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Abstract
Implicit neural representation (INR) aims to rep-
resent continuous domain signals via implicit neu-
ral functions and has achieved great success in
arbitrary-scale image super-resolution (SR). How-
ever, most existing INR-based SR methods focus
on learning implicit features from independent co-
ordinate, while neglecting interactions of neighbor-
hood coordinates, thus resulting in limited contex-
tual awareness. In this paper, we rethink the for-
ward process of implicit neural functions as a signal
diffusion process, we propose a novel Diffusion It-
erative Implicit Network (DIIN) for arbitrary-scale
SR to promote global signal flow with neighbor-
hood interactions. The DIIN framework mainly
consists of stacked Diffusion Iteration Layers with
dictionary cross-attention block to enrich the it-
erative update process with supplementary infor-
mation. Besides, we develop the Position-Aware
Embedding Block to strengthen spatial dependen-
cies between consecutive input samples. Exten-
sive experiments on public datasets demonstrate
that our method achieves state-of-the-art or com-
petitive performance, highlighting its effectiveness
and efficiency for arbitrary-scale SR. Our code is
available at https://github.com/Song-1205/DIIN.

1 Introduction
Single Image Super-Resolution (SISR), which aims to re-
construct high-resolution (HR) images from corresponding
low-resolution (LR) observations, has recently gained great
progress. Most exciting SISR methods [Dai et al., 2019;
Liang et al., 2021; Dai et al., 2024; Dong et al., 2015;
Zhang et al., 2018; Zhou et al., 2023] focus on fixed-scale
setups, where models are optimized predefined up-sampling
factors (e.g.g. 2×, 4×) during training. However, such fixed-
scale setup hinders the applications in real-world scenarios,
where continuous arbitrary-scale factors are desired.

To upsample continuous arbitrary-scale factors, arbitrary-
scale super-resolution (ASSR) has recently received much at-
tention. In particular, implicit neural representation (INR)

∗Corresponding author: Hang Guo (cshguo@gmail.com)
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Figure 1: Comparison of LAM [Gu and Dong, 2021]. DIIN bene-
fits from a significantly larger receptive field compared to LIIF and
SRNO, allowing it to incorporate broader contextual cues. As a re-
sult, it produces more accurate and visually consistent reconstruc-
tions, particularly in regions with complex structures or boundaries.

based SR methods [Chen et al., 2021; Lee and Jin, 2022;
Chen et al., 2023] have achieved impressive performance by
modeling image signals as continuous functions. Specifically,
this type of method fits desired coordinates into the implicit
neural function parameterized by a neural network to query
image pixels at any position. In this way, the correspond-
ing pixel signal can be generated directly at any coordinate,
eliminating the constraints of pre-defined scales. However,
most existing ASSR methods rely on point-wise multi-layer
perceptions (MLPs) to parameterize the implicit neural func-
tion. However, such a design inherently treats different query
positions independently, thus limiting the flow of contextual
information between pixels. As illustrated in Figure 1, LIIF
[Chen et al., 2021] and SRNO [Wei and Zhang, 2023] operate
with restricted receptive fields, relying on limited contextual
cues. In contrast, our proposed method expands the receptive
field and adaptively incorporates relevant information from
surrounding pixels.

The above observations motivate us to incorporate more
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contextual information in implicit neural representation. To
this end, we rethink the modeling process of the implicit neu-
ral functions to inject neighborhood interaction and attempt to
re-project the forward process of implicit neural functions as
a signal diffusion process, where the signal transmission be-
tween different query locations adapts over time. Specifically,
we define the diffusion rate to depict the mutual influence be-
tween any two nodes at a certain time step. The diffusion rate
can measure the rate at which the signal flows from one node
to another.

Inspired by the above analysis, we can derive the diffu-
sion implicit function that describes the state updates of all
nodes at each time step, and propose an efficient Diffusion
Iterative Implicit Network (DIIN) with global signal flows
for arbitrary-scale SR, which mainly consists of stacked dif-
fusion iteration layers to help the sampled representations
undergo iterative updates layer by layer. In this way, our
method explicitly captures the dependencies between query
locations and fully utilizes the contextual information in the
image space. Furthermore, we introduce a set of adaptive to-
ken dictionaries, which interact with the latent code output
from the encoder through a cross-attention module in an end-
to-end manner to generate sparse representations in the im-
age feature space. These token dictionaries provide auxiliary
information support for the iterative updates of each query
point, effectively addressing the problem of incomplete con-
textual information due to the random sampling of HR co-
ordinates. Besides, we introduce a position-aware Embed-
ding Block, which adaptively modulates the sampled features
based on query coordinates, thereby enhancing the spatial de-
pendencies between subsequent input samples.

The main contributions are summarized as follows:

• We rethink the forward process of implicit neural func-
tions as a signal diffusion process, and propose a
novel Diffusion Iterative Implicit Network (DIIN) with
stacked diffusion iteration layers to promote global sig-
nal flow with neighborhood interactions.

• We further introduce a set of adaptive tokens through
cross-attention modules, interacting with the latent
codes output by the encoder to generate sparse image
feature space representations. This design effectively
supports the iterative update of query points, addressing
the issue of incomplete contextual information.

• Extensive experiments demonstrate the effectiveness of
our method over other state-of-the-art methods across
various in-distribution and out-of-distribution upsam-
pling factors.

2 Related Work
2.1 Implicit Neural Representation
Implicit neural representations (INR) build the mapping be-
tween coordinates and their signal values using a neural net-
work, enabling continuous and memory-efficient modeling
for various signal types (e.g., 1D audio [Gao et al., 2022], 2D
images [Tancik et al., 2020], 3D shapes [Park et al., 2019;
Mildenhall et al., 2020]). In recent years, implicit neural rep-
resentations have seen significant advancements in 2D appli-

cations, such as image representation [Sitzmann et al., 2020;
Xie et al., 2023] and image super-resolution [Liang et al.,
2021; Lee and Jin, 2022]. For image super-resolution, [Chen
et al., 2021] proposed a method that uses implicit functions
to model continuous image signals. This approach no longer
relies on fixed-resolution storage of image signals, but can
directly generate corresponding signal values at arbitrary co-
ordinates, thereby overcoming the limitations of traditional
methods that depend on predefined scales, offering greater
flexibility and accuracy.

2.2 Single Image Super-Resolution
Single Image Super-Resolution (SISR) aims to reconstruct
high-resolution (HR) images from low-resolution (LR) obser-
vations, with the goal of improving perceptual quality while
accurately recovering spatial details. Since the introduc-
tion of SRCNN [Dong et al., 2015], the first deep learning-
based SISR model, various implementation architectures
have emerged in the field with the development of new mod-
els. For example, CNN-based methods [Dai et al., 2019;
Lim et al., 2017; Zhang et al., 2018; Kim et al., 2016],
transformer-based methods [Liang et al., 2021; Dai et al.,
2024; Zhang et al., 2024; Guo et al., 2024a], diffusion-based
methods [Saharia et al., 2021; Xia et al., 2023; Wang et al.,
2024b; Guo et al., 2024b; Wu et al., 2024; Wang et al., 2024a;
Lin et al., 2024], and SSM-based methods [Guo et al., 2024d;
Ren et al., 2024; Guo et al., 2024c] have driven the develop-
ment of the field, each leveraging the unique characteristics
of their respective architectures. However, these methods are
limited to fixed scales, which makes them less suitable for
real-world applications where continuous scaling adjustments
are required.

2.3 Arbitrary-Scale Super-Resolution
To overcome the above limitation, Arbitrary-Scale Super-
Resolution (ASSR) has become a prominent research focus,
allowing image reconstruction at any up-sampling factor with
a single model. MetaSR [Hu et al., 2019] is among the
first works to tackle this problem, introducing a meta-upscale
module that predicts convolutional filter weights based on co-
ordinates and scaling factors. Inspired by INR, LIIF [Chen
et al., 2021] learns implicit features from local regions to
predict the RGB value at arbitrary coordinates. Subsequent
works have focused on improving performance by incorpo-
rating more features into the MLP-parameterized continuous
function. For instance, LTE [Lee and Jin, 2022] proposed
a local texture estimator that maps coordinates to Fourier do-
main information, enhancing the expressive power of its local
implicit function. CLIT [Chen et al., 2023] combines local
attention mechanisms with frequency encoding techniques
to enhance the ability to capture fine details. Meanwhile,
an accumulative training strategy and a cascaded framework
are employed to optimize the training process. Although
these INR-based methods achieve state-of-the-art results in
arbitrary-scale super-resolution, they often parameterize the
implicit neural function using point-wise MLPs, which re-
sults in the independence of different query positions, limit-
ing the signal flow between pixels.
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(b) Diffusion Iteration Layer (l-th)

(a) The framework of DIIN.

(c) Position-Aware Embedding Block (PAEB)

(d) Diffusion Implicit Block

Figure 2: The overall architecture of our Diffusion Iteration Image Network (DIIN) comprises N Diffusion Iteration Layers, each imple-
menting a Diffusion Iterative Implicit Function. Each layer consists of a Dictionary Cross-Attention Block (DCAB) and a Diffusion Implicit
Block (DIB).

3 Method
3.1 Signal Diffusion Perspective
We propose the Diffusion Iterative Implicit Network (DIIN)
to address the limitations of existing implicit neural represen-
tation methods, which either lack contextual interaction or
suffer from high computational complexity. Our method re-
thinks the forward computation of implicit neural functions
as a dynamic signal diffusion process, enabling efficient and
adaptive information propagation between query positions
while maintaining linear computational complexity.

Inspired by the analogy between neural network compu-
tation and heat conduction in thermodynamics [Wu et al.,
2023], we model the signal flow between query positions as
a dynamic diffusion process. This process is governed by a
diffusion rate Sij(Z(t), t), which measures the influence of
node. The diffusion process is expressed as:

∂zi(t)

∂t
=

N∑
j=1

Sij(Z(t), t)(zj(t)− zi(t)) (1)

Using a numerical finite difference method, we discretize the
above equation into an iterative update form:

z
(k+1)
i = αz

(k)
i + (1− α)

N∑
j=1

S
(k)
ij z

(k)
j (2)

where α is a constant and S
(k)
ij is the diffusion rate matrix. By

making different assumptions, this framework can generalize
existing models, such as:

• MLP: When S
(k)
ij is an identity matrix, each query po-

sition is computed independently.

• Attention: When S
(k)
ij allows interactions between all

positions, the model captures global dependencies but
incurs quadratic complexity.

3.2 Diffusion Iterative Implicit Function (DIIF)
DIIF combines the strengths of MLPs and attention mech-
anisms by efficiently modeling contextual interactions with
linear complexity. It represents the image signal as a con-
tinuous function, taking the latent code M extracted by an
encoder and query coordinates xq as input to predict pixel
values at specified coordinates:

I(xq) = fθ(M, xq) (3)

For a set of query coordinates xq , the corresponding latent
codes X are retrieved from M and passed through a neural
network with layers f (l):

Z(0) = X

Z(l+1) = f (l)(Z(l)), l = 0, 1, . . . , L− 1

Ŷ = f (L)(Z(L))

, (4)

where X represents the corresponding latent codes, and Ŷ is
the output prediction. To model dependencies between query
coordinates, DIIF adopts the iterative update function from
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Eqn. 2. The diffusion rate Ŝ
(k)
ij is computed as:

Ŝ
(k)
ij =

f(∥z(k)i − z
(k)
j ∥22)∑N

l=1 f(∥z
(k)
i − z

(k)
l ∥22)

, 1 ≤ i, j ≤ N (5)

where f(
∥∥∥z̃(k)i − z̃

(k)
j

∥∥∥2
2
) measures the signal flow between

nodes (i, j). To reduce complexity from O(N2) to O(N),
we approximate the diffusion rate using a dot-product with
L2 normalization:

ω
(k)
ij = f(

∥∥∥z̃(k)i − z̃
(k)
j

∥∥∥2
2
) = 1+

(
z
(k)
i∥∥∥z(k)
i

∥∥∥
2

)T(
z
(k)
j∥∥∥z(k)
j

∥∥∥
2

)
(6)

Furthermore, the computation of the aggregated signal flow
is expressed as:

N∑
j=1

S
(k)
ij z

(k)
j =

N∑
j=1

1 + (z̃
(k)
i )⊤z̃

(k)
j∑N

l=1

(
1 + (z̃

(k)
i )⊤z̃

(k)
l

)z(k)j

=

∑N
j=1 z

(k)
j +

(∑N
j=1 z̃

(k)
j · (z(k)j )⊤

)
· z̃(k)i

N + (z̃
(k)
i )⊤

∑N
l=1 z̃

(k)
l

(7)

To enhance contextual modeling, we introduce an auxil-
iary adaptive token dictionary. This dictionary learns prior
contextual information from the input data and aligns it with
specific test images. The Diffusion Iterative Implicit Function
is modified as:

z
(k+1)
i = αz

(k)
i + (1− α)

N∑
j=1

(S
(k)
ij +A

(k)
ij )z

(k)
j (8)

This integration ensures robust predictions by leveraging
both contextual and adaptive information, enabling efficient
and accurate super-resolution across arbitrary scales.

3.3 Network Architecture
Based on the above discussion, we modeled the proposed Dif-
fusion Iteration Implicit Networks (DIIN), as illustrated in
Figure 2. In this section, we will provide a detailed expla-
nation of the implementation of each corresponding module.
Position-Aware Embedding Block. To enhance the spatial
dependencies between input samples in the Diffusion Iter-
ation Image Function, we generate conditional embeddings
using coordinate and scale information. These conditional
embeddings are used to adaptively modulate the sampled fea-
tures, thereby strengthening the spatial correlation between
input samples. This process provides more distinctive fea-
tures for the subsequent diffusion process.

Specifically, given query HR coordinates xq ∈ xHR, the
corresponding input features zq ∈ Rd for the Diffusion Itera-
tion Layer are obtained through modulation by the Positional-
Aware Embedding Block (PAEB):

zq = PAEB(â(xq),∆ ˆcoord(xq), cell), (9)

∆ ˆcoord(xq) = Concat({xq − x̂l}4l=1), (10)

â(xq) = Concat({sl · al}4l=1), (11)

where xl and al represent the coordinates and correspond-
ing features of the four neighbors of xq , respectively.
∆ ˆcoord(xq) denotes the relative coordinates between xq and
its four neighbors. sl is the feature integration weight used
to reduce blocky artifacts generated by direct interpolation of
low-resolution feature maps. cell = (2/rx, 2/ry) represent a
local region of size rx× ry in HR image, where rx and ry are
the scaling factors.

As depicted in Figure 2(c), ∆ ˆcoord(xq) and cell are pro-
cessed through two separate MLPs to obtain their respective
embeddings. These embeddings are subsequently fused to
produce the corresponding conditional embedding. This con-
ditional embedding is then used to adaptively modulate the
sampled features, resulting in the initial embeddings Z(0)

q for
the Diffusion Iteration Layer.
Diffusion Implicit Block. As shown in Figure 2(b), we
model the implicit iterative process at each layer based on
Eqn. 7, where the input features are transformed into Q, K,
and V , resulting in the following expressions:

R = diag−1
(
N + Q̃

(
(K̃)⊤1

))
, (12)

P = R
[
1
(
1⊤V

)
+ Q̃

(
K̃⊤V

)]
, (13)

where 1N×1 is an all-one vector, Q̃ = L2(Q) and K̃ =
L2(K) denotes L2 normalization applied to the query and
key vectors, respectively.

Specifically, given the input features of each layer Z ∈
RH×W×C , we first apply a 1 × 1 convolution layer to trans-
form the features. The resulting features are then divided into
three branches: (1) Two branches undergo L2 normalization
to generate the query vector Q and key vector K, which are
used to compute attention weights; (2) The third branch re-
tains the unnormalized features V as the value for feature
enhancement.

Subsequently, the diagonal matrix R and the weighted fu-
sion of V are calculated based on Eqn.12 and Eqn.13, produc-
ing the final output P. The diagonal matrix R balances fea-
ture importance by aggregating global and local information,
while the subsequent feature aggregation combines global
pooling and local attention to effectively integrate global and
local dependencies, yielding the enhanced features.
Dictionary Cross-Attention Block. Since query points are
randomly sampled from the HR image, the input samples lack
complete contextual information. To address this, we employ
an adaptively refined token dictionary to provide auxiliary
support for the iterative updates of each query point.

Inspired by [Zhang et al., 2024], we introduce an additional
dictionary, D ∈ RM×d, initialized as network parameters to
encapsulate external priors during training. As illustrated in
Figure 2, the learned token dictionary D interacts with the
latent code X via a cross-attention block (CSB) to adaptively
capture global information, which serves as auxiliary input
for the subsequent Diffusion Iteration Layer. The dictionary
D is further used to generate the Key dictionary KD and the
Value dictionary VD. Simultaneously, the input feature X ∈
RN×d generates Query tokens:

QX = XWQ, KD = DWK , VD = DWV , (14)
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Encoder Method In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

- Bicubic 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59

E
D

SR
baseline

EDSR only 34.52 30.89 28.98 - - - - -

MetaSR 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
LIIF 34.67 30.96 29.00 26.75 23.71 22.17 21.28 20.48
LTE 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
CLIT 34.81 31.12 29.15 26.92 23.83 22.29 21.26 20.53
SRNO 34.85 31.11 29.16 26.90 23.84 22.29 21.27 20.56

DIIN (ours) 34.87 31.13 29.18 26.92 23.86 22.31 21.32 20.61

R
D

N

RDN only 34.59 31.03 29.12 - - - - -

MetaSR 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47
LIIF 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59
LTE 35.04 31.32 29.33 27.04 23.95 22.40 21.36 20.64
CLIT 35.10 31.39 29.39 27.12 24.01 22.45 21.38 20.64
SRNO 35.16 31.42 29.42 27.12 24.03 22.46 21.41 20.68

DIIN (ours) 35.17 31.44 29.43 27.13 24.05 22.49 21.44 20.70

Table 1: Quantitative comparison with state-of-the-art methods for arbitrary-scale super-resolution on the DIV2K validation set (PSNR in
dB). In each column, the best result is highlighted in red, while the second-best result is highlighted in blue. ‘-’ indicates that the result is
unavailable in the literature or the model’s source code has not been released.

where WQ ∈ Rd×d/r, WK ∈ Rd×d/r, and WV ∈ Rd×d

are linear transformation matrices for the query tokens, key
dictionary tokens, and value dictionary tokens, respectively.
Then, we use the key dictionary and the value dictionary to
enhance query tokens via cross-attention calculation:

A = SoftMax(Simcos(QX ,KD)/τ),

DCAB(QX ,KD,V D) = S,A.
(15)

where τ is a learnable parameter used to adjust the range
of similarity values, and Simcos(·, ·) denotes the calculation
of cosine similarity between two tokens. The output of the
DCAB is divided into two parts: S = A · V D, which repre-
sents the auxiliary information obtained from the token dic-
tionary, used for the iterative update of each query point, and
A, the attention map calculated, which is used for the subse-
quent adaptive refinement of the token dictionary.
Diffusion Iteration Layer. As shown in Figure 2(b), the
DIL serves as the core module of our method, compris-
ing the Diffusion Implicit Block (DIB) and the Dictionary
Cross-Attention Block (DCAB). The first DIL layer takes two
inputs: (1) features modulated by the Position-Aware Em-
bedding Block, which integrates coordinate information and
latent codes, and (2) a token dictionary adaptively refined
through cross-attention with the encoder’s latent codes. For
subsequent layers, the input is the output of the previous layer.

Specifically, Z(l−1) is obtained by combining the DIB out-
put P and the DCAB output S through addition, followed
by a 1 × 1 convolution. Finally, the learned parameter α1 is
applied to adaptively combine the results, producing Z(l):

Z(l) = Conv(P + S) + αZ(l−1), (16)
To adaptively refine the token dictionary, we select the cor-

responding enhanced feature Z(l) to reconstruct the new to-

ken dictionary D(l):

D̂
(l)

= SoftMax(Norm(A(l)T ))X(l+1),

D(l) = σD̂(l) + (1− σ)D(l−1),
(17)

where Norm is normalization layer to adjust the range of at-
tention map, and σ is a learnable parameter.

4 Experiments
4.1 Experiments Setting
Datasets. Similar to [Chen et al., 2021; Wei and Zhang,
2023], we use 800 high-quality images with a 2K resolu-
tion from the DIV2K [Agustsson and Timofte, 2017] dataset
as training data. During testing, the model is evaluated on
the DIV2K validation set and several commonly used bench-
mark datasets, including Set5 [Bevilacqua et al., 2012], Set14
[Zeyde et al., 2010], B100 [Martin et al., 2001] and Urban100
[Huang et al., 2015]. Following previous works [Chen et al.,
2021; Wei and Zhang, 2023], we evaluated HR image quality
using PSNR, calculated on the RGB channels for DIV2K and
on the Y channel (YCbCr space) for other benchmarks.
Implementation Details. We primarily follow the previous
implementation [Chen et al., 2021; Wei and Zhang, 2023], us-
ing Bicubic downsampling [Boor, 1962] in PyTorch to obtain
paired data for training an arbitrary-scale super-resolution
model. Specifically, we crop 128s × 128s patches as ground
truth (GT), where s is a scaling factor sampled from the
uniform distribution U(1, 4). We use the existing SR mod-
els, such as EDSR [Lim et al., 2017] and RDN [Zhang et
al., 2018], as backbones without their upsampling modules
to evaluate various arbitrary-scale upsampling methods. We
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Encoder
Database Set5 Set14

Method In-distribution Out-of-distribution In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8 ×12 ×2 ×3 ×4 ×6 ×8 ×12

R
D

N

RDN only 38.24 34.71 32.47 - - - 34.01 30.57 28.81 - - -

MetaSR 38.22 34.63 32.38 29.04 26.96 - 33.98 30.54 28.78 26.51 24.97 -
LIIF 38.17 34.68 32.50 29.15 27.14 24.86 33.97 30.53 28.80 26.64 25.15 23.24
LTE 38.23 34.72 32.61 29.32 27.26 24.79 34.09 30.58 28.88 26.71 25.16 23.31
CLIT 38.26 34.79 32.69 29.39 27.34 - 34.21 30.66 28.98 26.83 25.35 -
SRNO 38.32 34.84 32.69 29.38 27.28 - 34.27 30.71 28.97 26.76 25.26 -

DIIN (ours) 38.30 34.83 32.72 29.40 27.32 24.89 34.26 30.72 28.98 26.78 25.30 23.36

Database B100 Urban100

R
D

N

RDN only 32.34 29.26 27.72 - - - 32.89 28.80 26.61 - - -

MetaSR 32.33 29.26 27.71 25.90 24.97 - 32.92 28.82 26.55 23.99 22.59 -
LIIF 32.32 29.26 27.74 25.98 24.91 23.57 32.87 28.82 26.68 24.20 22.79 21.15
LTE 32.36 29.30 27.77 26.01 24.95 23.60 33.04 28.97 26.81 24.28 22.88 21.22
CLIT 32.39 29.33 27.80 26.07 25.00 - 33.14 29.05 26.93 24.44 23.04 -
SRNO 32.43 29.37 27.83 26.04 24.99 - 33.33 29.14 26.98 24.43 23.02 -

DIIN (ours) 32.45 29.38 27.82 26.08 25.03 23.64 33.34 29.17 26.99 24.45 23.05 21.25

Table 2: Quantitative comparison with state-of-the-art methods for arbitrary-scale super-resolution on the Set5, Set14, B100 and Urban100
(PSNR in dB). In each column, the best result is highlighted in red, while the second-best result is highlighted in blue. ‘-’ indicates that the
result is unavailable in the literature or the model’s source code has not been released.

In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×12 ×18

DIIN 34.87 31.13 29.18 26.92 23.86 22.31
DIIN (-c) 34.81 31.07 29.13 26.84 23.79 22.25
DIIN (-p) 34.84 31.10 29.15 26.88 23.83 22.29
DIIN (-a) 34.79 31.05 29.11 26.83 23.78 22.24
DIIN (-d) 34.73 31.02 29.07 26.80 23.73 22.19

Table 3: Ablation study on TD and PAEB. -c/p/a refers to removing
the token dictionary, the position-aware embedding block, and both,
respectively. -d indicates using an identity matrix for the diffusion
rate, replacing the Diffusion Iteration Layer with a linear layer.

train all models with the Adam optimizer [Kingma and Ba,
2015], starting from an initial learning rate of 4 × 10−5 and
minimizing the L1 loss for 1500 epochs using a batch size of
32. The learning rate is updated by a cosine-annealing sched-
ule every 50 epochs. All experiments are implemented in Py-
Torch [Paszke et al., 2019] and executed on four NVIDIA
RTX 3090 GPUs.

4.2 Comparisons With State-of-the-Art
Quantitative Results. Table 1-2 present a quantitative com-
parison of the proposed DIIN method with existing arbitrary-
scale SR methods, including MetaSR [Hu et al., 2019], LIIF
[Chen et al., 2021], LTE [Lee and Jin, 2022], CLIT [Chen et
al., 2023], and SRNO [Wei and Zhang, 2023]. We evaluate
the performance of EDSR [Lim et al., 2017] and RDN[Zhang
et al., 2018] as backbones across five test datasets, consider-
ing upsampling factors ranging from ×2 to ×30. Table 1 sum-
marizes the quantitative results in terms of PSNR (dB) on the
DIV2k dataset. It can be observed that our DIIN model con-

Layers N In-distribution Params (M) Inference time (s)×2 ×3 ×4
N = 1 34.79 31.05 29.09 2.2 1.19
N = 2 34.87 31.13 29.18 2.7 1.94
N = 3 34.88 31.14 29.19 3.2 2.71
N = 4 34.88 31.14 29.20 3.7 3.45

Table 4: Comparison of performance gain, parameters and inference
times of different depths.The inference time refers to the average
duration required by the model to process the DIV2K validation set
on an NVIDIA RTX 3090 GPU.

sistently delivers outstanding super-resolution performance
across all scaling factors, with up to a 0.05dB improvement
over the second-best performer. Notably, our method demon-
strates significant performance gains at the ×30 scaling factor,
even surpassing some methods that use RDN as the encoder.
Table 2 compares DIIN with prior works [Chen et al., 2021;
Wei and Zhang, 2023] on widely-used benchmark datasets,
including Set5 [Bevilacqua et al., 2012], Set14 [Zeyde et al.,
2010], B100 [Martin et al., 2001], and Urban100 [Huang et
al., 2015], using RDN as the backbone. We observe that DIIN
consistently achieves either the best or second-best perfor-
mance across these benchmark datasets, further demonstrat-
ing the effectiveness of our method.
Qualitative Results. In Figure 3, we present a qualitative
comparison with other arbitrary-scale super-resolution (SR)
methods. Our model demonstrates the ability to generate
SR images with sharper and more coherent textures, partic-
ularly excelling in areas with regular patterns. In the first-row
example, our approach effectively restores the smoothness
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Urban100: img 004 (×6.6) SRNO DIIN HR

Bicubic LIIF LTE

Urban100: img 040 (×6.6) SRNO DIIN HR

Bicubic LIIF LTE

Figure 3: Comparison of super-resolution visual effects using different models. In challenging restoration regions, such as densely packed
lines and areas with holes, our method demonstrates a clear advantage over previous approaches, achieving superior detail recovery.

and sharpness of lines while avoiding jagged artifacts. Ad-
ditionally, it achieves more accurate recovery of hole edges
and successfully suppresses artifacts in complex reflective re-
gions. More visual results from the test set are provided in the
supplementary material. Additional qualitative results can be
found in the supplementary materials.

4.3 Ablation Study
In this section, we present a series of ablation studies to vali-
date the design decisions proposed in this paper. All ablation
experiments are conducted on the DIV2K validation set, us-
ing EDSR [Lim et al., 2017] as the encoder baseline, and
evaluated using the PSNR metric.
Validation of the Design Choices. To validate the effective-
ness of each component in the proposed DIIN model, we con-
structed three models and compared their performance on im-
age super-resolution tasks. Table 3 summarizes the quantita-
tive contributions of these components. The results show that
incorporating the Diffusion Iteration Layer significantly im-
proves performance. Removing the Token Dictionary leads
to some performance degradation, indicating its role in effec-
tively supplementing information. Additionally, replacing the
Position-Aware Embedding Block with a simple 1×1 convo-
lution results in noticeable performance degradation, further
demonstrating that using coordinate information to modulate
features enhances spatial dependencies among input samples,
thereby improving overall performance.
Effectiveness of Different Designs of Diffusion Iteration
Layer. We evaluated the model’s performance, parameter
count, and inference time at different depths (number of lay-
ers N ) to analyze the impact of iterative layers on the perfor-

mance of the Diffusion Iteration Layer. As shown in Table 4,
increasing the model depth leads to improved performance
(PSNR) across different scaling factors (×2,×3,×4), with
particularly significant gains observed for smaller scaling fac-
tors (×2 and ×3). However, the marginal performance gains
diminish as the depth further increases, while both the param-
eter count and inference time grow substantially. Balancing
performance and computational cost, we ultimately selected
N = 2 as the hyperparameter setting for our method.

5 Conclusion
In this paper, we rethink the modeling of implicit neural
functions by introducing neighborhood interactions and re-
defining the forward process as a signal diffusion mecha-
nism. To achieve this, we propose Diffusion Iterative Im-
plicit Networks (DIIN), which efficiently promotes global
signal flow with linear complexity. Key components such
as the Dictionary Cross-Attention Block and the Position-
Aware Embedding Block enhance contextual awareness and
spatial dependencies, respectively. Experiments on bench-
mark datasets demonstrate that DIIN achieves state-of-the-
art performance in arbitrary-scale super-resolution tasks, with
significant improvements in detail restoration and contextual
modeling. Ablation studies confirm the effectiveness of each
module in the proposed framework. Looking ahead, DIIN
could be extended to tasks like 3D reconstruction or video
super-resolution, while further optimization may enhance its
practicality in real-time applications. Our work establishes a
promising direction for advancing implicit neural representa-
tion techniques.
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