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Abstract

Reinforcement Learning (RL), trained via trial
and error in simulators, has been proven to be
an effective approach for addressing task assign-
ment problems in spatial crowdsourcing. However,
a performance gap still exists when transferring
the simulator-trained RL Models (RLMs) to real-
world settings due to the misalignment of travel
time. Existing works mostly focus on using data-
driven and learning-based methods to predict travel
time; unfortunately, these approaches are limited in
achieving accurate predictions by requiring a large
amount of real-world data covering the entire state
distribution. In this paper, we propose a Sim-to-
Real Transfer with Human-guided Language Mod-
els framework called HLMTrans, which comprises
three core modules: RLMs decision for task assign-
ment, sim-to-real transfer with large language mod-
els (LLMs), and preference learning from human
feedback. HLMTrans first leverages the zero-shot
chain-of-thought reasoning capability of LLMs to
estimate travel time by capturing the real-world dy-
namics. This estimation is then input as domain
knowledge into the forward model of Grounded
Action Transformation (GAT) to enhance the ac-
tion transformation of RLMs. Further, we design a
human preference learning mechanism to fine-tune
LLMs, improving their generation quality and en-
abling RLMs learn a more realistic policy. We eval-
uate the proposed HLMTrans on two real-world
datasets, and the experimental results demonstrate
that HLMTrans outperforms the SOTA methods.

1 Introduction

Task assignment [Li ef al., 2024; Li et al., 2025] is a crit-
ical problem aimed at maintaining the operation of Spatial
Crowdsourcing (SC) platforms (e.g., Uber, Gigwalk, and
Waze). Recently, Reinforcement Learning (RL) methods
have demonstrated remarkable success in addressing task as-
signment challenges through trial and error in simulators [Li
et al., 2023; Wang et al., 2023; Wu et al., 2024], which
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Figure 1: A toy example with sim-to-real gap in travel time.

are valuable tools for training RL models (RLMs) by pro-
viding simplified and controlled environments compared to
the complexities of real-world settings. However, due to dis-
crepancies in system dynamics between training simulators
and actual road conditions, a notable performance gap (i.e.,
sim-to-real gap [Da et al., 2023]) emerges when transferring
simulator-trained RLMs to real-world environments.

The misalignment of travel time is a key factor contribut-
ing to the sim-to-real gap, as travel time calculations in sim-
ulated environments usually rely on simplified distance-time
relationships or fixed traffic parameters, failing to capture the
system dynamics of real-world road conditions [Da et al.,
2024]. As shown in Fig. 1, we assume that the RLM’s optimal
assignment policy in the simulator is {(ws,71), (w3, 72)},
yielding a total travel time of 3 (=142). However, in the real
world, traffic congestion (i.e., red roads) leads to an increase
in total travel time to 9 (=3+6), even though the travel distance
remains unchanged. In this case, the optimal assignment pol-
icy becomes { (w1, 71), (w2, 72)}, with a total travel time of 5
(=2+3).

Existing studies on travel time estimation can be cate-
gorized into two types: data-driven and learning-based ap-
proaches. Data-driven methods typically divide a route into
discrete segments and predict travel time for each using rule-
based [Wang et al., 2014], statistical [Wang et al., 2023],
or spatio-temporal pattern analysis techniques [Tang et al.,
2018]. These methods overlook the dynamics and uncertainty
of traffic systems, such as intersection and traffic light delays,
reducing segment-level accuracy and causing cumulative er-
rors and biases. Moreover, the impact of personalized prefer-
ences on travel time is often neglected when routes are treated
as simple sequences of road segments, such as workers may
prioritize time-efficient routes during peak hours but opt for
distance-efficient routes during off-peak hours. In contrast,
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learning-based approaches can directly predict travel time
for entire routes by leveraging deep learning models like
CNNs [Wang et al., 2018], RNNs [Ye et al., 2022], and
GNN s [Liu et al., 2024] to implicitly capture the interactive
relationships between intersections and road segments. How-
ever, their accurate predictions usually require large amounts
of real-world data covering the entire state distribution.

Therefore, mitigating the sim-to-real gap by aligning travel
time still faces the following challenges: 1) the real-world
data with system dynamics is both costly and sparse, mak-
ing it challenging to accurately estimate travel times in real-
world settings with limited data; 2) the workers’ preferences
for travel routes vary across different contexts, and these pref-
erence significantly impact travel time estimation, how to ef-
fectively capture these preferences is another challenge.

To tackle the above challenges, we propose HLMTrans, a
Sim-to-Real Transfer framework with Human-Guided Lan-
guage Models, aimed at bridging the performance gap be-
tween simulator-trained RLMs and real-world deployment
caused by travel time misalignment. In this framework,
we first propose a Large Language Models (LLMs)-based
method for operationalizing Grounded Action Transforma-
tion (GAT) [Hanna and Stone, 2017], which integrates
prompt generation and dynamics modeling modules to cap-
ture changes in system dynamics during sim-to-real trans-
fer. By leveraging LLMs with prompts and zero-shot chain-
of-thought reasoning, we can accurately estimate travel time
with limited data and enhance RLMs’ understanding of real-
world dynamics. Furthermore, we design a human prefer-
ence learning mechanism that fine-tunes LLMs using human
feedback, enabling them to align with human preferences and
improve the relevance and quality of their generations. Our
main contributions can be summarized as follows:

* We investigate the RLMs-based Task Assignment (RTA)
problem in spatial crowdsourcing, focusing on bridging
the performance gap between simulator-trained RLMs
and real-world settings due to travel time misalignment.
To this end, we propose HLMTrans, the first sim-to-real
transfer framework that leverages human-guided LLMs
to estimate travel times.

We present a Monte Carlo Graph Search-based method
to identify minimal congestion subgraphs affecting
worker-task travel times, serving as contextual prompts
to accelerate LLMs’ inference. Additionally, we intro-
duce a human preference learning mechanism to fine-
tune LLMs with human feedback, enhancing its align-
ment with human preferences and generation quality.

We extensively evaluate HLMTrans against three widely
used benchmarks on two real-world datasets. The re-
sults demonstrate that HLMTrans outperforms state-of-
the-art methods, validating the effectiveness of HLM-
Trans.

2 Related Work

Sim-to-real Transfer. The sim-to-real transfer methods can
generally be divided into three main categories: 1) domain
randomization [Wu et al., 2023], aims to train policies ca-
pable of adapting to diverse environmental variations. This

approach leverages simulated data and is particularly benefi-
cial when handling uncertain or evolving target domains; 2)
domain adaptation [Bousmalis et al., 2018], aims to achieve
domain distribution shifts by aligning features between the
source and target domains. Many domain adaptation methods
emphasize bridging perception gaps in robotics [Fang et al.,
2018; James et al., 2019]. However, in travel time estimation,
the primary domain gap lies in dynamics rather than percep-
tion, since it typically represents observations in vectorized
forms, such as road-level worker number and average speed;
3) grounding methods, enhance simulator accuracy by cor-
recting biases relative to the real world. Recently, Grounded
Action Transformation (GAT) has shown significant promise
in sim-to-real transfer of traffic signal control [Da et al., 2024;
Da et al., 2023]. Different from system identification tech-
niques [Cutler et al., 2014; Cully et al., 2015] that estimate
precise physical parameters, GAT [Hanna and Stone, 2017,
Desai et al., 2020] adjusts the simulator’s dynamics to align
with real-world actions without requiring a parameterized
simulator for modification. Building on GAT, our HLMTrans
utilizes human-guided LLMs to estimate travel time and in-
puts it as domain knowledge into the forward model of GAT,
enhancing the action transformation of RLMs.

Large Language Models with Human Guidance. Large
Language Models (LLMs) have demonstrated exceptional
linguistic capabilities; however, their alignment with human
intentions remains challenging due to pre-training on large
and noisy datasets. Human guidance plays a pivotal role
in refining LLMs to generate coherent, ethical, and human-
aligned outputs [Vafa er al., 2024; Jagadish et al., 2024].
The traditional approach for fine-tuning LLMs based on hu-
man preferences involves learning a reward signal using the
Bradley-Terry model [Bradley and Terry, 19521, followed
by applying RL to optimize against the learned reward sig-
nal [Griffith et al., 2013; Christiano et al., 2017]. High-
quality human feedback datasets, including VisAlign [Lee et
al., 2023] and PKU-SafeRLHF [Ji et al., 2023], have fur-
ther enhanced LLMs’ ability to interpret and respond to di-
verse instructions. However, inconsistencies among anno-
tators and misalignments with human intentions can com-
promise the quality of feedback, posing challenges to effec-
tive model fine-tuning. Recent advancements, such as Direct
Preference Optimization (DPO)[Lee er al., 2023], provide a
model-free alternative that eliminates the need for explicit re-
ward learning. Inspired by DPO, we propose a human pref-
erence learning mechanism that enables fine-tuning of LLMs
using human feedback without an explicit reward model.

3 Preliminaries

3.1 Concepts of RTA and RL Solutions

On the SC platform, a road network, is denoted as a weighted
graph G =< V,E,U >, where v; € V is an intersection,
e;; € E is aroad that connects v; and v;, and u;; € U is the
weight of e;;, determined by factors such as road length and
road type. Users can dynamically publish spatial tasks at any
time, each of which can be denoted as 7 =< I,t,,d., pr >,
where [, € V is the task’s location, ¢, is the publish time,
d; is the task’s deadline, and p. is the payoff for serving
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Figure 2: An overview of HLMTrans.
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the task. Once tasks are published, the platform assigns mo-
bile workers to physically travel to the task locations and
complete them. Here, a worker can be denoted as a triplet
w =< ly, €y, Sw >, Where [, € V is the worker’s location,
cy 1S the worker’s status (i.e., idle or busy), and s,, is the
worker’s service range. The RTA problem can be formulated
as: Given a set of mobile workers W and a stream of spatial
tasks I', the problem aims to apply RLMs-based approaches
to find an assignment plan M = {(w,7)lw € W,T € I'}
that maximizes the platform’s total revenue E :

ey

where (w, 7) is a valid worker-task pair that satisfies the spa-
tiotemporal constraints (e.g., reach the specified location be-
fore the deadline), and R(w, T) = p; — k- T~ is the revenue
function, in which 7, is the travel time of w finishing 7, and
K is the travel cost per unit time.

The RTA problem is typically modeled as a Markov De-
cision Process (MDP), defined as M =< S, A, R, P,y >,
where S represents the state space, A represents the action
space, 7 € R is the reward obtained by executing action
a; € Ain state s; € S at time slice ¢, P is the probability
of transitioning from state s; to state s, after executing ay,
and v € [0, 1] represents the discount factor describing the
importance of future rewards. An RL approach solves this
problem by learning an optimal policy 7 that maximizes the
the long-term expectation of discounted accumulation reward
E(oayor[Sr—o v 47 (5, )], where (s, a) is the immediate
reward obtained by agent after executing action « in state s.

3.2 Grounded Action Transformation

The Grounded Action Transformation (GAT) is a frame-
work proposed to address the challenges of transferring poli-
cies learned in simulated environments to real-world appli-
cations [Hanna and Stone, 2017]. This framework focuses
on bridging the discrepancies between simulated dynamics
and real-world dynamics. Within the GAT framework, the
simulated environment F;,, is modeled as an MDP, where
the transition dynamics, parameterized as Py(-|s, a), is im-

perfect but can be adjustable. By leveraging real-world tra-
jectories, GAT iteratively refines the simulated dynamics to
better reflect real-world behavior. Given a real-world trajec-
tory dataset D,...; = {01,09,...,0r}, where each trajectory
0; =< sh,ab,si,al,... sk | ak | sk > represents a se-
quence of states and actions collected by executing a policy
7 within the real-world environment E..,;. The goal of GAT
is to optimize ¢* such that the differences between the tran-
sition dynamics of the simulated environment and the real-
world environment is minimized:

T-1
o' =argmin 3 Y d(P()P(), @

0i€Deqr t=0

where P*(si,|si, ai) is the transition dynamics of E,cq,
Py(si,q]st, ay) is the transition dynamics of El;,, and d(-)
quantifies the discrepancy between P* and P.

Given the current state s; and the action a; predicted by
the policy 7, the grounded action a;, executed in F;,, ad-
justs the resulting next state s;11 in Eg;,, to approximate the
predicted next state 5,41 in E,..,;. This process ensures that
the simulated dynamics Pp (s;41]5¢, @) align closely with the
real-world dynamics P*(8;41|s¢,a;). Hence, the policy m,
trained in F;,, using Py, achieves dynamics more similar to
P*, reducing the performance gap when transferred to Fy.cq;.

4 Methodology

4.1 Overview

The overview of HLMTrans, as depicted in Fig. 2, consists
of three key components: (a) RLMs Decision for Task As-
signment, which employs the RLMs to dynamically allocate
tasks to workers based on real-time observed states, with
the objective of maximizing the platform’s total revenue, (b)
LLMs-based Sim-to-Real Transfer, which utilizes the LLMs
to bridge the sim-to-real gap by adapting simulated dynam-
ics to align with real-world dynamics, ensuring more reliable
policies, and (c) Preference Learning from Human Feedback,
which enables the LLMs to iteratively learn human prefer-
ences through interaction, using this knowledge to fine-tune
their generates and enhance the alignment between worker
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travel times and real-world settings, further improving the
RLMs’ performance.

4.2 RLMs Decision for Task Assignment

In this paper, we formulate the RTA problem as an MDP,
where the SC platform is treated as an agent that learns an
optimize policy through interactions with the environment.
Specifically, the agent observes real-time states, and makes
decisions for worker-task matching in a trial-and-error man-
ner. Next, we detail the modeling of state space .S, action
space A, and reward function R, as these are the critical com-
ponents in reinforcement learning.
State Space S. At any time slice ¢, the state s; € S can be
represented as a six-tuple: s, =< Dp,Lp, Ly, 1., 1, t >,
where D is the deadline distribution of unassigned tasks I,
L is the location distribution of unassigned tasks I, Lyy is
the location distribution of idle workers W, [.- is the location
of task 7 € I, and [, is the location of worker w € W.
Action Space A. During time interval At, the SC platform
accumulates a batch of unassigned tasks /" and a set of idle
workers W. For each task 7 € I', the agent observes the
current state s; and selects an action a; based on the learned
policy 7. For each worker w € W, the action a; is defined
as: a; = {0, 1}, where 1 indicates assigning the worker w to
7, and 0 indicates not assigning.
Reward Function R. After the agent executes action a; in
state s, it obtains a reward r, which is designed to reflect the
difference between task payoff and the travel cost incurred
by assigned worker. The reward can be calculated as: r =
R(’LU, T) =pPr — KR Jwr-

Following the previous works [Li et al., 2023; Wu ef al.,
2024], we use Deep Q-Network (DQN) algorithm to optimize
the RL policy of RTA problem.

4.3 Sim-to-Real Transfer with LLMs

Congestion Influence Subgraph. Identifying the Conges-
tion Influence Subgraph (CIS), which represents the minimal
traffic subgraph influencing the travel time from a worker’s
location to a task’s location, is a challenging issue due to the
complexity and dynamics of real-world road network. To ad-
dress this issue, we propose a Monte Carlo Graph Search-
based Congestion Influence Subgraph Identify (MCGS-CI)
algorithm for CIS identification. Compared with traditional
Monte Carlo Tree Search methods [Shi et al., 2021], which
rely on a tree structure for sequential decision-making, and
face limitations in such scenarios due to redundant node ex-
pansions and insufficient information sharing between nodes,
our approach explores a graph structure rather than a tree,
enabling effective information sharing across nodes and re-
ducing the number of required simulations [Xie ef al., 2024].
This design improves computational efficiency while main-
taining high accuracy in identifying the CIS.

Our MCGS-CI algorithm starts with an initial graph G =<
V,E,U >, where V represents all traffic intersections and F
denotes road segments with weights U. The algorithm dy-
namically builds and updates the graph structure during the
search process, using shared information from previously ex-
plored nodes to refine subsequent simulations. Specifically, it

balances exploration and exploitation by leveraging the Up-
per Confidence Bound (UCB) mechanism to guide the selec-
tion of the most promising paths within the graph. The key
steps of MCGS-CI algorithm are described as follow:

Initialization: The graph G is initialized with the worker’s
location [,, as the starting node and the task’s location [, as
the goal node. The weight u;; € U of edge e;; € I in G is

initialized to:
o .qil.— n
u;; = log (1 + 7?71],77 ) 3

ij Gmax

where /;; is the length of road segment e;;, and v;; denotes
the historical average travel speed on e;;. The term g;; indi-
cates the historical average traffic volume on e;;, while gpax 1S
the maximum capacity of e;;. n € [0, 1] is a hyper-parameter
that balances the travel time and congestion level.

1) Selection: Starting from ,,, the algorithm recursively
selects the neighboring nodes with weight not less than the
threshold o (i.e., u;; > o) based on the UCB formula F,,
and the score of child node v can be calculated as:

Fuer(v) = Sy + ay/2Inn/n,, 4

where S,, is the average score of child node v, n is the visit
count of the v’s parent node, n, is the visit count of child node
v, and « is a constant to balance exploration and exploitation.

2) Expansion: When the algorithm encounters an unex-
panded node, it incorporates the neighboring nodes into the
graph G.

3) Simulation: During the simulation phase, the algorithm
starts from the current node and performs simulation actions
to evaluate the feasibility of adding expanded nodes to the
graph G. It first checks whether the expanded node is valid
by determining if there exists a path through this node that
can reach the goal node /... If such a path exists, the algorithm
quantifies the node’s contribution to congestion by assigning
a weight, and its corresponding edge and node are incorpo-
rated into the graph G.

4) Backpropagation: After the simulation phase, the results
are propagated back through the explored graph, updating the
weights and visit counts of all nodes and edges along the
search path. Specifically, the weight of each edge on the path
is incremented by 1 to reflect its contribution to the current
simulation, and the visit count of each node is also increased
by 1. This process refines future decision-making by reinforc-
ing the importance of nodes that contribute to successful sim-
ulations, enabling the algorithm to prioritize promising paths
in subsequent explorations.

Terminal Condition: The search process continues until a pre-
defined number of iterations or [, is explored. The algorithm
then outputs the resulting subgraph G¢,. C G, consisting of
the nodes and edges with the higher cumulative impact on
travel time, as the identified CIS.

Prompt-based LLMs. Large Language Models (LLMs)
have demonstrated superior zero-shot and few-shot reason-
ing abilities by adapting to unseen tasks through in-context
learning [Alayrac er al., 2022]. Building on these capabili-
ties, we propose an LLMs-based approach to estimate travel
time from worker’s location to task’s location in a real-world
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road conditions. The LLMs (e.g., LLaMA) utilize the CIS,
denoted as G¢,. = (V¢ E°,U¢), and structured contextual
knowledge to achieve accurate travel time estimations. The
LLMs’ prompt template is defined as:

(Question) ([Context])( R Q)

where (Question) is the task description that LLMs require
reasoning, such as estimating the travel time from worker’s
location to task’s location, ([Context]) is structured knowl-
edge about worker-task pairs, traffic conditions, and do-
main info (e.g., weather, time of day, day of week), and
(Response) specifies the generate format of LLMs. For each
worker-task pair (w,T) € M, the context includes detailed
information as follows:

(CIS) (Locations) (Traffic) (Weather) (Day) (Time). (6)

The LLMs utilize the prompt structured in Eq. (5) to infer
the real-world travel time 7, :

Twr = LLM (Prompt(G, ., Dt, Ly, 1)), 7

where D; encodes contextual knowledge such as weather
conditions, traffic density, and time of day. Then, we fuse
Tw- and D; with the state feature:

zt = Concate(Tyr, Dt St), @®)

z; = ReLU (Linear(z)), ©)

where C'oncate denotes the concatenation operation, and z;
represents the temporary feature embedding.

Next, we use a forward model f,+ to predict the grounded
state §;41 in Freq as follow:

S¢41 = f¢+(st;atazt)7 (10)

where f,+ is implemented using a neural network and ¢ can
be optimized by minimizing the Mean Squared Error (MSE)
loss:

L(¢") = MSE(5{,,,5,,), (11)

where s{,a}, s}, are the ground trajectories sampled from
real-world environment E,..;.

Ultimately, we can predict the grounded action a; that can
enable the transition from state s, to state $;11 in Eg;,, by an
inverse model h-:

ar = hy—(8t41, 8t). (12)

Compared to the forward model f4+, which incorporates
detailed dynamics knowledge for precise state transitions,
hg-(8¢41,5¢) can operate with lower computational com-
plexity by relying solely on the observed states within the
simulators. Thus, we can implement the inverse model using
a neural network, and optimize it by minimizing the Categor-
ical Cross-Entropy (CE) loss:

L(¢~) = CE(ay, a}), (13)

where s}, a}, s, are the predicted trajectories sampled from
simulated environment E;,,.

4.4 Preference Learning from Human Feedback

To enable LLMs to estimate travel times in alignment with
human preferences, i.e., dynamically adjusting priorities such
as time and distance, we propose a Human Preference Learn-
ing Mechanism (HPLM). This mechanism introduces a pref-
erence vector p =< p1,pa, ..., Pn >, Where each p € [0, 1]
represents the importance of a specific factor (e.g., time, dis-
tance, and road type) derived from human feedback. Assum-
ing a dominant preference is specified, such as pj, (e.g., prior-
itizing distance), py can be set to 1, while other components
of p are set to 0. Accordingly, the input prompt is refined
to embed p, ensuring that the LLMs’ generations align with
human preferences:

Twr = LLM (Prompt(Gy,., Dt, lw, I+, P))- (14)

Given a preference dataset D, = {(z;, Tw,r, Twir) M.,

where x; is the LLMs’ input prompt, 7,,,, denotes the dis-
preferred output (abbreviated as 7), and 7~Zum represents the
preferred output (abbreviated as ’7), the optimal LLM pol-
icy 7* under the Bradley-Terry model [Rafailov et al., 2023]
satisfies the following preference probability:

p (T =Tlz)=6 (w log T (T|x))

m (T |x

™ (Tlx)
m(Tlz) )’
15)

where § denotes the logistic function, and w is a scaling pa-
rameter that represents the divergence from the basic LLM
policy m;, which does not incorporate human preference
adaptation.

To fine-tune the LLMs’ preference policy 7, we define a
negative log-likelihood loss function based on the preference
probability p*:

L(mp;m) )
=-Ep, _logé (rf(:v,'%) - 7’1*(%7-))}

— wlog

=-Ep, _1ogp*(7~‘ - 7-|x)}
| (T ) (T z)
= —Ep, |logéd | wlog L= —wlog -2,
o (w T m(TIe)

(16)
where 7} (-) is a reward model that scores LLMs’ outputs to
align with human preferences. This loss function guides the
LLMs to assign higher probabilities to preferred responses
while minimizing those for dispreferred ones. By iteratively
updating the policy 7, through HPLM, the LLMs can adapt
to nuanced preference shifts influenced by contextual fac-
tors such as day-of-week, time-of-day, or weather conditions,
thereby generating more accurate and context-aware travel
time estimates.

5 Experiments

5.1 Experimental Settings

In this section, we conduct extensive evaluations of HLM-
Trans on two real-world datasets, comparing it with three
state-of-the-art methods to demonstrate its effectiveness.
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Parameters

Values

# of workers |W| (CD)

# of workers |IW| (XA)

# of spatial tasks |I"| (CD)

# of spatial tasks |I"| (XA)
The deadline of tasks d. (CD)
The deadline of tasks d, (XA)

The large language models

100, 200, 300, 500, 800

50, 80, 100, 200, 300

5K, 8K, 10K, 20K, 30K
1K, 2K, 3K, 5K, 10K
1,3,5,8, 10 (min)
1,2,3,4,5 (min)
ChatGLM3-6B, Qwen2-7B
LLaMA2-7B, LLaMA3-8B

Table 1: Experimental Settings.

Datasets. The Chengdu (CD) and Xian (XA) datasets
are selected to evaluate our proposed approaches. Each
dataset comprises two main components: road network data
and order data. The road network data is extracted from
OpenStreetMap!, representing the intricate road networks of
Chengdu, with 36,630 nodes and 50,786 edges, and Xian,
with 7,215 nodes and 9,643 edges. The order data, which
forms the basis for task generation, is sourced from taxi or-
ders collected by Didi Chuxing?. The Chengdu dataset con-
tains 546,671 orders recorded from November 1 to 8, 2016,
while the Xian dataset includes 102,674 orders recorded from
October 1 to 8, 2016. Each order is a six-tuple, including
order index, origin, destination, departure time, arrival time,
and travel trajectory. In the experiments, we use the order’s
travel trajectory to calculate its real-world travel time, and
the road network distance to calculate its simulated travel
time. The experimental parameters are summarized in Ta-
ble 1, where bold values indicate default parameter values.
Compared Methods. We compare the performance of HLM-
Trans with three approaches: dTrans [Wu et al., 2024] (a
direct transfer method which deploys the RLM trained in
Eginm to make decisions in E,..,; without adaptation), MulT-
TTE [Liao et al., 2024] (a multi-faceted route representation
learning model that captures spatial, attribute, and contex-
tual information through sequential learning and transformer
encoding, enabling more accurate travel time estimation),
PromptGAT [Da et al., 2024] (a prompt-based grounded ac-
tion transformation model which leverages the inference abil-
ities of LLMs to profile system dynamics and guide policy
actions for mitigating the sim-to-real performance gap).
Metrics. We compare the performance of RL models trained
in a simulation environment when transferred to real-world
settings using commonly used task assignment metrics [Xia
et al., 2019; Li et al., 2023]: average total revenue (ATR),
average task completion ratio (ACR), and average elapsed
time (AET). Additionally, we evaluate the travel time estima-
tion performance of large language models using commonly
used spatiotemporal prediction metrics [Wu et al., 2024;
Liao et al., 2024]: MAE and RMSE.

Environment. All machine learning methods are imple-
mented with PyTorch 2.2 and Python 3.12, and trained with
Intel 19-13900K@3.0GHz CPU, GTX3090 GPU and 32GB
RAM. The platform ran on Ubuntu 18.04 LTS.

Uhttps://www.openstreetmap.org
*https://www.didiglobal.com

Chengdu Xian
Models MAE RMSE | MAE RMSE
Mull-TTE | 6431 97.62 | 4832 7521
ChatGLM3-6B | 1590 23.18 | 1523 22.44
Owen2-7B 15.16 2221 | 1449 2045
LLaMA2-7B | 13.53 2029 | 13.37 15.63
LLaMA3-8B | 1226 1935 | 1143 13.64

Table 2: Effect of language models.
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Figure 3: Effect of the number of workers |W]|.

5.2 Analysis of Experimental Results

Effect of Language Models. The experimental results, as
shown in Table 2, compare the travel time prediction errors
of four large language models and the learning-based method
MulT-TTE. The prompt for the large language models is
set to: ”Please estimate the travel time in minute from nodes
worker location to task location based on the following traf-
fic perceptive information: on day-of-week at time-of-day,
weather is weather, and the road network status (data for-
mat:[start node, end node, road type]) is CIS. Please only an-
swer by replacing {value} in the format below: [travel time:
{value}].”. Tt can be observed that the error metrics (MAE
and RMSE) of the large language models are significantly
lower than those of MulT-TTE, attributed to their robust
zero-shot chain-of-thought reasoning capabilities. Among
the models, the LLaMA series outperforms ChatGLM and
Qwen in travel time estimation. Furthermore, larger parame-
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Figure 4: Effect of the number of tasks |I'].

ter models in the LLaMA series (e.g., LLaMA3-8B) demon-
strate superior performance compared to smaller parameter
models (e.g., LLaMA2-7B).

Effect of |IV|. To evaluate the effect of worker number ||
on the sim-to-real gap, we varied |W| from 50 to 800 on
both the CD and XA datasets. The experimental results, as
shown in Fig. 3, indicate that as |W| increases, all four meth-
ods exhibit a rapid initial improvement in total revenue and
task completion ratio, followed by a gradual plateau. This
trend arises because the increase in worker availability allows
more tasks to be completed, but once the worker number sur-
passes a certain threshold, the limited number of tasks con-
strains further revenue growth. HLMTrans achieves the best
performance on both datasets, with total revenue improve-
ments of approximately 21.9% and 23.7% over dTrans on the
CD and XA datasets, respectively. However, HLMTrans in-
curs slightly higher time costs compared to the other methods,
primarily due to its ability to allocate workers more effec-
tively for rapid task completion, which necessitates a higher
number of model decisions.

Effect of |I"|. Fig. 4 presents the experimental results with
task number |I"| varying from 5K to 30K. As |I"| increases,
total revenue and time costs show an upward trend, while
the completion ratio declines. This is because an increase
in task number leads to more tasks being completed, thereby
increasing both revenue and time costs. However, due to the
limited number of workers, a larger proportion of tasks ex-
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Figure 5: Effect of the deadline of tasks d.

pire without being assigned to available workers. Among the
methods, HLMTrans consistently achieves the optimal per-
formance, followed by PromptGAT, MulT-TTE, and dTrans.
Effect of d.. The experimental results in Fig. 5 illustrate the
effect of varying task deadline d, from 1 to 10 on the CD
and XA datasets. As the deadline increases, ATR, ACR, and
AET all exhibit an upward trend. This is because an ex-
tended deadline allows more tasks to be completed, while
simultaneously increasing the model’s number of decisions.
HLMTrans achieves significant improvements in total rev-
enue compared to dTrans, with maximum gains of up to
25.4% on the CD dataset and 39.7% on the XA dataset.

6 Conclusion

In this paper, we propose HLMTrans, a human-guided LLMs-
based sim-to-real transfer framework, designed to mitigate
the performance gap when transferring RLMs trained in sim-
ulation environments to real-world task assignment scenar-
ios. By leveraging the zero-shot reasoning capabilities of
pre-trained LLMs and fine-tuning with human preference
feedback, HLMTrans can improve the predictive accuracy of
GAT’s forward model, and effectively align with the system
dynamics of real-world environments. Extensive experiments
demonstrate that RLMs trained with the HLMTrans frame-
work in simulation environments, benefiting from more accu-
rate predictions of travel times, achieve superior performance
in real-world settings compared to SOTA methods.
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