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Abstract

Deep learning methods have demonstrated remark-
able performance across various communication
signal processing tasks. However, most signal
classification methods require a substantial amount
of labeled samples for training, posing signifi-
cant challenges in the field of communication sig-
nals, as labeling necessitates expert knowledge.
This paper proposes a novel self-supervised signal
classification method called Spectral-Guided Self-
Supervised Signal Classification (SGSSC). Specif-
ically, to leverage frequency-domain information
with modulation semantics as prior knowledge for
the model, we design a previously unexplored pre-
text task tailored to the format of signal data. This
task involves predicting spectral information from
masked time-domain signals, enabling the model to
learn implicit signal features through cross-domain
pattern transformation. Furthermore, the pretext
task in the SGSSC method is relevant to the down-
stream classification task, and using traditional
fine-tuning strategies on the downstream task may
lead to the loss of certain features associated with
the pretext task. Therefore, we propose an attention
mechanism-based fine-tuning strategy that adap-
tively integrates pre-trained features from different
levels. Extensive experimental results validate the
superiority of the SGSSC method. For instance,
when the proportion of labeled samples is only
0.5%, our method achieves an average improve-
ment of 2.3% in downstream classification tasks
compared to the best-performing self-supervised
training strategies.

1 Introduction

Communication signal classification techniques have
emerged as a powerful tool in a variety of important appli-
cations, such as the detection of Internet of Things attacks
[Huang er al., 2021], 5G and advanced non-cooperative
communication [Hermawan et al., 20201, as well as spectrum
sensing and electronic warfare [Yakkati et al., 2021]. With
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Figure 1: Time-domain and frequency-domain representations of the
modulation schemes 8 Phase Shift Keying (§PSK) and Continuous
Phase Frequency Shift Keying (CPFSK). The left side shows the
time-domain, while the right side shows the frequency-domain. The
blue line represents the real part of the complex data, while the or-
ange line represents the imaginary part.

the continuous advancement of Deep Learning (DL), DL-
based communication signal classification algorithms have
significantly outperformed traditional algorithms in recent
years [O’Shea et al., 2016]. However, in some real-world
situations, especially for time series data, obtaining labeled
data is not only a time-consuming and expensive process
but also requires substantial expert knowledge. Therefore,
exploring how to extract features from unlabeled data is a
direction worth investigating.

Self-Supervised Learning (SSL) is a form of unsupervised
learning that leverages automatically generated pretext tasks
to extract valuable supervisory signals from unlabeled data.
These pretext tasks are challenges designed by the model it-
self, and the model learns valuable representations for down-
stream tasks by solving these challenges. Unlike supervised
learning, which requires a large amount of manually anno-
tated data, SSL can learn valuable representations from un-
labeled data by exploiting the inherent characteristics of the
data, thereby avoiding the tedious and expensive process of
manual data annotation. This approach fully exploits the po-
tential information in the data, providing good initial feature
representations for downstream tasks, which can improve the
performance and generalization ability of the model. SSL has
recently achieved great success in the fields of Computer Vi-
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sion (CV) [Jing and Tian, 2020] and Time Series (TS) [Zhang
et al., 2024]. Consequently, applying SSL to communication
signal field is a promising research direction that is worth fur-
ther exploration.

However, in current research on SSL for communication
signal classification, several core challenges remain to be ad-
dressed. One major challenge is that, compared to general
image or time series data, communication signal data is more
heavily reliant on spectral analysis [Zeng et al., 2019]. The
complex time-frequency characteristics and relationships of
these signals require models to efficiently capture both time-
domain and frequency-domain information simultaneously.
However, existing SSL methods often borrow pretext tasks
from CV or TS domains, neglecting the unique modulation
semantics and spectral features of communication signals.
This oversight makes it difficult for the models to accurately
understand the inherent structure of the signals. Another sig-
nificant challenge is that commonly used data augmentation
techniques in other domains do not translate well to commu-
nication signals. For instance, transformations like rotation
and cropping in CV overlook the semantic information of
time series data and may disrupt the temporal dependencies
in communication signals, such as disturbing the peaks and
valleys of the waveform. In the TS domain, data augmen-
tation techniques are typically designed based on the sub-
sequence consistency assumption [Franceschi et al., 2019].
However, since communication signal data is fundamentally
built on baseband modulation code sequences to carry infor-
mation, the sub-sequences in such data often contain incom-
plete or biased semantic information between them, which
makes these methods less effective for communication sig-
nals. These challenges have driven us to seek a novel self-
supervised training framework that does not rely on tradi-
tional data augmentation, aiming to more effectively model
and utilize the time-frequency characteristics of communica-
tion signals.

Communication modulation signals contain a wealth of
exploitable spectral information with modulation semantics.
The extraction of frequency domain features has long been
a focus in the field of signal processing [Katsaggelos et al.,
1993]. The different modulation schemes exhibit distinct
spectral feature distributions in the frequency domain. Fig-
ure 1 shows an example of this phenomenon. The spectral
energy of the 8PSK modulation scheme is primarily con-
centrated in the high-frequency region, while the spectral
energy of CPFSK is mainly distributed in the mid to low-
frequency range. Inspired by this, we designed a novel self-
supervised training strategy SGSSC that enables the model to
learn cross-domain data transformation from time domain to
frequency domain. This training strategy allows the model
to develop the ability to extract distribution of spectral in-
formation with modulation semantics from time-domain sig-
nals. To our knowledge, this is a previously unexplored pre-
text task that is more suitable for communication signal data
formats rich in spectral information, compared to genera-
tive [He et al., 2022] or contrastive [He et al., 2020] SSL
methods. Our approach innovatively uses spectral informa-
tion to guide the model in learning implicit frequency do-
main knowledge structures from time-domain data, thereby

building a cross-domain knowledge bridge. Additionally, to
enhance the model’s temporal modeling capability, we em-
ploy a masking strategy on the communication signal data
within the pretext task. Concurrently, we also recognize that
the spectral information inherently carries certain modulation
semantics that are closely related to the downstream classi-
fication task. Applying a traditional fine-tuning approach on
the downstream task may potentially lead to the loss of valu-
able pre-training knowledge. To address this challenge, we
have designed a novel fine-tuning strategy based on attention
mechanisms, which enables our model to adaptively integrate
different levels of pre-trained features. Our contributions can
be summarized as follows:

* We propose a self-supervised training method SGSSC
specifically designed for communication signal data,
which leverages the spectral information containing
modulation semantics in the signals. This approach en-
ables the model to extract deeper semantic features from
time-domain data for downstream tasks.

We introduce a novel fine-tuning strategy based on at-
tention mechanisms for downstream tasks, enabling the
adaptive integration of pre-trained features from various
levels, thereby preserving valuable knowledge learned
during the self-supervised training phase.

We validated the effectiveness of this self-supervised
training framework in downstream communication sig-
nal classification tasks. When the proportion of labeled
samples is 0.5%, our method achieves an average im-
provement of 2.3% compared to the best-performing
SSL method.

2 Related Work
2.1 Signal Classification

Signal classification has long been a pioneering problem in
the field of communication. Traditional modulation signal
recognition methods rely on manual feature extraction, in-
cluding spectral features, instantaneous parameter statistical
features, and higher-order cumulants [Zhang et al., 2001], as
well as likelihood ratio methods for classification tasks [Xu et
al., 2011]. However, these methods heavily depend on expert
design and signal conditions. With the remarkable achieve-
ments of deep learning, a wave of DL-based models has been
applied to signal classification. Intuitively, the adopted strat-
egy is to transform signals into a visual format to leverage
CV-based models for classification, such as CNN [Huynh-
The et al., 20201, RNN [Hong et al., 20171, and Transformer
[Hamidi-Rad and Jain, 2021] architectures. The effective-
ness of DL-based communication signal classification meth-
ods hinges on the availability of a large amount of labeled
data. However, in the communication signal field, obtaining
labeled data is more challenging compared to the CV field, es-
pecially in non-cooperative communication scenarios that re-
quire strong expert knowledge. Therefore, correctly handling
unlabeled modulation signals is key to successfully complet-
ing classification tasks.
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Figure 2: Pipeline of the SGSSG method. The self-supervised training process is shown at the top, the Token Attention Block is on the lower

left, and the fine-tuning process is on the lower right.

2.2 Self-Supervised Learning

SSL primarily leverages pretext tasks to extract supervi-
sory signals from large-scale unlabeled data. In the field
of CV, it can be categorized into two types: generative-
based methods and contrastive-based methods. The main idea
behind generative-based methods is to learn visual features
through image generation tasks, such as grayscale image col-
orization [Zhang et al., 2016], image inpainting [Pathak et
al., 2016], and playing image puzzles [Noroozi and Favaro,
2016]. Contrastive-based methods, on the other hand, focus
on modeling the relationships between different instances us-
ing a simple discriminative structure, examples include Sim-
Siam [Chen and He, 2021], SimCLR [Chen et al., 2020a], and
SWAV [Caron et al., 2020a]. Due to the success of contrastive
learning methods in the field of CV, some researchers have
also introduced them into the field of communication signals
[Kong et al., 2023]. However, these methods primarily apply
the original algorithmic processes from the CV field, merely
altering the model structures or data augmentation methods.
They lacked algorithmic innovations tailored to the unique
data formats of communication signals or the incorporation
of expert knowledge specific to this field.

3 Method

In this section, we will provide an overview of the self-
supervised training framework we have proposed. First, we
will introduce the pretext task we have designed specifi-
cally for communication signal data. Then, we will elabo-
rate on the masking strategy implemented to further enhance
the model’s temporal modeling capability for communica-
tion signals. Finally, we will present the attention-based fine-
tuning method developed to integrate pre-trained features for
downstream tasks. Figure 2 illustrates the complete pipeline

of the SGSSC method.

3.1 Pretext Task

The Discrete Fourier Transform (DFT) can be used to ana-
lyze the frequency characteristics of signals [Fonseca Guerra
et al., 1998], such as identifying the main frequency com-
ponents in a signal. This is widely applied in fields like
audio signal processing and communication system analy-
sis. We leverage the frequency components obtained through
the DFT of the time-domain signal x to model Xy =
[X[0],X[1],...,X [L —1]]. Specifically, the p-th compo-
nent X [p] of the DFT of x is given by the following equation:

t—1

Xgilp) = Y [k e 5Pk (1)

k=0

where x [k] is the k-th signal value of time-domain signal x.
Due to the properties of the DFT, the resulting frequency-
domain representation X 4; is a complex vector with the same
dimensions as the input time-domain signal z.

Different modulation schemes exhibit distinctly different
characteristics in the frequency domain, while signals em-
ploying the same modulation schemes tend to have remark-
ably similar spectral information. We believe that the cor-
relation between modulation schemes and spectral informa-
tion serves as a powerful prior knowledge, enabling models
to better comprehend the inherent modulation semantics of
communication signals. Therefore, we designed a simple yet
ingenious pretext task. We use the time-domain signal as the
input to the model, while the spectrum obtained through the
DFT serves as the ground truth to guide the model’s training:

L-1

L= (Xp [P~ X [P])2 2)

p=0
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where X is the output spectrum predicted by the model. We
use Mean Squared Error loss to optimize the model for itera-
tive updates.

By designing a pretext task that encourages the model
to learn cross-domain transformations, we enable the model
to uncover the intrinsic relationships between the temporal
structure of the input signal and the spectral information im-
bued with modulation semantics. This allows the model to
associate its feature representations with the underlying mod-
ulation characteristics of the signal. Consequently, in down-
stream tasks, this holistic understanding empowers the model
to extract more fundamental and higher-level features from
the time-domain signals, thereby reducing the model’s re-
liance on large amounts of labeled data.

3.2 Masking

In the field of signal classification, enabling models to un-
derstand temporal relationships has long been a focus of
research. Some scholars have approached this by modify-
ing model architectures, incorporating LSTM [Emam et al.,
2020] or Transformer [Cai et al., 2022] modules into models.
While this approach equips models with the ability to model
the temporal properties of signals, it often lacks a robust loss
function to constrain the modeling process. In the fields of
CV/NLP, masked autoencoders have proven to be an effec-
tive SSL method [Doersch et al., 2015]. This strategy of pre-
dicting masked portions allows models to better understand
the contextual relationships within data. Inspired by this, we
have also introduced the strategy of masking. Specifically, we
randomly set certain signal values in the time domain to zero
at a certain ratio, and then input these masked signals into
the model for pretext task training. Through this approach,
the model is forced to leverage the surrounding signal val-
ues to infer and reconstruct the masked information. This
process encourages the model to develop a more profound
understanding of the underlying temporal structure and de-
pendencies within the communication signals.

3.3 Fine-Tuning of Attention Mechanisms

After completing self-supervised training, it is generally be-
lieved that the shallow layers of the model capture low-
level features, while the deeper layers learn features that are
strongly related to the pretext tasks [Zhou er al., 2018]. In
the field of CV, the pretext tasks often have significant dif-
ferences from the downstream tasks. Therefore, during fine-
tuning for downstream tasks, it is common practice to use
the earlier layers of the complete model as feature extrac-
tors [Jing and Tian, 2020], discarding the latter layers of the
model structure. However, the SGSSC method differs in this
regard. The spectrum of a signal itself possesses inherent
modulation semantics, which can be leveraged as features in
downstream classification tasks. Consequently, the features
at the backend of the model obtained through self-supervised
training are closely related to the downstream tasks. Discard-
ing these features would hinder the effective utilization of
the knowledge acquired during self-supervised training when
fine-tuning for downstream tasks. To address this issue, we
design an attention-based fine-tuning approach to integrate
features from different layers of the model.

The Figure 2c illustrates the detailed structure of the atten-
tion module. In principle, the concept of this module can be
embedded in any model architecture. In our case, we primar-
ily integrate the module into the transformer architecture. The
model structure we use is similar to the Vision Transformer
(ViT) [Dosovitskiy et al., 2020], with simple modifications
made to accommodate the data format of signals.

The output of the n-th transformer block in the model can
be defined as F,, € RM*L) where M is the number of to-
kens and L is the feature length of each token. The model
consists of a total of N transformer blocks. During fine-
tuning, we first concatenate the output features from each
layer along the token dimension, resulting in a richer fea-
ture representation F € R(N*M)xL)  This feature incor-
porates information from different layers, encompassing both
low-level features of the signals and high-level features re-
lated to the pretext tasks. Next, we employ a token-level
attention mechanism to process this feature. There are two
main reasons for this approach: firstly, the dimensionality of
the feature is quite large, and using it directly for fine-tuning
on downstream tasks may easily lead to overfitting, necessi-
tating dimensionality reduction; secondly, the use of token-
level attention allows us to selectively focus on and integrate
features across different layers and tokens, better leveraging
the time-frequency understanding developed during the self-
supervised training phase. This enables the model to seam-
lessly transfer the learned knowledge to the downstream sig-
nal classification task, thereby improving performance. Our
specific approach is outlined as follows:

A(F) = o(MLP(AvgPool(F)) (3)

where AvgPool is the average pooling layer. M LP is the
fully connected layer, and o is the sigmoid activation func-
tion, which maps the features to values between 0 and 1. The
variable A is the attention scores we aim to obtain. Finally, as
shown in Equation (4), we multiply each token by its corre-
sponding attention score and then aggregate the results, which
serves as the feature representation for the downstream task:

F=ATF 4)

where F is the input feature for the downstream task.

4 Experiment

4.1 Dataset

We adopted the data generation methodology used in the
publicly available RML2016.10a dataset [O’shea and West,
2016] to create datasets under three distinct channel con-
ditions: Additive White Gaussian Noise (AWGN) chan-
nel, Rayleigh (Ray) channel, and Rician (Ri) channel. The
AWGN channel has additive white Gaussian noise, with the
amplitude following a Gaussian distribution and a constant
power spectral density function. The Rayleigh channel is
used to model scenarios where there is no direct link be-
tween the transmitter and receiver, and the signal reaches the
receiver through reflection or diffraction. The Rician chan-
nel is used to model channel fading situations where there
is a direct path and multiple reflected paths simultaneously.
Each dataset contains 220,000 modulated signals, comprising
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0.1% of labeled data

‘ AWGN Rayleigh Rician A — Ray A —Ri Ray — A Ray — Ri Ri — A Ri — Ray ‘ Average
Random Init 25.5 21.1 21.6 21.1 21.6 25.5 21.6 25.5 21.1 227
Supervised 28.1 237 23.8 237 23.8 28.1 23.8 28.1 23.7 252
DCL 373 26.1 24.1 25.0 254 31.8 242 289 26.6 27.7
NNCLR 34.6 26.1 25.9 25.7 24.7 29.4 24.8 28.6 24.1 27.1
SimCLR 35.0 26.8 26.3 24.1 24.1 28.7 23.9 295 24.8 27.0
SimSiam 323 27.5 27.0 26.8 24.2 329 25.1 314 253 28.1
SWAV 329 24.0 24.5 26.1 25.6 34.1 25.6 30.8 274 279
MAE 30.7 254 252 244 25.0 30.6 235 30.2 26.0 26.8
SSL-ECG 36.7 282 27.8 27.2 26.0 35.2 26.7 328 28.0 29.0
CPC 38.2 28.9 28.4 27.9 26.3 36.6 26.3 32.0 28.7 30.4
TS-TCC 37.8 29.6 29.1 28.3 26.6 37.8 257 334 29.2 30.8
InfoTS 39.5 30.3 30.0 28.7 26.8 39.0 26.0 34.1 30.5 31.7
TimesURL 40.1 310 30.8 29.0 27.1 39.8 27.0 34.9 310 32.3
SGSSC* 39.3 29.6 30.7 28.5 269 39.1 27.1 33.8 30.7 31.7
SGSSC 44.4 32.4 32.7 30.9 28.6 41.5 25.9 36.8 31.4 33.8
0.5% of labeled data
Random Init 34.1 28.8 28.4 28.8 28.4 34.1 28.4 34.1 28.8 30.4
Supervised 37.0 31.7 31.0 31.7 31.0 37.0 31.0 37.0 31.7 332
DCL 472 39.3 35.0 36.7 34.7 44.7 358 45.7 39.0 39.8
NNCLR 46.7 385 354 359 332 43.8 36.1 44.6 394 39.3
SimCLR 46.9 38.1 34.1 355 335 434 352 44.1 38.7 38.8
SimSiam 44.8 38.9 345 35.1 33.8 43.1 34.6 44.9 384 38.7
SWAV 472 40.2 34.8 36.3 34.1 44.0 34.9 453 38.1 39.4
MAE 47.6 39.8 357 37.1 344 443 355 46.2 39.6 40.0
SSL-ECG 475 40.6 36.0 375 35.0 45.0 36.7 46.4 39.9 40.5
CPC 47.1 41.0 36.3 37.9 353 453 36.4 46.9 40.5 40.8
TS-TCC 47.7 41.4 36.6 383 35.6 45.6 37.0 47.3 40.2 41.1
InfoTS 47.8 41.8 37.0 38.7 359 45.9 373 47.7 40.8 41.4
TimesURL 479 42.0 375 39.2 36.0 46.1 37.5 48.0 413 41.7
SGSSC* 48.8 419 39.6 385 36.1 45.8 374 48.3 41.3 42.0
SGSSC 49.5 44.0 404 42.0 379 49.0 39.5 49.8 43.8 44.0

Table 1: Results of fine-tuning self-supervised pretrained models with 0.1% and 0.5% of labels for signal data classification tasks. Best results
across each column are in bold, while the second-best results are underlined.

11 modulation schemes, with 20,000 signals per modulation
class. The signals are generated at 20 different signal-to-noise
ratios (SNR), ranging from -20 dB to 18 dB with a step size
of 2 dB. Each class and SNR combination has 1,000 signals.

We further evaluated the effectiveness of our method us-
ing six time series datasets: Human Activity Recognition
(HAR) [Anguita er al., 2013], Epilepsy Seizure Prediction
(ESP) [Andrzejak er al., 20011, and several datasets from the
UCR Repository [Dau et al., 2019], including Wafer, Pha-
langesOutlinesCorrect (POC), ProximalPhalanxOutlineCor-
rect (PPOC), and StarLightCurves (SLC).

For all datasets, we performed a split, with 60% used for
self-supervised training, 20% for validation, and 20% for test-
ing. During fine-tuning on downstream tasks, we randomly
sampled the corresponding proportion of data from the self-
supervised training set and utilized their labels.

4.2 Implementation Details

To validate the effectiveness of our method, we followed a
standard linear evaluation scheme [Chen et al., 2020b]. In
this scheme, a linear classifier (a single fully connected layer)
is trained on a frozen self-supervised pre-trained model. In
the self-supervised training experiment, we used a mask ratio
of 0.7, the Adam optimizer with a learning rate of 0.0001, a
batch size of 64, and trained for a total of 500 epochs. For the
fine-tuning experiments on downstream tasks, we employed
the Adam optimizer, setting the learning rate for the classifier

to 0.06 and a batch size of 64. Our model architecture is
similar to ViT, with a patch size of 1x16, 8 layers, a hidden
size of 128, an MLP size of 1024, and 8 attention heads. All
experiments were conducted on a GeForce RTX 3090, and
the reported results represent the average performance over
five independent runs.

4.3 Overall Performance

To validate the effectiveness of the proposed self-supervised
pre-training method SGSSC, we fine-tuned the model on
downstream classification tasks using 0.1% and 0.5% of the
labeled data, with accuracy as the evaluation metric. The
results are shown in Table 1. The experimental datasets
encompass various scenarios, including single-channel and
cross-channel settings. For instance, “AWGN” indicates both
self-supervised training and downstream task fine-tuning are
performed on the AWGN dataset, whereas “A — Ray” de-
notes that self-supervised training is conducted on the AWGN
dataset and the downstream classification task is fine-tuned
on the Rayleigh dataset. This setup allows us to assess the
method’s performance on in-distribution tasks as well as its
generalization capability in cross-distribution transfer tasks.
To compare performance, we selected 13 comparative
methods, categorized into three groups: the baselines include
Random Init and Supervised, where Random Init represents
training a linear classifier on a frozen and randomly initial-
ized encoder, and Supervised refers to fine-tuning the entire
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Figure 3: Comparison of spectral ground truth and model predictions.

1% of labeled data
| HAR ESP  Wafer POC PPOC

SLC | Average

Random Init | 39.8 703 90.6 614 643 788 | 675
Supervised | 449 761 919 620 684 806 | 70.7
DCL 583 860 930 619 686 806 | 747
NNCLR 553 857 921 617 671 809 | 738
SimCLR 658 883 938 615 676 836 | 768
SimSiam 612 845 926 622 674 804 | 747
SWAV 749 832 924 625 678 80.1 | 768
MAE 66.8 873 928 628 682 823 | 767
SSL-ECG 600 893 934 625 698 783 | 756
CPC 654 889 935 648 633 808 | 76.1
TS-TCC 705 912 932 638 634 860 | 780
InfoTS 559 884 933 630 693 812 | 752
TimesURL | 64.5 89.9 937 632 689 819 | 770
SGSSC* 701 89.1 939 632 697 817 | 779
SGSSC 761 914 954 636 715 844 | 804

5% of labeled data

RandomInit | 49.6 755 912 616 641 742 | 69.4
Supervised | 52.8 834 946 614 69.1 818 | 739
DCL 632 904 939 613 715 839 | 774
NNCLR 605 856 934 617 723 823 | 760
SimCLR 758 913 948 627 680 842 | 795
SimSiam 653 841 942 611 731 830 | 768
SWAV 684 873 947 615 702 8.1 | 779
MAE 706 890 955 616 709 868 | 79.1
SSL-ECG 637 928 949 629 688 826 | 776
CPC 754 928 925 669 715 89.1 | 814
TS-TCC 776 931 932 638 721 89.6 | 816
InfoTS 731 922 958 619 738 872 | 807
TimesURL | 768 948 969 620 744 885 | 789
SGSSC* 792 935 961 618 749 887 | 824
SGSSC 851 966 988 626 773 9.7 | 853

Table 2: Results of fine-tuning self-supervised pretrained models
with 1% and 5% of labels for TS data classification tasks. Best re-
sults across each column are in bold, while the second-best results
are underlined.

model. DCL [Chuang et al., 2020], NNCLR [Dwibedi et al.,
2021], SimCLR [Chen et al., 2020a], SimSiam [Chen and
He, 20211, SWAV [Caron et al., 2020b], and MAE [He et al.,
2022] are current mainstream self-supervised learning meth-
ods in the computer vision domain. SSL-ECG [Sarkar and
Etemad, 2020], CPC [Oord et al., 2018], TS-TCC [Eldele et
al.,2023], InfoTS [Luo et al., 2023], and TimesURL [Liu and
Chen, 2024] are self-supervised learning methods specifically
designed for time series data. Additionally, to ensure fairness,
we designed a control version SGSSC* that does not em-
ploy our proposed attention-based fine-tuning strategy, to val-
idate the pure effectiveness of the feature representations. As
shown in Table 1, the proposed SGSSC and SGSSC* methods
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Figure 4: The impact of different mask ratios on the performance of
downstream classification tasks.

achieve superior performance across all experimental scenar-
i0s.

Furthermore, to demonstrate the potential of our method
on time series data, we conducted experiments on six time
series datasets. For these datasets, we fine-tuned the model
using 1% and 5% of the labeled data. The experimental re-
sults, presented in Table 2, indicate that our method outper-
forms others on five of these datasets as well as in terms of
the average accuracy across all datasets.

4.4 Mask Ratio

To investigate the impact of different mask ratios in self-
supervised training on downstream task performance, we set
mask ratio to 0.1, 0.3, 0.5, and 0.7, and conducted self-
supervised training on the AWGN dataset. Figure 3 shows the
frequency-domain reconstruction quality of a BPSK modula-
tion scheme with a SNR of 18 dB under different mask ratios.
As observed, increasing the mask ratio leads to degradation
in reconstruction details. Nevertheless, the overall frequency
distribution characteristics are still well preserved.

Figure 4 presents the experimental results of models
trained with different mask ratio on downstream tasks. It is
evident that when the mask ratio is 0.7, the model demon-
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Figure 5: Visualization of attention weight distribution across model layers (shallow to deep).

| DCL  NNCLR  SimCLR  SimSiam SWAV ~ MAE  SSL-ECG CPC TS-TCC ~ InfoTS  TimesURL | SGSSC
MFLOPs 1.147 1.547 1.147 1.430 1.214 1.586 1.595 1.632 1.437 1.865 1.743 1.606
Params/M | 1.117 1.513 1.117 1.397 1.183 1.174 1.478 1.617 1.398 1.871 1.710 1.185

Table 3: Computational complexity and number of parameters comparison of different methods.

strates excellent feature extraction capabilities. This is be-
cause the signal data exhibits strong temporal continuity with
minimal fluctuations. At lower mask ratios, the model tends
to learn shortcuts in temporal modeling, while only at higher
mask ratios is the model compelled to discover more robust
features within the signal, thus facilitating the effective trans-
fer of knowledge to the downstream tasks.

4.5 Visualization and Computational Complexity

To more intuitively demonstrate the allocation of feature
weights by our proposed attention-based fine-tuning strategy,
we visualized the attention weights across different layers of
the model, with the results presented in Figure 5. In the visu-
alization, the horizontal axis represents the attention weights
of different tokens in the model arranged in the order of for-
ward propagation layers, while the vertical axis corresponds
to datasets from three channel environments. From the fig-
ure, it can be observed that tokens from deeper layers ex-
hibit significantly higher attention values, whereas those from
shallower layers have relatively lower attention values. This
aligns with the objective of our proposed fine-tuning strategy,
indicating that the token-level attention mechanism can se-
lectively focus on high-level features that are closely related
between the pretext task and downstream task, while retain-
ing low-level features from shallow layers to provide founda-
tional information.

Meanwhile, we also calculated the computational cost in
FLOPs and the number of parameters for our method and the
comparative methods discussed in this paper, with the results
shown in Table 3. As seen in the table, our method has com-
putational and parameter counts similar to some of the current
mainstream approaches. This is because the pretext task we
designed are very simple, and the attention-based fine-tuning
strategy only adds a few small linear layers, resulting in min-
imal overhead.

4.6 Ablation Experiment

We conducted an ablation study on the attention mechanism
and masking strategy using three datasets, with an experimen-
tal setting of 0.1% labeled data for downstream tasks. Table

Dataset ‘ Supervised ~ w/attention w/mask w/atttenion+mask
AWGN 28.1 35.4(+7.3) 39.3(+11.2) 44.4(+16.3)
Rayleigh 23.7 28.2(+4.5) 29.6(+5.9) 32.4(+8.7)
Rician 23.8 27.0(+3.2) 30.7(+6.9) 32.7(+8.9)

Table 4: Ablation study of mask strategies and attention mecha-

nisms, where ”w”” denotes with”.

4 presents the ablation results. The table shows that incor-
porating all components improves performance compared to
the baseline. On the AWGN dataset, adding only the attention
mechanism without masking the time-domain data leads to a
7.3% performance increase. Using a masking ratio of 0.7 on
the time-domain data without the attention mechanism results
in a 11.2% performance boost. When both modules are em-
ployed simultaneously, the model’s performance increases by
16.3%. These findings indicate that both modules contribute
significantly to the model’s performance, facilitating efficient
knowledge transfer to downstream tasks. The attention mech-
anism helps the model focus on features highly relevant to the
downstream task, while the masking strategy encourages the
model to learn more robust temporal modeling from partially
masked time-domain signals.

5 Conclusion

Acquiring labels for communication signal data is often a
challenging task. To address this issue, this paper explores a
self-supervised learning method called Spectral-Guided Self-
Supervised Signal Classification, which is particularly suited
for time series data with rich spectral information. By lever-
aging spectral information, this method facilitates the model’s
learning of more prior knowledge with modulation seman-
tics. To validate its effectiveness, we conducted experiments
using both signal and time series datasets, demonstrating that
this training approach aids the model in acquiring richer fea-
ture representations and achieving superior performance in
downstream tasks. We hope that this self-supervised learn-
ing method will advance research across various time series
domains.
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