2020 T-F G&L - - 3.04 94.76 16.34
DCCRN Interspeech/2020 T-F G&L 3.67M - 3.27 - -
PoCoNet Interspeech/2020 T-F G&L - 2.75 - - -
FullSubNet ICASSP/2021 T-F G&L 5.64M 2.78 3.31 96.11 17.29
CTS-Net TASLP/2021 T-F L 4.35M 2.94 3.42 96.66 17.99
GaGNet(3000h) Appl Acoust/2022 T-F L 5.94M 3.17 3.56 97.13 18.91
FAF-Net(500h) AAAI/2022 T-F L - 2.93 3.44 96.37 -
TaylorSENet(3000h) IJCAI/2022 T-F L 5.40M 3.22 3.59 97.36 19.15
AFSE(500h) - T-F G&L 2.09M 3.23 3.67 97.34 18.63
AFSE(800h) - T-F G&L 2.09M 3.27 3.69 97.40 18.95
AFSE(3000h) - T-F G&L 2.09M 3.29 3.71 97.50 19.22

Table 2: Comparison with state-of-the-art methods on DNS dataset, where A(t) denotes the algorithm A is trained using the data of t hours.

• On the one hand, compared with DR-DiffuSE, our
method has achieved comprehensive advantages. The
reason may be that the core units of DR-DiffuSE is
convolution, cannot model the global relation between
frames. On the other hand, the enhanced performance
of S4ND U-Net is inferior to our method, possibly be-
cause of the lack of local relationship modeling. This
indicates that both of the local and global relation are
important for SE.

• Compared to DEMUCS and CleanUNet, which model
both local and global relationships in a coulped manner,
our superior performance may be attributed to the de-
coupled fusion of global and local relationships.

In summary, our method combines high performance with
a low number of parameters. It achieves excellent results in
speech quality and noise suppression. By maintaining a lower
parameter count while delivering superior performance, our
method is suited to practical applications where both quality
and resource constraints are critical.

4.2 DNS Challenge
The Interspeech 2020 DNS challenge dataset [Reddy et al.,
2020] is a large speech enhancement dataset. The clean
speechs are collected from Librivox and totally includes 500
hours utterances from 2150 speakers. The noise clips are
from Audioset and Freesound, including 60000 noise clips
with 150 classes. Following [Zheng et al., 2021], we synthe-
size 500 hours noisy clips with SNR levels of -5 dB, 0 dB, 5
dB, 10 dB and 15 dB for training. For evaluation, we use an-
other 150 noisy clips from the test set without reverberation.
The testing SNR levels are randomly distributed in the range
from 0 dB to 20 dB.

For this dataset, we compare against nine state-of-the-art
methods: LSTM based methods FullSubNet [Hao et al.,
2021] and DTLN [Westhausen and Meyer, 2020], U-Net
based methods DCCRN [Hu et al., 2020] and PocoNet [Isik
et al., 2020]. NSNet [Xia et al., 2020] utilizes weighted
speech distortion losses, and CTS-Net [Li et al., 2021] is a
two-stage complex spectral mapping method. FAF-Net [Yue
et al., 2022] leverages a reference-based feature alignment
and fusion strategy to enhance speech quality. GaGNet [Li et

al., 2022b] utilizes a dual-path glance-and-gaze structure for
collaborative spectrum estimation. TaylorSENet [Li et al.,
2022a] employs a Taylor-unfolding framework for decoupled
magnitude and residual modeling. The results of NSNet are
quoted from FullSubNet, and others are directly quoted from
their respective papers.

To verify the superiority of the proposed SE system in more
complex acoustic scenarios, we present the results on the In-
terspeech 2020 DNS-Challenge corpus, as shown in Table
2. The evaluation metrics include Params, WB-PESQ, NB-
PESQ, STOI, and SISNR. From the results in Table 2, we
can draw the following conclusions: (1) When the training
data is 3000 hours, AFSE achieves the best results in terms of
all evaluation metrics. With the same amount of training data,
our performance performs better than TaylorSENet that ranks
the first place among the comparison methods, but the num-
ber of parameters of AFSE is less than half of ones of Tay-
lorSENet; (2) The gradual improvement in performance with
increased training set size (500h, 800h, 3000h) indicates that
AFSE benefits more from larger datasets, further showing
the scalability and effectiveness of our AFSE; (3) Compared
with the local fusion method such as FAF-Net, TaylorSENet,
AFSE achieves better overall performance, possibly due to its
more comprehensive integration of global and local informa-
tion, reinforcing the importance of this dual-fusion strategy.

These results furthermore validate the effectiveness and su-
periority of our approach, showcasing its potential to set a
new benchmark in the field of speech enhancement.

4.3 Further Analysis
In the part, we further analysis our model from six aspects:
each module effectiveness, hyper-parameter sensibility, im-
pact of different SNR values and effect of different lengths.

Ablation Study. This subsection is to investigate the ef-
fect of different components in AFSE via ablation experi-
ments. The components include frame representation, Graph
and Unet. In the ablation study, we compare AFSE with three
its degeneration models: Case 1: Remove the frame repre-
sentation module; Case 2: Remove the Graph module; and
Case 3: Remove the Unet module.

The results are shown in Table 3. From the results, we
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Methods PESQ-WB PESQ-NB STOI(%) SISNR(dB) CSIG CBAK COVL
AFSE 3.23 3.67 97.34 18.63 3.02 3.91 3.15
Case 1 3.14 3.62 97.01 18.49 2.93 3.87 3.06
Case 2 3.14 3.62 97.02 18.50 2.94 3.87 3.06
Case 3 2.61 3.28 95.25 17.17 2.53 3.50 2.59

Table 3: Ablation results on DNS.

1 2 3 4 5
Depth Level k

3.0

3.5

4.0

4.5

PESQ
CSIG
CBAK
COVL

Figure 2: Sensitivity analysis of hyper-parameters k on VBD.

can observe that (1) Modeling the global relationships based
on representations is better than that based on raw features;
(2) Removing the graph structure leads to a performance de-
cline, highlighting the importance of learning global associ-
ations between frames in speech enhancement. (3) Based on
the results of removing the Unet module, it can be concluded
that learning local correlation significantly contributes to im-
proving model performance. In summary, each component in
AFSE plays a key role.
Hyper-Parameters. We conducted an in-depth analysis of
key hyper-parameters within our model. Fig. 2 visually
demonstrates the model’s performance variations across dis-
tinct k orders, ranging from 1 to 5. Our assessment en-
compasses the VoiceBank-DEMAND, evaluating the PESQ,
CSIG, CBAK, COVL as the metric. From Fig. 2, we draw the
following key observations: In general, opting for a relatively
smaller hop order, such as 3, yields improved performance.
Analysis on Different SNR Values. We evaluate the per-
formance of the model at different SNR levels on the DNS
dataset. Since the speeches in different groups are different,
we further generate a new DNS test set by adding noise with
different SNR values to all the clean speeches in the test set.
We classify its noise level (SNR ranging from -5 to 20 dB)
into five groups and give the average WBPESQ, NBPESQ,
CSIG, CBAK, COVL result for each group. The results in
Fig. 3 are produced on the new DNS test set. This is ev-
ident from the upward trends across all evaluation metrics
(WB-PESQ, NB-PESQ, CSIG, CBAK, COVL) that the per-
formance of the AFSE improves as the SNR increases.
Analysis on Different Lengths. We evaluate the enhance-
ment results using references with different lengths. The re-
sult is shown in Fig. 4. The result indicates that there is a
noticeable improvement in all metrics as the reference length
increases from 3s to 10s. This suggests that longer refer-
ence speech provides more contextual information, enabling
better enhancement. However, the performance gains seem

−5 0 5 10 15 20
SNR(dB)

2.0

2.5

3.0

3.5

4.0

4.5
WBPESQ
NBPESQ
CSIG
CBAK
COVL

Figure 3: Enhancement results with the inputs setting to different
SNR levels on DNS.

2s 3s 5s 10s 20s
The length of the reference speech

2.75

3.00

3.25

3.50

3.75

4.00 WBPESQ NBPESQ CSIG CBAK COVL

Figure 4: The speech enhancement results using references with dif-
ferent time lengths on DNS.

to plateau after a certain length (10s to 20s), indicating that
beyond a certain point, increasing the reference length does
not significantly boost enhancement quality. Considering the
trade off between computing complexity and performance,
we utilize the reference with 10s in our experiments.

5 Conclusions
In this paper, we have proposed an efficient association-based
fusion method for speech signal enhancement that integrates
global and local fusion techniques. This method efficiently
captures both broad contextual relationships and detailed lo-
cal patterns, achieving a better enhanced speech signal qual-
ity. Extensive experiments have demonstrated the superiority
of this dual-fusion approach in improving speech enhance-
ment performance. Our results suggest that combining global
and local fusion strategies can be particularly effective in ad-
dressing the challenges of complex auditory environments.
In the future, we plan to explore more refined strategies for
balancing and optimizing these fusion techniques to further
advance the field of speech enhancement.
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